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Shift of the critical temperature in 
superconductors: a self-consistent 
approach
Alberto Cappellaro1 ✉ & Luca Salasnich1,2

Within the Ginzburg-Landau functional framework for the superconducting transition, we analyze the 
fluctuation-driven shift of the critical temperature. In addition to the order parameter fluctuations, 
we also take into account the fluctuations of the vector potential above its vacuum. We detail the 
approximation scheme to include the fluctuating fields contribution, based on the Hartree-Fock-
Bogoliubov-Popov framework. We give explicit results for d = 2 and d = 3 spatial dimensions, in terms of 
easily accessible experimental parameters such as the Ginzburg-Levanyuk number Gi(d), which is related 
to the width of the critical region where fluctuations cannot be neglected, and the Ginzburg-Landau 
parameter κ, defined as the ratio between the magnetic penetration length and the coherence one.

For over half a century, the Ginzburg-Landau (GL) theory has proven to be the most effective theoretical tool 
to describe the critical behaviour of physical systems in presence of symmetry breaking1–4. Despite its apparent 
simplicity, this functional approach can be successfully applied to a wide range of physical situations, such as, for 
instance neutral superfluids, spin systems and superconducting materials4–6. By relying on few well-grounded 
physical considerations (symmetries of the model and the analyticity of thermodynamic functions), it provides 
a formidable platform to understand the consequences of symmetry breaking and the role played by fluctuations 
close to the criticality.

Concerning conventional superconductors, it is well-known that fluctuations do not play a relevant role and 
the mean-field analysis of the GL theory is extremely reliable in describing the superconducting transition. This 
is due to the fact that the critical region cannot be accessed experimentally since it is very narrow3. As a conse-
quence, certain questions, such as the order of the transition or the thermally-driven critical temperature shift, 
remained a purely theoretical exercise7 up to the first observation of high-Tc superconductivity8–10.

Generally, many of these high-Tc materials display a shorter coherence length ξ, implying a higher 
Ginzburg-Levanyuk number Gi d( ) and therefore a wider fluctuating region, where a mean-field approach is not 
reliable11,12. In particular, for a variety of materials, fluctuations appear to be the main opponent of high-Tc super-
conductivity. Since the critical temperature shift is a non-universal property of physical systems, it is important to 
properly understand how they affect, and eventually destroy, the superconducting phase13,14. For instance, in 
multiband superconductors it has been found that fluctuations can be suppressed by switching on a Josephson-like 
coupling between the bands15.

In this paper we consider the minimal coupling of the usual ψ4-theory with the electromagnetic field. We aim 
to compute the fluctuation-driven shift of the critical temperature (compared to the mean-field scheme) by taking 
into account both the order parameter and the vector potential fluctuations. In order to perform this task we 
make use of an improved saddle-point equation, where fluctuations are taken into account within the so-called 
Hartree-Fock-Bogoliubov-Popov scheme. This approximation scheme is one of the many field-theoretical strate-
gies to model finite-temperature degenerate gases (for a review see16), where it has been proven to provide a reli-
able picture for bosonic alkali vapors placed in an external confinement17–19. Here, this approach is applied to the 
Ginzburg-Landau equations, reading a modified saddle-point equation where additional terms are present, 
depending on the average of the square modulus of fluctuations. Once one has a strategy to self-consistently com-
pute these quantities, the critical temperature shift can be easily derived.

The paper is structured as follows: first, we review some general features of the Ginzburg-Landau theory. In 
particular, we introduce the minimal coupling with the electromagnetic field. Then we present our strategy to 
include the fluctuations in an improved saddle-point (or Ginzburg-Landau) equation. We give explicit results for 
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=d 2 and =d 3 dimensions, where the shift turns out to depend only on the Ginzburg-Levanyuk number Gi d( ) 
and the parameter κ, the latter being the ratio between the magnetic penetration length and the coherence one. 
Our analytical formulas for the shift of the critical temperature, directly obtained from the Ginzburg-Landau 
functional, are a generalization of familiar ones20, which take into account only the fluctuations of the order 
parameter.

Results
The Ginzburg-Landau formulation: general features.  Concerning the normal-to-superconductor 
transition, close to the critical temperature, the free energy of a single-band superconductor can be split into

= + , (1)s n  

with n  the contribution of the disordered (i.e. normal) component, while s models the contribution due to the 
emergence of an ordered phase (i.e. superconductor) characterized by an order parameter ψ r( ) acquiring a 
non-zero value below a certain critical temperature to determine. The great intuition of Landau and Ginzburg 
consisted in writing down the latter in terms of few simple terms based on the symmetries to which the theory 
obeys. In our case, this implies20
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where

= ∂ −µ µ µ
⁎ ( )D ie A r (3)

is the gauge-invariant derivative coupling the order parameter ψ r( ) with the vector potential A r( ), with e* being 
the effective charge. In the equations above, the index µ labels the component of the vector A. One has also to 
recall that the order parameter ψ  has to be assumed as a complex field if we aim to describe the 
normal-to-superconducting transition.

Concerning the couplings of the theory described by s in Eq. (2), b and γ can be taken as positive constants, 
while the coefficient of the ψ 2-term contains the temperature dependence. Simple considerations lead to the 
well-known conclusion that this dependence is linear, namely

α= −a T k T T( ) ( ) (4)B c0

with α > 0 and kB the Boltzmann constant. In the equation above, Tc0 is the mean-field critical temperature.
It has to be remarked that Eq. (2) holds in absence of an external magnetic field. In order to model this situa-

tion,  ψ A[ ; ]s  must be modified adding a term proportional to ∇ ∧ ⋅A H( ) . However, in this paper we limit our 
analysis to case of no applied external field.

It is immediate to show that, with the ansatz ψ ψ=r( ) 0 and =A r 0( ) , one can find the usual saddle-point 
solution
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Thus, the order parameter acquires a non-zero value when a T( ) changes its sign. Within the mean-field 
scheme, the phase transition then occurs at a temperature given by the solution of

= .a T( ) 0 (6)c0

This simple approach lacks every information about the fluctuations of the order parameter and the vector 
potential. For conventional superconductors, the critical region where fluctuations are crucial is very small and 
cannot be observed.

However, with the discovery of novel materials displaying exotic superconductivity, it appears clear that devi-
ations from the mean-field picture have to be explored very carefully.

Including the fluctuations: the HFBP scheme.  The saddle-point equation in the HFBP approxima-
tion.  Differently from the case of neutral superfluids, the Ginzburg-Landau functional for a superconducting 
system, as given by Eq. (2), depends on two different fields because of the minimal coupling with the electromag-
netic field.

Thus, the saddle-point configuration of the system has to be determined by searching for the stationary trajec-
tories of  ψ A[ , ]s . In other words, one has to solve the system

 δ
δψ

δ
δ

= =⁎ A
0 and 0

(7)
s s
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where δ/δ(•) has to be intended in the sense of first variation. The equation resulting from the variation with 
respect to ψ⁎ reads

ψ γ γ γ ψ+ − ∇ + + ⋅ ∇ =⁎ ⁎a T b e i eA A[ ( ) ( ) 2 ] 0, (8)2 2 2 2

while δ δ =A/ 0s  leads us to the following equation
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In both Eqs. (8) and (9) the spatial dependence of both fields is left intended. Obviously, assuming the ansatz 
ψ ψ=r( ) 0 and =A 0 as in the previous section, the Ginzburg-Landau equation are solved by Eq. (5). It is then 
clear that a saddle-point configuration exists for a uniform order parameter and in absence of a vector potential.

In order to encode the thermal fluctuations in a saddle-point scheme, let us then split the order parameter

ψ ψ η= +r r( ) ( ) (10)0

where ψ0 is a constant which can be assumed as real but it is not necessarily given by ψ0
(mf) in Eq. (5). On the other 

hand, η r( ) is the space dependent fluctuation field. The crucial feature concerning ψ r( ) as defined above is that

ψ ψ≡ r( ) (11)0

and, as an immediate consequence,

η η= = .⁎ 0 (12)

The thermal average …  has to be intended as performed over a proper statistical ensemble where a global 
gauge symmetry can be spontaneously broken.

For the vector potential A r( ), we only consider fluctuations A r( ) above its vacuum 0, namely

= + .AA r 0 r( ) ( ) (13)

Now, we proceed by replacing Eq. (10) in Eq. (8), such that
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We are interested in how fluctuations modify the uniform background ψ0 within the broken symmetry phase, 
i.e. for <T Tc. We remark that, according to this framework, the critical temperature ≠T Tc c0, since Eq. (6) does 
not take into account the role of fluctuations.

In order to derive an equation for ψ0 including a contribution due to fluctuations, both of the order parameter 
and the vector potential, we take the thermal average of Eq. (14). Because of Eq. (12), linear terms in η and η⁎ are 
erased by default. One is then left with

⁎
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which still appears rather complicated. Up to this point, we still have not fixed the gauge for the vector potential. 
It is a well-known fact that the most natural choice is the Coulomb (or transverse) gauge, where

∇ ⋅ = .A 0 (16)

Actually, besides the convenience matter, this fixing has profound physical consequences. Indeed, it has been 
shown that only with Eq. (16) the order parameter correlations ψ ψr( ) (0)  acquires a long-ranged character (see, 
for instance5). Concerning Eq. (15), let us notice that, through a Fourier transformation, the Coulomb gauge is 
equivalently given by ⊥

∼
A q q( ) , with q a wavevector in the reciprocal space. This implies that η⋅ ∇ =A 0.

Moving further, we simplify Eq. (15) by means of the following approximation scheme. First, we neglect the 
three-field correlations, namely η η  02  and η A 02 . By drawing an analogy with the analysis of bosonic 
gases at finite temperatures, this corresponds to the Hartree-Fock-Bogoliubov (HFB) scheme17. Moreover, we also 
discard the anomalous average, namely η η= 

⁎( ) 02 2 , according to the so-called Popov approximation of 
the HFB framework (HFBP in the following).

Thus, Eq. (15) finally reads

⁎η γ ψ ψ+ + + = .a T b e b[ ( ) 2 ( ) ] 0 (17)2 2 2
0 0

3A

whose solution, for <T Tc, is given by
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From the equation is then immediate to derive the generalization of Eq. (6) for the critical temperature, i.e.

η γ+ + =⁎ A( )a T b e2 ( ) 0 (19)c c c
2 2 2

where … c implies that the average has to be computed at the critical point.
In contrast with Eq. (6), Eq. (19) takes into account the presence of fluctuations both in the order parameter 

and the vector potential, through the averages η 2  and A 2 .

Averages in the HFBP scheme.  The shift of the critical temperature as in Eq. (19) requires the calculation of η 2  
and A 2  at the criticality. As detailed in the Methods section, they can be computed by taking the GL equations 
for the fluctuating fields η r( ) and A r( ) as starting point (cfr. Eqs. (50) and (54)). From there, as outlined below, 
one can infer the corresponding Gaussian functional (i.e. a free energy, similarly to Eq. (2)) driving the thermo-
dynamic properties of fluctuations. Indeed both Eqs. (50) and (54) in Methods are the first variation of a Gaussian 
functional. By working slightly above the critical temperature (i.e. → +T Tc ), where ψ = 00 , Eq. (50) reads

η γ γ η+ + − ∇ =⁎a T b e[ ( ) 2 ( ) ] 0, (20)2 2 2 2A

which is the trajectory stationarizing the functional
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with V  being the large d-dimensional volume enclosing the system.
Similarly, from Eq. (54), one can infer the corresponding functional for A, i.e.
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Each one of  ηη [ ]g( )  and AA [ ]g( )  are related to their corresponding partition function, from which it is usually 
easy to compute average values and correlations, since both of them are (functional) Gaussian integrals.

The presence of differential operators suggests that the calculation is easier in the Fourier space. Thus, with
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Equations (21) and (22) transform as, respectively,
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Now, since both  ηη 
[ ]g( )  and ∼

AA [ ]g( )  are Gaussian, it is immediate to infer that
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At the criticality Eq. (19) holds, therefore the equation above is simplified into
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Let us note that this result is the same one can derive in absence of the minimal coupling with the electromag-
netic field (i.e. =A 0). The crucial point is the fact that, on the contrary, A c

2  is affected by the fluctuation of 
the order parameter. Indeed, from Eq. (26), one gets

∑
γ η µ

=
−

+⁎A
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1
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c
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2
2 2 2

0

where the factor −d( 1) is a consequence of the Coulomb gauge, setting to zero the component of ∼A q( ) parallel 
to q. The vector potential then has only −d( 1) non-zero transverse components.
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It worth to remember, at this point, the main results we have obtained by means of the HFBP approximation 
scheme. First, we have derived the equation describing the shift of the critical temperature (compared to the usual 
saddle-point result in Eq. (6)). In order to actually solve Eq. (19), we also need the average values (at the critical-
ity) η c

2  and A c
2 , respectively in Eqs. (28) and (29).

In the following, we are going to consider the continuum limit, namely (in spherical coordinates)

∫∑
π

→
Λ −V S dqq

(2 )
,

(30)d d
q

d

q

1

0

with π= ΓS d2 / ( /2)d
d/2  is the whole solid d-dimensional solid angle. In the equation above, we have introduced 

both an ultraviolet and an infrared cutoff to keep eventual divergences under control.
In the following section, we consider the case of =d 2 and =d 3 spatial dimensions. An extremely interesting 

problem is represented by the dimensional crossover, i.e. the analysis of a thin film but with a finite thickness δ. 
This physical realization has been investigated in presence of a disordered environment21–23, reading an additional 
(logarithmic) shift of the critical temperature depending on δ and a properly defined diffusion coefficient.

Fluctuation-driven critical temperature shift.  The case d = 2.  In =d 2, by taking the continuum limit 
as in Eq. (30), Eqs. (28) and (29) easily lead us to
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According to20, a reasonable choice for the UV cutoff is ξΛ  1/ c, with

ξ γ
α

= .
k T (33)c

B c

Concerning the infrared cutoff q0, we define it in terms of the Ginzburg-Levanyuk number through

α
γ

= .q k T Gi
(34)

B c
0 (2)

The definition of the Ginzburg-Levanyuk number Gi d( ) strongly depends on the system dimensionality. Again, 
according to20, in =d 2 one has

πγα
= .

bGi
4 (35)(2)

The UV cutoff is naturally defined by Eq. (33), which specifies the minimal size of spatial fluctuations. The 
choice for the infrared cutoff in Eq. (34) is less obvious and has to rely upon a renormalization-group (RG) argu-
ment15. Within the Wilson’s standard framework of momentum-shell integration4,5, the flow equation for 
cutoff-dependent λa T( ) can be simplified by assuming that the parameter b does not flow (i.e. it is equal to its bare 
value). The cutoff λ, separating the slow from fast modes in Wilson’s approach, has an upper (i.e. ultraviolet) limit 
equal to λ ξ→ Λ =∞ 1/ c with ξc as in Eq. (33). In =d 2, this approximation the equation for λa T( ) reads a loga-
rithmic solution diverging when λ → 0, naturally introducing the infrared cutoff q0 as in Eq. (34). By solving 
simultaneously the RG equations for λa  and λb  the divergence disappears but, remarkably, it has been shown that 
the logarithmic approximation outlined above works really well for 

Gi 1/2(2) , which is exactly the range of 
values explored in this paper (cfr. Fig. 1).

Therefore, by following the cutoff prescriptions outlined above, Eqs. (31) and (32) result in
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The parameter κ is the usual ratio between the magnetic penetration length λ T( ) and the coherence length 
ξ T( ), i.e. κ λ ξ= T T( )/ ( ). We recall that κ is a crucial quantity in the GL theory for superconductors, since type-I 
superconductors all have κ < 1/ 2 . On the contrary, the condition κ > 1/ 2  characterizes type-II supercon-
ducting materials. By assuming

ξ γ λ
µ γ

= = ⁎T
a T

T b
e a T

( )
( )

and ( )
2 ( ) ( )

,
(38)0

2

one easily gets

κ
λ
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= = .⁎
T
T

b
e

( )
( ) 2 ( ) (39)0

2 2

It has to be remarked that the equation above still holds for =d 3.
By replacing Eqs. (36) and (37) in Eq. (19), the shift of the critical temperature in =d 2, compared to the usual 

saddle-point picture, is given by
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We stress that only two parameters, the Ginzburg-Levanyuk number Gi(2) and the Ginzburg-Landau ratio κ, 
drive the shift of the critical temperature in two spatial dimensions. Equation (40) is one of the main results of the 
paper. The first addend of this equation, already known in literature15,20, takes into account the thermal fluctua-
tions of the order parameter. The second addend takes instead into account the thermal fluctuations of the elec-
tromagnetic vector potential around its vacuum. In Fig. 1 we report the behaviour of the critical temperature shift 
given by Eq. (40) (with δ = −T T Tc c c0 ) as a function of Gi(2) for three different values of κ. Let us remark that the 
displacement from the mean-field prediction Tc0 is progressively reduced by moving towards to the type-II 
regime.

It is important to recall that two-dimensional physical systems require from us to also consider the eventual 
occurring of the Berezinskii-Kosterlitz-Thouless (BKT) transition24–26. Its peculiar behaviour can be understood 
in terms of phase fluctuations of the order parameter. Indeed, a complex field can be naturally characterized in 
terms of two real fields by means of the phase-amplitude representation

ψ φ= Ψ .ir r( ) exp{ ( )} (41)0

In the equation above, Ψ0 can be taken as the uniform solution of the GL equations. By neglecting the crucial 
role played by the phase field φ r( ), the amplitude acquires a non-zero value for <T Tc, with Tc being the shifted 
(compared to the mean-field result) critical temperature in Eq. (40). On the other hand, the phase field φ r( ) is 
obviously defined on a compact support. As a consequence, the system can display nontrivial topological excita-
tions in form of quantized vortices.

In Methods we outline a procedure providing, in first approximation, the additional BKT shift15,20 by means of 
the Nelson-Kosterlitz criterion27. According to this approach, TBKT is shifted with respect to the unrenormalized 
contribution in Eq. (40) by

Figure 1.  Shift of the critical temperature in two spatial dimensions according to Eq. (40) as a function of Gi(2) 
for three different values of κ. In the panel above, δ = −T T Tc c c0 .
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−
= .

T T
T

4 Gi
(42)

c BKT

BKT
(2)

It is important to remark that, while the Eq. (42) has a very simple appearance, the fundamental input is the 
critical temperature computed in Eq. (40).

The case d = 3.  In the case =d 3, the integration over q as prescribed by Eq. (30) of Eqs. (28) and (29) gives us 
back

η
π γ

=
Λk T

2 (43)c
B c2

2

and

µ

π
µ γ η

µ γ η
=









Λ −







Λ














.⁎

⁎
A

k T
e

e
2 ( ) arctan

2 ( ) (44)
c

B c
c

c

2 0
2 0

2 2

0
2 2

No infrared divergence arises by performing the integration leading to the equations above, so we have safely 
taken the limit →q 00 . We also approximate the π… →arctan( ) /2 since it provides only a subleading contribu-
tion, compared to the coefficient in front of it. However, an ultraviolet divergence are still present: as for =d 2, we 
assume ξΛ  1/ c, with ξc given by Eq. (33), holding also in three spatial dimensions. The Ginzburg-Levanyuk 
number, on the contrary, reads20

π αγ
= .

b k TGi
64 (45)B c(3)

2

2 3

Consequently,

η
α
π

=
k T
b

4 Gi (46)c
B c2

(3)

and

µ

π
α γ πµ αγ=







−




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.⁎A

k T
k T e k T

b
2 ( ) Gi

(47)
c

B c
B c

B c2 0
2 0

2
(3)

By inserting Eqs. (46) and (47) in Eq. (19), up to the leading term in Gi(3), the shift of the critical temperature 
results in

π πκ
−

= +
T T

T
8 Gi 4 Gi

(48)
c c

c

0
(3) 2 (3)

with κ defined in Eq. (39). Similarly to the =d 2 case, in Fig. 2 we plot Eq. (48) as a function of the 
Ginzburg-Levanyuk number for different values of the ratio κ. Again, we see that, at higher values of κ, namely for 
higher penetration lengths or lower coherence ones, −T T T( )/c c c0  is remarkably reduced.

Again, by assuming the minimal coupling with the electromagnetic field, the Ginzburg-Levanyuk number 
Gi(3) and the Ginzburg-Landau ratio κ are all one needs to characterize the critical temperature shift from the 
usual mean-field scheme. Equation (48) is the another important result of our paper. The first addend of this 
equation is already known in literature4,20 while the second addend, related to the fluctuations of the vector poten-
tial, is instead a novel result.

Discussion
In this paper, we have presented a self-consistent approach to include the fluctuations of order parameter and 
vector potential in an improved saddle-point equation. As a consequence, it has been possible to derive the 
fluctuation-driven shift of Tc both in =d 3 and =d 2. Remarkably, this displacement from the usual mean-field 
results only depends from two combinations of the GL coupling constants: the Ginzburg-Levanyuk number Gi d( ), 
related to the width of the critical region, and the ratio κ λ ξ= T T( )/ ( ), dividing type-I from type-II 
superconductors.

In presence of a wide critical region, namely a high value of Gi d( ), it is crucial to properly consider not only the 
role of fluctuations on the various thermodynamic functions, but also the eventual strategies apt to control them. 
This is not a purely academical question; on the contrary it can have relevant technological applications, since this 
kind of materials are the ones displaying pairing mechanisms leading to high-temperature superconductivity, 
such as electron-hole superfluidity28–30. Indeed, as already mentioned, an inter-band Josephson-like coupling has 
been proved to contain the detrimental effect of fluctuations and preserve an optimal superconductivity regime15, 
also in reduced dimensionality, where coherent behaviour is otherwise greatly suppressed31.
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By adopting this point of view, in this paper we have considered a single-band structure but in presence of a 
minimal coupling to the electromagnetic field. As a consequence, it turns out the fluctuations of the vector poten-
tial A that the critical temperature acquires an additional shift depending from κ (cfr. Eqs. (40) and (48)). In 
other words, it depends on how much the material sample can be penetrated by the magnetic fields. A natural 
extension of this analysis is involving the presence of at least another band with a proper coupling, together with 
the possibility to introduce the particle statistics moving to a quantum framework which is closer, for instance, to 
the phenomenology of the BCS-BEC crossover13,32.

Methods
The GL equations for the fluctuating fields.  In this section we detail the derivation of the GL equations 
for the fluctuations of the order parameter and the vector potential, namely η r( ) and A r( ). These equations then 
serve as the starting point to engineer a (Gaussian) functional accounting for the statistical properties of the fluc-
tuating fields. This task can be fulfilled by looking back at Eq. (14). Here, the HFB scheme prescribes that all the 
terms more than linear in the fluctuating fields are decoupled with a couple-by-couple average. For instance, 
η η η η η η+

⁎22 2 2 , η η

2 2  and η η η+ ⋅A A A A22 . In addition, the Popov prescription 
imposes η  02 . We also assume that the order parameter and the vector potential fluctuates independently, so

η δ η δ= =µ µA A 0 (49)

where the last equality is due to Eq. (12). This series of considerations leads us to the GL equation for the order 
parameter fluctuations,

η γ η ψ γ ψ η+ + + − ∇ + = .⁎ ⁎Aa T b e b b[ ( ) 2 ( ) 2 ] 0 (50)2 2 2
0
2 2

0
2

The corresponding equation for A can be easily derived by following the same steps detailed above, together 
with the Coulomb gauge. More in detail, by replacing Eqs. (10) and (13) in (9), together with the assumption in 
Eq. (49), this procedure transforms the left-hand-side (LHS) as

⁎ ⁎
γ ψ

µ
γ ψ η

µ









| | +
∇ ∧ ∇∧ 







+ 〈| | 〉 +
∇ ∧ ∇ ∧

.A
Ae eA2 ( ) 2 ( ) ( )

(51)
2 2

0

2
0
2 2

0

Concerning the right-hand-side of Eq. (9), additional comments are in order. First, let us note that, because of 
Eq. (10), terms linear in η∇  and η∇  arise. They are linear in A in the Ginzburg-Landau functional whose Eq. (9) 
is a first variation. Because of the Coulomb gauge, terms of the kind η⋅ ∇A  give a null contribution to the func-
tional and consequently should not appear in the corresponding GL equation. The remaining term is simply

η η η η∇ − ∇ .⁎ ⁎ (52)

Since η is complex, it can be equivalently rephrased as

η η η η η η η η∇ − ∇ = ∇ − ∇ .⁎ ⁎ i2 (Im Re Im Re ) (53)

The last approximation we perform, together with the HFBP scheme and Eq. (49), is the statistical independ-
ence of the real and imaginary part of η. It can be shown that, up to the Gaussian order in the fluctuating fields, 

Figure 2.  Shift of the critical temperature in three spatial dimensions according to Eq. (48) as a function of Gi(3) 
for different values of κ. For the sake of comparison we have made use of the same values of Fig. 1. In the panel 
above, δ = −T T Tc c c0 .
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within the usual perturbative scheme4, this assumption holds. In the end, no contribution comes from the 
right-hand-side of Eq. (9), therefore one is left with the following equation for A

γ ψ η
µ









+ 〈| | 〉 + ∇ ∧ ∇∧








= .⁎ Ae2 ( ) ( ) 1 0
(54)

2
0
2 2

0

In the end, within the HFBP we have derived three GL equations, one for the homogeneous background ψ0, 
Eq. (17), the other two for η and A, respectively Eqs. (50) and (54).

Including the BKT contribution.  As a starting point, we take the field ψ r( ) in its phase-amplitude rep-
resentation given by Eq. (41). In order to compute the additional BKT shift, as a first approximation15,20 one can 
consider the following phase-only functional

  ∫φ φ= + |∇ | .
J T d r r[ ] ( )
2

( ) (55)0
2 2

The phase stiffness J T( ) is defined in terms of the original GL parameters, i.e.

γα
= − .J T

b
k T T( ) 2 ( ) (56)B c

The key point in the Eqs. (55) and (56) consists in the benchmark temperature in J T( ): it is no more Tc0 as for 
a T( ) in Eq. (4), but the fluctuation-shifted Tc in Eq. (40).

As already clear from the seminal papers24–26, the major step forward in the BKT understanding was the fact 
that it is actually a topological transition. Indeed, the compactness of the phase field φ r( ) implies the possibility 
for the system to display excited configurations (compared to the uniform one) which cannot be reached by con-
tinuously deforming the order parameter4. In =d 2 these excitations are simply vortices and antivortices, 
depending on the sign of their (topological) charge ν ∈ Z, defined in terms of phase winding

π
φ ν∇ = .

Γ
∮ d r r1

2
( ) (57)

2

Now, a standard approach consists in drawing an electrostatic analogy and treating vortices and antivortices 
as a Coulomb gas moving in a uniform and neutral background4,5,33. The BKT critical point then divides two 
different phase of this vortex gas: for <T TBKT, bound states of vortex-antivortex are predominant, while they are 
unbound above the critical temperature, destroying every global coherence property, such as superfluidity. 
Remarkably, this appears in a discontinuous way. Indeed, the transition displays a universal jump in the phase 
stiffness (and, consequently, in the superfluid density). This peculiar feature of the transition can be used to com-
pute the critical temperature, according to the so-called Nelson-Kosterlitz criterion26

π
=T J T

2
( ) (58)BKT BKT

reading Eq. (42) in the main text.
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