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Whole blood transcriptome profile 
at hospital admission discriminates 
between patients with ST-segment 
elevation and non-ST-segment 
elevation acute myocardial 
infarction
Mattia Chiesa1,3, Luca Piacentini1,3, Elisa Bono1, Valentina Milazzo2, Jeness Campodonico2, 
Giancarlo Marenzi2 & Gualtiero I. Colombo1 ✉

Whether ST-segment (STEMI) and non-ST-segment elevation myocardial infarction (NSTEMI) should 
be regarded as distinct pathophysiological entities is a matter of debate. We tested the hypothesis 
that peripheral blood gene-expression profiles at presentation distinguish STEMI from NSTEMI. 
We performed a case-control study collecting whole-blood from 60 STEMI and 58 NSTEMI (defined 
according to the third universal definition of MI) consecutive patients on hospital admission. We used 
RNA-sequencing for the discovery phase, comparing 15 STEMI vs. 15 NSTEMI patients, matched for 
age, sex, and cardiovascular risk factors, and quantitative PCR in the remaining unmatched patients 
for validating top-significant genes. Gene-level differential expression analysis identified significant 
differences in the expression of 323 genes: 153 genes withstood correction for admission cardiac 
troponin I (cTnI), differentiating the two conditions independently of myocardial necrosis extent. 
Functional annotation analysis uncovered divergent modulation in leukocyte and platelet activation, 
cell migration, and mitochondrial respiratory processes. Linear regression analysis revealed gene 
expression patterns on admission predicting infarct size, as indexed by cTnI peak (R2 = 0.58–0.75). Our 
results unveil distinctive pathological traits for these two MI subtypes and provide insights into the 
early assessment of injury extent. This could translate into RNA-based disease-specific biomarkers for 
precision diagnosis and risk stratification.

Acute myocardial infarction (AMI) is a multifactorial disease that, despite considerable advances in preven-
tion and treatment, is a leading cause of morbidity and mortality worldwide1. AMI is traditionally classified as 
ST-segment (STEMI) or non-ST-segment elevation myocardial infarction (NSTEMI), which present significant 
differences in clinical characteristics, prognosis and treatment options and timing2. Nonetheless, whether STEMI 
and NSTEMI are two different pathophysiological entities or nuances of a disease continuum is an object of 
controversy. On one hand, it is widely accepted that patients with STEMI and NSTEMI share similar risk fac-
tors, demographics, pathological substrate, complications, and tools for secondary prevention1,3. On the other, 
they display peculiar features1: STEMI patients present a transmural event with an occlusive coronary thrombus; 
conversely, patients with NSTEMI typically have a sub-endocardial occurrence with an incomplete or transient 
obstruction in the culprit coronary artery. Most patients with recurrence tend to repeat episodes of the same AMI 
type4. In addition, significant differences in the prevalence of infarct-related coronary artery5,6 and in fibrinolytic 
activity7 between STEMI and NSTEMI patients have been reported.
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Genome-wide molecular profiling represents a promising tool for addressing such contrasting evidence. 
Specifically, peripheral blood gene expression profiling is an informative approach to investigate disease-specific 
states and identify biomarkers that may reflect genetic predisposition and/or disease activity8. Blood is an ideal 
surrogate tissue for AMI studies9 because it includes inflammatory cells that are critical elements in the athero-
thrombotic process and make contact with the diseased endovascular lumen and as such may serve as reporters. 
The search for transcriptional signatures on the whole blood, rather than on cell subpopulations, has compelling 
advantages10: cell fractionation is burdened with sample handling artefacts, results in some degree of cell activa-
tion, increases sample-to-sample variability, and limits the scope of the investigation to a few cell types.

Previous studies reported on gene expression patterns in peripheral blood that correlate with the extent 
of coronary artery disease (CAD) and may predict the likelihood of major adverse cardiovascular events11–14. 
Nevertheless, scarce information is available on AMI15–18, and no studies separate STEMI from NSTEMI. 
Furthermore, transcriptional profiling was performed using microarrays, which are limited in dynamic range 
and coverage, and most studies were done on isolated peripheral blood mononuclear cells (PBMC)15,17,18.

Here, we hypothesize that whole-blood transcriptome profiling may provide an in-depth insight into the 
underlying pathophysiological landscape differentiating STEMI from NSTEMI. To this end, we made use of RNA 
sequencing (RNA-Seq), which allows defining precise expression maps of known and unannotated genes and 
provides a ground-breaking tool for systematic investigation of transcriptional units relevant to disease condi-
tions19. Furthermore, to test the concept that the circulating transcriptome holds disease-related information 
with clinical applicability, we sought for possible associations with a marker of AMI severity (cardiac troponin).

Methods
An expanded Methods section is available in the Supplementary Information file.

Study design.  One hundred and twenty consecutive patients admitted with STEMI or NSTEMI at our 
Centre between 2012 and 2015 were enrolled in this study (see flow diagram, Fig. 1).

STEMI and NSTEMI were defined according to the third universal definition of myocardial infarction20. 
In particular, STEMI was diagnosed as a typical chest pain lasting at least 30 min, with electrocardiographic 
ST-segment elevation of at least 0.2 mV in two or more contiguous leads, or left bundle branch block. NSTEMI 
was defined as recent (onset of symptoms ≤24 hours) characteristic chest pain with electrocardiographic 
ST-segment depression or T wave inversion and detection of a rise and/or fall of cardiac troponin I (cTnI) values. 
In all patients, the diagnosis of AMI was confirmed by coronary angiography. Exclusion criteria were: AMI with 
hemodynamic, electrical and mechanical complications at hospital presentation; relevant comorbidities, such as 
severe chronic kidney disease (estimated glomerular filtration rate <30 mL/min/1.73m2), chronic atrial fibrilla-
tion, prior stroke; other known cardiac diseases; systemic diseases, such as malignancy, infections or autoimmune 
diseases.

Peripheral blood samples were drawn from an antecubital vein into Tempus Blood RNA tubes (Applied 
Biosystems), containing RNA stabilizing reagents, on admission in the Intensive Cardiac Care Unit and before 

Figure 1.  Flow diagram of the study.
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any medical intervention. To seek for specific differences between these two types of AMI and remove possible 
confounding factors, we performed an exploratory analysis by RNA-Seq selecting STEMI (n = 15) vs. NSTEMI 
(n = 15) patients matched for age, sex, and cardiovascular risk factors (CVRFs), with a time-to-presentation 
<12 hours and without relevant comorbidities, such as diabetes or chronic kidney disease (CKD). Following 
that, unmatched patients were used as a validation cohort for relevant biomarkers. Two NSTEMI patients were 
excluded from the analysis due to technical issues (sample degradation), whereas the remaining samples (STEMI 
n = 45 and NSTEMI n = 43) were analysed by reverse-transcription quantitative PCR (RT-qPCR).

The study protocol conformed to the principles of the Declaration of Helsinki. The “Ethics Committee of 
the IRCCS Istituto Europeo di Oncologia and Centro Cardiologico Monzino” approved the study protocol. 
All enrolled patients signed written informed consent. Participants also consented to share their de-identified 
information.

In the RNA-Seq discovery analysis, comparing 15 vs. 15 patients allowed achieving a statistical power of 99% 
to detect differences among the means ≥2.0 (effect size), with a biological coefficient of variation (BCV) = 0.2 
(estimated from sequencing data obtained in preliminary experiments), a sequencing depth = 20 reads (corre-
sponding to low expression levels), and a significance level α = 10−4.

The reporting of this study is in agreement with the STROBE statement (see Supplementary Information).

RNA-sequencing.  We assessed whole-blood gene expression profiles using RNase-free DNase-I-treated, 
globin-depleted, poly(A)+ RNA. Libraries were prepared and pooled together by a multiplex library RNA 
barcoding system and sequenced using the Sequencing by Oligonucleotide Ligation and Detection (SOLiD) 
approach (Applied Biosystems). Templates were paired-end sequenced [75 base pairs (bp) forward and 35 bp 
reverse].

We mapped reads to the human genome HG38/GRCh38.76 (Ensembl database) using TopHat v2.0.11 with 
Bowtie 1 to handle colour space reads21. To identify unannotated transcripts and quantified them along with 
well-annotated genes, we implemented the reference annotation based transcript (RABT) procedure and used the 
Cufflinks Suite v2.1.122. See Supplementary Information for details.

Validation by RT-qPCR.  We performed first a technical and then a biological validation of the RNA-Seq 
data on selected genes by RT-qPCR in the study and in the validation cohorts, respectively. Primers and 
probes were chosen among predesigned and validated Applied Biosystems TaqMan Gene Expression Assays. 
Expression levels were normalized to the two most stable reference genes (AP2A2 and EIF3F), identified using 
the NormFinder v0.953 Excel Add-In. We run qPCR with three replicates/sample for each assay on a ViiA 7 
Real-time PCR System (Applied Biosystems). Data analysis was performed using the comparative Cq (ΔCq) 
method. See Supplementary Information for details.

Differential gene expression analysis.  Normalization procedures are crucial in RNA-Seq data analysis 
since they deeply affect the number and effect size of differentially expressed (DE) genes detected. Thus, we per-
formed differential expression analysis controlling for “unwanted variation” (e.g., technical batch effects or other 
unknown confounding variables) using the between-sample normalization method (R package RUVSeq)23. A set 
of empirical negative control genes, supposed not to be influenced by the biological variables of interest (i.e., the 
AMI phenotype), was used to estimate factors of unwanted variations (i.e., K parameter of the RUVg method). 
The number of k factors was selected by comparing unadjusted with adjusted expression data by using diagnostic 
plots such as relative log expression plots, scatter plots of the first two principal components, and histogram plots 
of the distribution of the P-values for testing differential expression between STEMI and NSTEMI. A k = 8 factor 
of unwanted variation was chosen in our setting since it showed the best trade-off between data adjustment and 
the risk of data overcorrection.

We used the negative binomial generalized linear model (GLM) approach implemented in the edgeR package 
to perform differential expression analysis between STEMI and NSTEMI24. We deemed genes as significantly 
different at a false discovery rate (FDR)-adjusted P-value < 0.05. Analyses were performed both without and 
with correction for cTnI levels at presentation, assuming that transcriptional responses and expression levels are 
influenced both by disease-specific phenotypes and the entity of the cardiac damage after AMI.

For clustering analysis, we used the expression matrix of the log2-transformed normalized counts of the DE 
genes STEMI vs. NSTEMI samples. To draw the heatmap and the clustering dendrogram, we used an unsuper-
vised method based on the dissimilarity matrix computed as Spearman rank correlation and the average linkage 
method implemented in the GENE-E software v3.0.215.

Functional enrichment analysis on genome-wide expression profiles.  To infer the biological func-
tions associated with the AMI phenotypes, we took advantage of prior biological knowledge on genes grouped 
by Gene Ontology (GO) Biological Processes (BP) and used GO terms for Gene Set Enrichment Analysis (GSEA 
software v2.2)25. For GSEA we used the gene set collection repository of the Bader Lab (http://download.bader-
lab.org/EM_Genesets). The GSEA pre-ranked tool option was adopted and gene ranking metric was based on 
the likelihood ratio statistics of the differential expression analysis. Parameters used for analysis included 10000 
permutations and limits to the gene sets (number of genes ranging from 8 to 500). To visually interpreting biolog-
ical data, networks of the most significant GO-BP (at an FDR < 0.05) were drawn through the Enrichment Map 
software v3.0.026, implemented as a plug-in in the Cytoscape v3.4.0 platform27.

A similar approach was used to perform a cell-type enrichment analysis. We created a custom gene-set col-
lection integrating the 22 subsets of human hematopoietic cell types reported by Newman et al.28 with a platelet 
specific gene-set. The platelet gene-set was obtained merging the “Platelet activation, signalling and aggregation” 
(R-HSA-76002) and the “Platelet homeostasis” (R-HSA-418346) gene-sets from the Reactome database (http://
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www.reactome.org/). The final set of 80 platelet specific genes was drawn based on a log2(mean expression level)> 
5.0 according to the dataset by Simon et al.29.

Statistical analysis.  Demographics categorical data are presented as counts and proportions, con-
tinuous data as the median and interquartile range (Q1–Q3). Gaussian distribution was tested using the 
D’Agostino-Pearson omnibus normality test. Categorical variables were compared by Fisher’s exact test. Given 
that many continuous variables did not pass the normality test, between-group comparisons were performed by 
the Mann-Whitney test. Analyses were done using GraphPad Prism v7.04 (GraphPad Software, La Jolla, CA). 
P-values < 0.05 were considered statistically significant.

To investigate the relationships between peripheral blood gene expression on hospital admission and infarct 
extent, we used linear regression models. As an estimate of infarct size, we used the peak cTnI level30. For each 
gene, we fitted two models with peak cTnI value (in log2 scale) as the response variable. In the first one, the gene 
expression levels are the unique predictors. In the second one, we added admission cTnI level as a covariate, 
assuming that it is a predictor of cTnI peak, in order to test whether expressed genes had independent effects. All 
models were fitted using the ‘lm’ function, implemented in R v3.4.0. The Benjamini-Hochberg procedure was 
used to control FDR. Multiple linear regression analysis was performed and models with an FDR < 0.05 were 
considered significant.

We assessed the correlation between RT-qPCR average normalized expression values (ΔCq) and RNA-Seq 
mean normalized counts (in log2 scale), by computing the Pearson’s correlation coefficient (r), the coefficient of 
determination (R2), and the significance P-value.

Results
Study population characteristics.  Baseline demographic, clinical and laboratory features of the study 
population are listed in Table 1. Patients selected for the exploratory phase (n = 30; STEMI n = 15 vs. NSTEMI 
n = 15) had no history of previous AMI or stroke and no incident diabetes or CKD. Most subjects were males 
(73%) and overweight. STEMI and NSTEMI patients had no substantial differences in blood tests (except in 
neutrophil count, which was higher in STEMI), body mass index, major medications on admission (including 
aspirin and statins), time-to-presentation after symptom onset, and left ventricular ejection fraction (LVEF). 
In the remaining cohort used for the validation phase (n = 88; STEMI n = 45 vs. NSTEMI n = 43; 2 NSTEMI 
patients excluded for sample inadequacy), NSTEMI patients were on average older than STEMI and more fre-
quently presenting hypertension, hypercholesterolemia and/or previous AMI. Moreover, NSTEMI subjects had 
a longer time-to-presentation and a slightly higher LVEF than STEMI and were more frequently on chronic 
aspirin, β-blockers, and statins. As expected, the mean cTnI peak was significantly higher in STEMI patients in 
both cohorts.

Sequencing data.  A total of 81.6 ± 16.5 million reads per sample of the study cohort was collected. Most of 
them (50.2 ± 9.6 million reads per sample) mapped in annotated regions, while the remaining mapped to unan-
notated loci (see Supplementary Fig. S1A). We identified 26681 expressed genes, of which 17513 were known and 
annotated, while the remaining 9168 were unannotated genes found in intergenic regions (see Supplementary 
Fig. S1B). Among the latter, 154 showed a coding potential, while 9016 should be considered as non-coding RNAs 
(see Supplementary Fig. S1C).

Differences in gene expression.  To find robust differences between STEMI and NSTEMI transcriptomes, 
we performed differential gene expression analysis after correcting for unwanted confounding variables (see diag-
nostic plots in Supplementary Fig. S2). Using this approach, we detected 323 DE genes, with log2 fold-differences 
(STEMI vs. NSTEMI) ranging from −3.2 to 1.8 at an FDR < 0.05 (see Supplementary Table S1). Among them, 
180 genes were expressed at higher levels in STEMI and 143 in NSTEMI patients (Fig. 2a,b). Significant genes 
ranged from very low to very high abundance (see Supplementary Fig. S3). Notably, 18% of DE genes were unan-
notated genes, of which 29 were over-expressed in STEMI and 30 in NSTEMI. Based on their sequence features, 
we predicted that 55 DE unannotated genes were putative long non-coding (longer than 200 nucleotides), 2 short 
non-coding (shorter than 200 nucleotides), and 2 protein-coding genes. DE genes were used to classify sam-
ples by unsupervised hierarchical clustering: Fig. 2a shows that the 323 DE genes clearly separate STEMI from 
NSTEMI patients.

To look for differences that are independent of the size of cardiac damage, we repeated differential expression 
analysis correcting for cTnI levels on admission and found 153 significant genes: 78 genes were expressed at 
higher levels in STEMI and 75 in NSTEMI (Fig. 2c and Supplementary Table S1).

Functional inferences.  Biological functions associated with the STEMI and NSTEMI phenotypes 
were inferred by GSEA on both uncorrected and cTnI-corrected statistic gene ranks, based on GO-BP (see 
Supplementary Table S2a). Using uncorrected data, we found that 97 biological processes were significantly asso-
ciated with STEMI (FDR-adjusted P < 0.05) and 9 with NSTEMI. When correcting for cTnI on admission, 86 and 
36 gene-sets were associated with STEMI and NSTEMI, respectively. To facilitate visualization and interpretation, 
enrichment networks were drawn for both GSEA uncorrected (see Supplementary Fig. S4) and corrected results 
(Fig. 3). The most significant and/or larger overview terms associated with STEMI were related to mitochondrial 
respiratory and electron transport chain, autophagosome assembly, and proteolysis, both in the uncorrected and 
in the corrected model. Conversely, NSTEMI was steadily associated with gene-sets involved in cell migration 
and adhesion and in G-protein coupled receptor signalling pathways, but only after correction for cTnI levels at 
presentation with blood vessel development and blood cell activation.

A comparison between non-corrected and cTnI-corrected GSEA results (see Supplementary Fig. S5), filter-
ing out gene-sets that were in common and retaining those specifically enriched in the cTnI-corrected dataset, 
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Demographics

Study cohort Validation cohort

NSTEMI 
(n = 15)

STEMI 
(n = 15) P-value NSTEMI (n = 43)

STEMI 
(n = 45) P-value

Males 11 (73%) 11 (73%) 1.0 34 (79%) 31 (69%) 0.33

Age (years) 60 (56–75) 65 (54–73) 0.85 76 (64–79) 69 (57–74) 0.03

BMI (kg/m2) 27.7 (26.4–29) 28.7 (25–30.8) 0.77 27 (25.3–28.9) 28.2 
(25.7–30.2) 0.49

Risk factors

   Current smokers 4 (26%) 7 (46%) 0.45 11 (26%) 11 (24%) 0.39

   Hypertension 11 (73%) 10 (67%) 1.0 32 (74%) 22 (49%) 0.02

   Hypercholesterolemia 4 (27%) 7 (47%) 0.45 26 (60%) 13 (29%) 0.005

   Diabetes 0 0 10 (23%) 6 (13%) 0.28

   Previous AMI 0 0 12 (28%) 4 (9%) 0.03

   Previous PCI 0 0 15 (35%) 6 (13%) 0.02

   Previous CABG 0 0 5 (12%) 2 (4%) 0.26

Laboratory tests

   Erythrocytes (106/µL) 4.6 (4.4–5.1) 4.8 (4.7–5.2) 0.28 4.6 (4.2–4.8) 4.8 (4.2–5.0) 0.11

   Haemoglobin (g/dL) 14.7 
(13.9–15.3)

14.9 
(13.9–15.4) 0.68 13.8 (12.6–14.6) 14.1 

(13.2–15.6) 0.03

   Leukocytes (103/µL) 9.3 (6.0–10.5) 11.5 
(9.4–13.2) 0.02 8.1 (7.0–9.8) 10.7 

(8.3–13.1) 0.0002

   Neutrophils (103/µL) 4.6 (4.4–7.4) 7.5 (6.4–8.6) 0.02 5.7 (4.3–7.6) 7.6 (5.8–10.7) 0.0007

   Lymphocytes (103/µL) 2.0 (1.4–2.6) 2.3 (2.2–2.8) 0.23 1.6 (1.1–2.1) 1.8 (1.4–2.4) 0.09

   Monocytes (103/µL) 0.5 (0.4–0.8) 0.5 (0.4–0.8) 0.97 0.6 (0.4–0.7) 0.6 (0.5–0.9) 0.12

   Platelets (103/µL) 193.0 (169.5–
203.5)

215.0 (164.5–
286.0) 0.77 204 (173–230) 210 (187–259) 0.20

   Total cholesterol (mg/dL) 195.0 (161.0–
218.8)

207.0 (170.0–
221.5) 0.53 171.0 (148.5–195.3) 183.5 (169.5–

206.0) 0.07

   LDL-c (mg/dL) 113.5 
(92.3–150.5)

129.0 (105.3–
149.3) 0.43 101.0(80.5–135.3) 117.5 (102.0–

146.5) 0.03

   HDL-c (mg/dL) 42.5 
(35.3–45.8)

37.0 
(31.0–44.0) 0.23 40.5 (33.5–46.5) 42.0 

(37.5–48.0) 0.45

   Triglycerides (mg/dL) 111.0 
(83.8–120.5)

136.0 
(90.0–164.5) 0.19 91.5 (63.3–119.8) 112.5 

(84.3–136.5) 0.09

   Glycaemia (mg/dL) 122.0 (110.0–
132.5)

133.0 (122.0–
150.5) 0.12 125.0 (100.5–160.5) 136.0 (120.0–

164.0) 0.11

   HbA1c (mmol/mol) 37.4 
(36.0–39.8)

36.0 
(34.9–38.1) 0.15 38.9 (35.0–46.0) 37.1 

(34.7–44.7) 0.60

   Creatinine (mg/dL) 1.1 (0.9–1.2) 0.9 (0.8–1.0) 0.14 1.0 (0.8–1.1) 0.9 (0.7–1.1) 0.08

   eGFR (mL/min/1.73m2) 66.8 
(55.8–93.7)

83.1 
(65.7–100.9) 0.16 76.3 (58.3–98.8) 85.8 

(71.1–99.5) 0.18

   cTnI on admission (ng/mL) 0.6 (0.3–1.9) 2.1 (1.1–10.6) 0.08 1.0 (0.4–2.5) 1.1 (0.2–7.8) 0.71

   cTnI, peak value (ng/mL) 3.4 (1.9–5.8) 43.4 
(17.2–67.7) <0.0001 4.0 (1.5–8.9) 44.9 

(14.8–72.9) <0.0001

   hs-CRP 4.9 (2.5–7.3) 2.6 (1.1–4.2) 0.11 5.5 (1.7–8.7) 3.8 (1.7–15.2) 0.42

Admission medications

   Aspirin 4 (27%) 4 (27%) 1.0 28 (65%) 18 (40%) 0.02

   Beta-Blockers 1 (7%) 2 (13%) 1.0 21 (49%) 9 (20%) 0.007

   ACEI/ARB 7 (47%) 6 (40%) 1.0 22 (51%) 14 (31%) 0.08

   Statins 2 (13%) 1 (7%) 1.0 18 (42%) 8 (18%) 0.02

   Time-to-presentation (hours) 7.0 (5.3–9.0) 5.0 (3.0–6.3) 0.18 10.5 (4.0–24.0) 4.5 (2.0–15.0) 0.04

   LVEF (%) 57.5 
(50.5–63.8)

52.0 
(47.5–58.2) 0.19 54.5 (48.0–61.3) 50.0 

(40.0–54.8) 0.02

In-hospital procedures

   Primary PCI 0 15 (100%) 6 (14%) 45 (100%)

   Early (<24 hours) PCI 11 (74%) 0 31 (72%) 0

   Non-urgent PCI 2 (13%) 0 3 (7%) 0

   Elective CABG 2 (13%) 0 2 (5%) 0

   Medical Therapy 0 0 1 (2%) 0

Table 1.  Patient clinical characteristics. Categorical variables are presented as counts (n) and proportions (%); 
quantitative variables are expressed as the median and interquartile range (Q1-Q3). AMI, acute myocardial 
infarction; PCI, percutaneous coronary intervention; CABG, coronary artery bypass grafting; LDL-c, low-
density lipoprotein cholesterol; HDL-c, high-density lipoprotein cholesterol; HbA1c, haemoglobin A1c; eGFR, 
estimated glomerular filtration rate, based on the Modification of Diet in Renal Disease equation; cTnI, cardiac 
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allowed focusing on those GO-BP that most probably distinguish the two AMI phenotypes independently of 
cardiac damage extent. The resulting enrichment network consisted of 18 gene-sets associated with STEMI and 
27 with NSTEMI (Fig. 4). Of interest, the STEMI phenotype was specifically linked with cell division processes, 
complement activation, and Major Histocompatibility Complex (MHC) class-I restricted antigen presentation, 
whereas NSTEMI with leukocyte adhesion, migration and activation, lymphocyte and platelet activation, and 
vessel development. Overlapping GO-BP (i.e., enriched both in the uncorrected and in the cTnI-corrected data-
sets; see Supplementary Fig. S6), included 68 gene-sets for STEMI (mitochondrial respiratory chain, protein 
and mRNA catabolic processes) and 9 for NSTEMI (cell motility and adhesion, G-protein coupled receptor sig-
nalling). The remaining 29 gene-sets resulting from the uncorrected dataset (see Supplementary Fig. S7) were 
overrepresented in STEMI patients only and comprised protein-targeting, regulation of protein ubiquitination, 
and redox processes.

Cell-type enrichment.  We inferred possible relationships between STEMI or NSTEMI phenotypes with 
specific cell-types through an enrichment analysis procedure. We performed this analysis both before and after 

troponin I; hs-CRP, high-sensitivity C-reactive protein; ACEI, angiotensin-converting enzyme inhibitor; ARB, 
angiotensin-II receptor blocker; LVEF, left ventricular ejection fraction.

Figure 2.  Differential gene expression in STEMI vs. NSTEMI matched patients. Statistical analysis was 
performed by negative binomial Generalized Linear Model, controlling for multiple testing using the false 
discovery rate (FDR) by the Benjamini-Hochberg procedure. (a) Heatmap depicting relative expression 
abundance of differentially expressed (DE) genes (FDR-adjusted P < 0.05) in STEMI (n = 15) vs. NSTEMI 
(n = 15) patients, matched for age, sex, and cardiovascular risk factors. Unsupervised average-linkage 
hierarchical clustering based on Spearman dissimilarity matrix allowed complete separation between STEMI 
and NSTEMI, suggesting that these 323 DE genes strongly associated with the specific AMI phenotype. Gene 
expression levels were expressed as log2 transformed normalized counts and displayed as gradient colours 
from higher (dark orange) to lower (dark blue). (b) Volcano plot depicting log2 mean fold-differences (STEMI 
vs. NSTEMI, n = 15 for both groups, x-axis) versus −log10 P-values (y-axis) of all genes, stemming from the 
differential analysis not corrected for the level of cardiac troponin I (cTnI) on admission. Significant DE genes 
are coloured: 151 annotated (red dots) and 29 unannotated (pink) genes were over-expressed in STEMI, 
whereas 113 annotated (blue dots) and 30 unannotated (light blue) genes in NSTEMI. (c) Volcano plot showing 
results of differential expression analysis in the same patient groups after correction for admission cTnI. Among 
the 153 DE genes standing the correction (FDR < 0.05), 64 annotated and 14 unannotated genes were over-
expressed in STEMI and 57 annotated and 18 unannotated genes in NSTEMI. The average expression levels, the 
mean fold-differences, and the significance levels of all genes detected in STEMI (n = 15) vs. NSTEMI (n = 15) 
patients’ peripheral blood, for both the uncorrected and the cTnI-corrected models, are given in Supplementary 
Table S1.
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correction for admission cTnI levels, to distinguish associations with STEMI or NSTEMI that were depend-
ent or independent of cardiac damage extent at presentation (see Supplementary Table S2b). Our analysis 
showed that STEMI was associated with markers of neutrophils and plasma cells in response to cardiac injury 
(see Supplementary Fig. S8), but only neutrophils stood correction for cTnI (see Supplementary Fig. S9). This 
was consistent with the significantly higher number of neutrophils at blood count in STEMI patients (Table 1). 
Conversely, NSTEMI was consistently associated with immune cells, such as T and NK cells, whereas the associ-
ation with antigen-presenting cells appeared related to cardiac damage response.

Association with infarct size.  To test whether the circulating transcriptome contains clinically relevant 
information, we assessed whether transcripts abundance at admission predicted the extent of the infarct size 
as indexed by cTnI peak, and found 551 models showing a significant association (FDR < 0.05) between gene 
expression level and peak cTnI value, being 314 genes positively and 237 negatively associated (see Supplementary 
Table S3). R2-values ranged between 0.32 and 0.69. When corrected for cTnI level on admission, 134 genes (81 
with a positive and 53 with a negative regression β coefficient) were significant at an FDR < 0.05, with R2-values 
ranging from 0.58 to 0.75. Six of the top-ranked genes are shown in Fig. 5. Interestingly, only 36 out of the 134 
genes resulting from the corrected analysis for admission cTnI, as well as 167 out of the 551 aforementioned genes 
not corrected for cTnI at presentation, showed significant differences in expression between STEMI and NSTEMI 
patients (see Supplementary Table S1).

RT-qPCR validation.  Changes in gene expression were first technically validated in the study cohort by 
RT-qPCR on 24 selected genes, including genes spanning from low to high-abundance expression levels, endog-
enous control genes, DE genes, and cTnI peak-associated genes. Normalized mean expression levels detected 
by qPCR and RNA-Seq showed a strong correlation, as ascertained by highly significant (P < 0.0001) Pearson’s 
coefficient (r = 0.91; see Supplementary Fig. S10).

We then selected 8 genes for RT-qPCR validation in the independent cohort of remaining, unmatched 
enrolled patients: 4 genes were chosen among the top 20 DE genes (TMEM120A, GJB6, MMP9, and ANO6) and 
4 were among the top 20 genes associated with the cTnI peak (ZFPL1, HIF1A, CXCR4, and CHUK). TMEM120A, 

Figure 3.  Enrichment map of gene-sets stemming from the analysis on the cTnI-corrected dataset. Functional 
enrichment investigation on genome-wide expression profiles was done by Gene Set Enrichment Analysis 
(GSEA), using as gene ranking metric the likelihood ratio statistics of the differential expression analysis 
performed by GLM, correcting for cTnI on admission, in STEMI (n = 15) vs. NSTEMI (n = 15) patients 
matched for age, sex, and cardiovascular risk factors. To visually interpreting GSEA results, a network of the 
most significant Gene Ontology biological processes (GO-BP; at an FDR-adjusted P < 0.05) was drawn. The 
node colour associates with STEMI (red) or NSTEMI (blue) phenotype; node gradient colour is proportional 
to node significance, from lower (light) to higher (dark); node size is proportional to the gene-set size. Edge 
thickness is proportional to the similarity between two gene-sets, for a cut-off of 0.25 of the combined Jaccard 
plus Overlap coefficient. An extended list of GO-BP gene-sets significant at a nominal P-value < 0.05, along 
with enrichment statistics, is given in Supplementary Table S2a.

https://doi.org/10.1038/s41598-020-65527-7


8Scientific Reports |         (2020) 10:8731  | https://doi.org/10.1038/s41598-020-65527-7

www.nature.com/scientificreportswww.nature.com/scientificreports/

ANO6, CXCR4, and HIF1A were both DE and cTnI peak-associated genes. RT-qPCR results in the validation 
cohort largely corroborated both the significant differences in gene expression and the associations between the 
abundance of specific transcripts at admission and cTnI peak values observed in matched STEMI vs. NSTEMI 
patients by RNA-Seq. The mean fold-differences (significant or not) for the 8 genes were similar in the study and 
validation cohorts (Fig. 6). Almost all DE genes evaluated were significantly and consistently different in the vali-
dation cohort, both in the non-corrected and in the cTnI-corrected analysis (Table 2). ANO6, CXCR4, and HIF1A 
were significant also after adjustment for baseline variables showing an imbalance between STEMI and NSTEMI 
groups (age, hypercholesterolemia, hypertension, aspirin and statin use, time-to-presentation, admission cTnI). 
Similarly, genes associated with the cTnI peak in the study group showed significant associations also in the vali-
dation cohort, in both the non-corrected analysis, the model adjusted for cTnI level on admission, and the model 
fully adjusted for the abovementioned baseline covariates (Table 2).

Discussion
Comprehensive transcriptome profiling has been used to distinguish disease-specific mechanisms, which may 
provide diagnostic and prognostic value8,9. Herein, we compared whole-blood transcriptome profiles of STEMI 
and NSTEMI patients and proved the sensitivity of blood-based gene expression analysis by RNA-Seq in differ-
entiating the two conditions. To focus on the most specific differences between the AMI types and reduce the 
effects of confounding factors, we compared STEMI and NSTEMI patients matched for age, sex, CVRFs and with 
no comorbidities. We then validated key observations on an independent cohort of unmatched patients. The pri-
mary finding was the identification of annotated and unannotated genes discriminating STEMI from NSTEMI: 
RNA-Seq unveiled new molecular players that could be useful for an in-depth understanding of the pathophysi-
ological differences between STEMI and NSTEMI. Functional enrichment analysis showed that distinct, specific 
pathways and cell subpopulations were associated with the AMI type. Remarkably, correction for cTnI level on 
admission allowed distinguishing genes and regulated pathways primarily related to the AMI phenotype per 
se and not affected by the extent of cardiac damage. Indeed, our study shows a large number of significantly 
DE gene-sets that make up a complex scenario underlying the two phenotypes, which cannot be simplistically 
attributed to the extent of the myocardial damage but suggests that STEMI and NSTEMI are two distinct patho-
physiological entities at the molecular level. Finally, we identified gene expression patterns on admission that 
predict peak cTnI elevation, i.e. the extent of myocardial necrosis. These findings indicate that blood-based gene 

Figure 4.  Enrichment map of gene-sets unique to the admission cTnI-corrected dataset. Functional enrichment 
analyses were done by GSEA, using as gene ranking metrics the likelihood ratio statistics of the differential 
expression analyses performed by GLM either correcting or not for cTnI on admission (in STEMI vs. NSTEMI 
patients, n = 15 for both groups, matched for age, sex, and cardiovascular risk factors). The map derived by 
subtracting the GSEA results obtained using the uncorrected gene ranks from those on the cTnI-corrected gene 
ranks. The colour scheme is as in Fig. 3. The complete lists of GO-BP gene-sets significant at a nominal P-value 
< 0.05, along with enrichment statistics, in either the uncorrected or the cTnI-corrected models, are given in 
Supplementary Table S2a.

https://doi.org/10.1038/s41598-020-65527-7


9Scientific Reports |         (2020) 10:8731  | https://doi.org/10.1038/s41598-020-65527-7

www.nature.com/scientificreportswww.nature.com/scientificreports/

expression profiling at the initial presentation is a sensitive, non-invasive tool that reveals transcriptional patterns, 
which anticipate the extent of myocardial injury in patients affected by acute ischemic heart disease. Overall, 
results confirmed our prior hypothesis and provided evidence that STEMI and NSTEMI have a distinct “molec-
ular architecture”.

Figure 5.  Genes predicting the cTnI peak. Linear regression was used to model the relationship between peak 
cTnI level (as the outcome variable) and peripheral blood gene expression on hospital admission (explanatory 
variable). Scatter plots and trendlines show six of the most significant genes that positively or negatively 
correlate with cTnI peak (see Table 2 for statistics). The full list of genes significantly predicting cTnI peak at an 
FDR-adjusted P-value < 0.05, along with the coefficients of determination R2, the regression β coefficients, and 
the exact P-values, in either the uncorrected or the cTnI-corrected models, is given in Supplementary Table S3. 
STEMI (n = 15) and NSTEMI (n = 15) samples are highlighted by red and blue dots, respectively. The 95% 
confidence interval of the trendline is depicted in light green.

Gene

Study cohort (RNA-Seq)
(STEMI n = 15 vs. NSTEMI n = 15)

Validation Cohort (RT-qPCR)
(STEMI n = 45 vs. NSTEMI n = 43)

Non-corrected model cTnI-corrected model Non-corrected model cTnI-corrected model Full model*
Differentially expressed genes

log2FC P-value log2FC P-value log2FC P-value log2FC P-value log2FC P-value

TMEM120A 0.39 1.1 × 10−8 0.39 2.9 × 10−7 0.32 0.05 0.27 0.06 0.16 0.33

GJB6 1.51 7.2 × 10−8 1.56 3.4 × 10−7 0.92 0.01 0.84 0.009 0.61 0.09

MMP9 0.99 1.2 × 10−7 0.83 3.5 × 10−5 0.68 0.02 0.61 0.03 0.32 0.31

ANO6 −0.41 1.3 × 10−7 −0.39 3.6 × 10−6 −0.16 0.05 −0.18 0.036 −0.19 0.047

CXCR4 0.44 2.7 × 10−7 0.42 7.0 × 10−6 0.43 0.001 0.42 0.0004 0.34 0.008

HIF1A 0.30 1.7 × 10−5 0.31 5.6 × 10−5 0.50 0.003 0.48 0.002 0.42 0.02

Genes associated with cTnI peak

R2 β P-value R2 β P-value R2 β P-value R2 β P-value R2 β P-value

ZFPL1 0.69 11.34 1.5 × 10−8 0.75 9.90 2.2 × 10−7 0.06 2.02 0.05 0.10 1.73 0.01 0.25 1.30 0.003

HIF1A 0.54 8.63 3.4 × 10−6 0.71 7.64 1.3 × 10−6 0.15 1.37 0.0002 0.24 1.45 <0.0001 0.33 1.17 0.0001

CXCR4 0.54 5.90 3.4 × 10−6 0.67 5.05 9.1 × 10−6 0.20 2.00 <0.0001 0.35 2.49 <0.0001 0.41 2.12 <0.0001

CHUK 0.54 7.60 4.0 × 10−6 0.70 6.69 2.0 × 10−6 0.05 1.21 0.04 0.09 0.86 0.01 0.24 0.65 0.004

TMEM120A 0.49 7.20 1.6 × 10−5 0.63 6.13 3.6 × 10−5 0.12 1.36 0.0009 0.17 1.20 0.0005 0.29 0.97 0.0007

ANO6 0.49 −6.41 1.6 × 10−5 0.61 −5.34 8.9 × 10−5 0.03 −1.06 0.13 0.12 −1.47 0.004 0.26 −1.14 0.002

Table 2.  Validation of RNA-Seq data by RT-qPCR in an independent cohort. cTnI, cardiac troponin I; log2FC, 
fold-change in logarithmic scale, i.e., the difference between STEMI vs. NSTEMI. *In the full model comparison 
was adjusted for age, admission cTnI, hypercholesterolemia, hypertension, time-to-presentation, admission 
medications (aspirin and statins).
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This study has several strengths worth mentioning. To our knowledge, this is the first study searching for 
AMI-subtype specific transcriptional differences in the whole blood by RNA-Seq. The general idea is searching 
for expression signatures that may have pathophysiological specificity and are not related to cardiac leakages, such 
as cTnI, which by nature is not specific for AMI. Blood was collected at patient admission, before any interven-
tion, and without cell fractionation: this increases the reliability and robustness of the emerging biomarkers and 
makes more feasible a future clinical exploitation. On the other hand, clear limitations are the small sample size 
and selection criteria of the discovery cohort: while focusing on matched patients affected by AMI only (25% of 
our cases) increased the specificity and sensitivity of differential gene expression profiling, these constraints may 
reduce the generalisability of our results. However, we validated eight top DE and/or cTnI peak-associated genes 
on an independent cohort of consecutive, unmatched patients and, overall, we have confirmed our findings even 
when adjusting for relevant confounders.

Few previous studies meant to detect relevant expression changes in peripheral blood of AMI patients, using 
whole-genome microarray expression profiling. Circulating cell transcriptome was shown to reflect inflammatory 
and immune response to ischemic myocardial injury in first-time AMI patients within 48-hours post-MI, in com-
parison with normal controls, and modulation in epithelial-to-mesenchymal transition pathway or cholesterol 
transport were associated with disease severity and/or clinical outcome17. Alterations in PBMC gene expression 
patterns related to lipid/glucose metabolism, platelet function, and atherosclerotic plaque stability were observed 
in STEMI patients, on the 1st-day post-MI, when compared to stable CAD controls15. Upregulation of inflam-
matory genes and downregulation of genes involved in T-lymphocyte signalling were detected in peripheral 
blood samples of AMI patients collected immediately prior to angiography, in comparison with no-AMI subject 
with or without CAD, and a subset of these transcripts was associated with a significant risk of cardiovascular 
death16. Further, the extent of late microvascular obstruction, a cardiac magnetic resonance (CMR) surrogate 
marker of prognosis, was shown to correlate with upregulation of genes involved in inflammatory response, 
phagocyte mobilization, fatty acid utilization, and vascular dysfunction and downregulation of genes related to 
T-lymphocyte differentiation and activation in PBMC collected within 1 day from reperfusion in STEMI patients 
undergoing primary angioplasty18. Consistently, AMI was shown to activate inflammatory and proliferative path-
ways in circulating monocytes, prior to their infiltration of injured myocardium31. To this body of evidence, our 
study adds the notion that blood-based signatures of divergent modulation of inflammatory, immune-response, 
angiogenic, and mitochondrial dynamics networks characterize different types of AMI. NSTEMI and STEMI 
are considered a continuum of disease and a spectrum of clinical presentations following atherosclerotic plaque 
rupture and partial or complete thrombosis of the infarct-related artery1. Conversely, our findings showed that 
STEMI- and NSTEMI-specific expression patterns are distinguishable in peripheral blood, suggesting different 
pathophysiological traits.

Our data indicate a number of potential divergent molecular mechanisms. Three long non-coding RNAs 
(lncRNAs), MALAT1, ZFAS1, and MIR17HG, were significantly overexpressed in STEMI patients and, notably, 
MALAT1 was also one of the best predictors of cTnI peak. LncRNAs are key regulators of tissue homeostasis and 
are involved in cardiac development, hypertrophy and remodelling, heart failure, and AMI32. MALAT1 regulates 
vessel growth and function and its expression may be influenced by hypoxia. Accordingly, we found that STEMI 
patients expressed higher levels of the hypoxia-inducible gene HIF1A than NSTEMI. It has been reported that 
AMI patients express higher levels of MALAT1 compared with healthy controls, but slightly lower levels in STEMI 
than in NSTEMI33. The discrepancy with our findings may be due to the different study design (those authors 
collected blood samples at the time of reperfusion, via an arterial catheter) or the specific transcript detected (via 
RT-qPCR)33. ZFAS1 was shown to be upregulated in the infarcted and border zones in a mouse model of AMI, 

Figure 6.  Validation of top-ranked genes on an independent cohort of consecutive patients. The expression 
level of 8 significant genes, chosen among the top DE genes and/or the top cTnI peak-associated genes, was 
evaluated in patients from the validation cohort using RT-qPCR single assays. Pearson’s correlation coefficient 
(r) was computed to assess the degree of association between the log2 mean fold-differences (log2FC) of these 
genes observed in the discovery group of matched patients (STEMI n = 15 vs. NSTEMI n = 15) and the log2FC 
found in the validation cohort (STEMI n = 45 vs. NSTEMI n = 43). Data are plotted as log2FC STEMI vs. 
NSTEMI in the study (y-axis) versus the validation patient cohort (x-axis). The 95% confidence interval of the 
trendline is depicted in light green.
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and knockdown of ZAFS1 protected cardiomyocytes from hypoxic injury34. Overexpression of ZFAS1 detected in 
STEMI subjects may parallel increased myocardial hypoxia due to persistent total coronary occlusion. MIR17HG 
is the host gene for the MIR17–92 cluster, a group of microRNAs involved in cell survival, proliferation, differenti-
ation, and angiogenesis: indeed, these were all pathways that differentiate STEMI from NSTEMI. Remarkably, we 
also found 29 DE, unannotated, predicted lncRNAs. In comparison with protein-coding mRNAs, lncRNAs show 
greater tissue/cell specificity35 and, being emerging regulators of cardiovascular functions, promise to improve 
phenotype discrimination and diagnostic and prognostic assessment.

The NSTEMI phenotype was associated with processes such as “blood vessel development”, “positive regu-
lation of angiogenesis”, “cell migration”, and “regulation of cell adhesion”, which suggests that long-lasting his-
tory of CAD and/or transient ischemia may have triggered early mechanisms to help to restore damaged vessels 
and limit cardiomyocyte loss. Conversely, consistent with the prompt mobilization of angiogenic bone marrow 
cells and monocytes reported in AMI36, the chemokine CXCR4 was significantly more expressed in STEMI 
than in NSTEMI patients. Patients with recent NSTEMI were shown to have a lower microvascular density in 
non-ischemic myocardium than patients with a similar extent of CAD without previous AMI37. Our data are in 
line with the proposal that acute coronary syndrome presentation depends not only on the presence of vulnerable 
plaque but also on the microcirculation dysfunction of a vulnerable myocardium38.

A group of interconnected gene-sets (“cell-cell adhesion”, “leukocyte/lymphocyte activation”, “platelet activa-
tion”) were over-represented in NSTEMI vs. STEMI patients. Of note, ANO6, which encodes for a key component 
of the calcium-dependent exposure of phosphatidylserine on the cell surface, is essential to trigger the clotting 
system39. The interplay between the haemostatic and inflammatory systems has a key role in atherosclerosis pro-
gression40: platelets can adhere to and be activated on stimulated endothelial cells promoting the recruitment of 
blood-borne leukocytes to the vessel wall, and formation of heterotypic platelets-leukocytes aggregates occurs in 
the blood prior to contact with endothelial cells. These enriched processes at presentation may reflect pathogenic 
mechanisms that differ between NSTEMI and STEMI.

A unique feature of the STEMI phenotype was the association with “antigen processing and presentation of 
exogenous peptide antigen via MHC class I, TAP-dependent” and proteolytic machinery gene-sets, suggesting 
immune tolerance breaking mechanisms occurring during a sterile injury such as AMI. Tissue necrosis prompts 
dendritic cells (DCs) to activate cardiac-specific autoreactive T-cells making the heart vulnerable to an autoim-
mune response41, as it was observed for cardiac myosin42. Recruitment of circulating DC precursors into the 
infarcted myocardium is paralleled by reduced numbers of circulating DCs in AMI, with a more pronounced 
reduction in STEMI than in NSTEMI patients43. Consistently, our analysis inferred that circulating DCs were 
associated with NSTEMI, whereas lower circulating DCs in STEMI might reflect recruitment into the infarcted 
myocardium, which in turn increases local inflammation and autoantigen presentation.

Mitochondrial dynamics and cellular respiration pathways appeared substantially altered in STEMI compared 
to NSTEMI patients. Dysregulated reactive oxygen species production in response to stress induces mitochon-
drial dysfunction and cell death, including apoptosis triggered by cytochrome c release. Cardiomyocytes have 
intrinsic quality control mechanisms to maintain energy balance and overall health of mitochondria, including 
fission, fusion, and autophagy44. A number of interconnected gene-sets related to mitochondrion organization 
and redox processes were clearly associated with the STEMI phenotype, mainly in response to cardiac damage, 
suggesting that both energy balance and autophagy mechanisms are activated and play a role during a massive 
ischemic event.

A highly promising finding is the association between blood cell gene expression on hospital admission and 
a recognized index of disease severity. Risk stratification of AMI patients at initial presentation is essential for 
optimal management. Peak troponins level is greatly related to infarct size45, but peak elevation usually occurs 
hours after AMI, and troponins on admission poorly predict the extent of cardiac injury46. We provide evidence 
that expression levels of specific genes in the peripheral blood on admission had a significant relationship with 
cTnI peak, independent of cTnI level at presentation: this should be regarded as a proof of concept that they might 
be early surrogate predictors of myocardial necrosis and infarct size. Thus, circulating transcriptional signatures 
may be valuable tools for early prognosis and risk assessment in AMI. Indeed, troponins have emerged as pow-
erful predictors of prognosis47,48, and infarct size detected by CMR predict a wide array of adverse cardiovascular 
events49. Our findings suggest that RNA-based biomarkers may add valuable information for very early assess-
ment of the risk for adverse cardiovascular outcomes, beyond that provided by troponins.

Refined prediction models may translate molecular findings into clinical applications, extending physician’s 
tools for appropriate decision-making and treatment plan. Indeed, CK-MB and cTnI have been proposed for 
the assessment of the cardioprotective effect of conditioning therapies, because of their availability and their 
known correlation with infarct size50. Early and accurate infarct size estimations by RNA-based disease-specific 
biomarkers could serve for the timely choice of appropriate cardioprotective therapies on ischemia and/or 
reperfusion-induced lesions.

Study limitations.  In interpreting our data, some limitations should be acknowledged. First, we considered 
peak cTnI concentration as a marker of infarct size. Despite troponins have been validated against histology and 
have demonstrated to be closely correlated with infarct size and prognosis in clinical practice51,52, our data should 
be confirmed by more accurate imaging markers of infarct size estimation, such as single-photon emission com-
puted tomography (SPECT) myocardial perfusion imaging or CMR. Second, patients with major comorbidities 
and complications were excluded in our pilot study. Therefore, the applicability of our findings to these patients 
needs further investigation. Third, the translation of our results to daily clinical practice remains to be clarified 
and will require further studies.
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Conclusions
In conclusion, we showed that capturing global genomic responses through changes in mRNA expression in the 
blood unveiled molecular signatures and unappreciated distinct pathways for STEMI and NSTEMI and revealed 
early predictors of infarct size. Our analysis indicates specific pathological traits of these two forms of AMI that 
could provide a framework for the development of novel blood-based, disease-specific biomarkers for precision 
diagnosis, early risk stratification, and therapeutic decision-making.

Data availability
The RNA-Seq dataset generated and analysed during the current study, i.e., anonymized raw and processed, 
MIAME-complaint RNA-Seq data, is available in the NCBI GEO repository under the accession number 
GSE103182 (http://www.ncbi.nlm.nih.gov/geo/query/acc.cgi?acc=GSE103182). All other data generated or 
analysed during this study are included in this published article and its Supplementary Information files.
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