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Cancer genomics predicts disease 
relapse and therapeutic response 
to neoadjuvant chemotherapy of 
hormone sensitive breast cancers
Jieqiang Zhu1, Levan Muskhelishvili2, Weida Tong1, Jürgen Borlak3 ✉ & Minjun Chen   1 ✉

Several studies provide insight into the landscape of breast cancer genomics with the genomic 
characterization of tumors offering exceptional opportunities in defining therapies tailored to the 
patient’s specific need. However, translating genomic data into personalized treatment regimens has 
been hampered partly due to uncertainties in deviating from guideline based clinical protocols. Here 
we report a genomic approach to predict favorable outcome to treatment responses thus enabling 
personalized medicine in the selection of specific treatment regimens. The genomic data were divided 
into a training set of N = 835 cases and a validation set consisting of 1315 hormone sensitive, 634 
triple negative breast cancer (TNBC) and 1365 breast cancer patients with information on neoadjuvant 
chemotherapy responses. Patients were selected by the following criteria: estrogen receptor (ER) 
status, lymph node invasion, recurrence free survival. The k-means classification algorithm delineated 
clusters with low- and high- expression of genes related to recurrence of disease; a multivariate 
Cox’s proportional hazard model defined recurrence risk for disease. Classifier genes were validated 
by Immunohistochemistry (IHC) using tissue microarray sections containing both normal and 
cancerous tissues and by evaluating findings deposited in the human protein atlas repository. Based 
on the leave-on-out cross validation procedure of 4 independent data sets we identified 51-genes 
associated with disease relapse and selected 10, i.e. TOP2A, AURKA, CKS2, CCNB2, CDK1 SLC19A1, 
E2F8, E2F1, PRC1, KIF11 for in depth validation. Expression of the mechanistically linked disease 
regulated genes significantly correlated with recurrence free survival among ER-positive and triple 
negative breast cancer patients and was independent of age, tumor size, histological grade and node 
status. Importantly, the classifier genes predicted pathological complete responses to neoadjuvant 
chemotherapy (P < 0.001) with high expression of these genes being associated with an improved 
therapeutic response toward two different anthracycline-taxane regimens; thus, highlighting the 
prospective for precision medicine. Our study demonstrates the potential of classifier genes to predict 
risk for disease relapse and treatment response to chemotherapies. The classifier genes enable rational 
selection of patients who benefit best from a given chemotherapy thus providing the best possible care. 
The findings encourage independent clinical validation.

Breast cancer is the top-ranking malignancy in females and accounts for about 25% of all cancers among women. 
Except for triple negative breast cancer, the 5-year survival is typically >90%. Despite advances in early detection 
and therefore improved outcomes an approximately 42,260 breast cancer deaths are expected for the US in 20191. 
Next to surgery chemotherapy is an important treatment option and was shown to decrease the mortality rates of 
breast cancers significantly2. In the meantime, chemotherapy is associated with significant toxicity; nevertheless, 
is based on the paradigm of maximum tolerated doses (MTD)2,3. About 60% of breast cancer patients receive 
chemotherapy, and the decision to treat is justified based on clinical and histological features4; even though, 
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patients may not derive sufficient benefit after being given toxic chemotherapeutics2. Thus, identifying patients 
who would benefit from a given chemotherapy is a prior task5,6, and recent studies imply that genetic screening 
can be a promising tool to enable personalized chemotherapy regimens of cancer patients7.

A number of testing systems have been considered useful to predict prognostic outcome in hormone sensi-
tive breast cancers8 and are recommended by the American Society of Clinical Oncology(ASCO), and National 
Comprehensive Cancer Network guidelines9,10. However, despite the significant advances in the field, limitations 
still exist. First, none of the testing systems have demonstrated the capability to predict treatment responses and 
therefore do not assist in the selection of specific treatment regimens9. Second, most testing systems inform on 
cell proliferation events11, while other mechanistic and therapeutically relevant information are not fully consid-
ered, especially information on the modulation of drug targets for breast cancer therapies.

Importantly, cell cycle genes play an essential role in cancer development and certain gene products, such as 
polo-like kinas 1(PLK1) and Aurora Kinases, are over-expressed in human cancers and are therefore attractive 
drug targets for cancer therapy. The cyclin-dependent kinase CDK4/6 inhibitors, i.e. palbociclib, ribociclib and 
abemaciclib, have been approved by the US FDA for the treatment of advanced stages of ER positive breast can-
cers12 while other cell cycle proteins are considered novel drug targets and are under clinical evaluation13.

To assess the effectiveness of a given chemotherapy the so called pathologic complete response (pCR) is 
considered. pCR is defined by the complete lack of signs for cancer relapse after radiation and/or chemother-
apy. However, predicting pCR based on genetic screening has not been attempted nor is it certain that pCR 
serves as a surrogate endpoint for improved overall survival14. Therefore, our study aimed to develop a gene 
expression signature that can be used to identify patients with improved response to a given chemotherapy. As 
a proof-of-concept for genome guided chemotherapy, we entrained signature genes as predictors to identify 
high-risk breast cancers and to select responders for chemotherapy. We performed a discovery analysis on 835 
ER-positive breast cancers and identified 10 genes which were associated with recurrence risk of breast cancers. 
We then designed an algorithm to calculate the average expression of these genes as means to quantify risk of 
recurrence. The predictive performance of the classifier genes was independently evaluated among high-risk 
patients using large congregated datasets including 1315 ER-positive breast cancers and 634 triple negative breast 
cancer patients (TNBC). Finally, the proposed gene signature was evaluated for their sensitivities to neoadjuvant 
chemotherapy by considering 1365 breast cancers, most of which are hormone sensitive.

Materials and methods
Datasets.  The training cohort (n = 835) comprised four data sets (i.e. GSE492215, GSE1770516, GSE739017, 
GSE203418) which were selected by the following criteria: ER-receptor status, lymph node invasion, recurrence 
free survival data, a minimal number of patients, i.e. >100, microarray data generated on the same platform 
(Affymetrix, Inc., Santa Clara, CA, USA), and results were published in a quality peer-reviewed journal. All data 
were retrieved from the NCBI Gene Expression Omnibus (GEO, https://www.ncbi.nlm.nih.gov/geo/).

The validation cohort consisted of 1315 hormone sensitive breast cancers19, 634 triple negative breast cancers, 
and 1365 breast cancers with neoadjuvant chemotherapy responses (Table 1). The data sources for each cohort 
are detailed in Supplemental Table S1.

In addition, we considered the genomic data set GSE15852 with information on paired cancerous and normal 
tissues to confirm the discrimination power of the classifier genes.

Identification of the classifier genes.  Figure 1 depicts the overall study workflow with three separated 
tiers: (1) to identify recurrence of related genes (RRGs) for breast cancer; (2) define enriched pathway and entrain 
a gene signature predictive for RRGs; (3) validate the gene signature among ER-positive and triple negative breast 
cancers for treatment response to chemotherapies.

The GEO data sets GSE4922, GSE17705, GSE7390 and GSE2034, were retrieved from the public repository 
and analyzed for RRGs. Next, a k-means (k = 2) classification algorithm20 was applied to individual gene expres-
sion data. This revealed clusters of breast cancers with low- and high- gene expression data. Then, a Cox’s propor-
tional hazard model was developed to correlate low- and high- gene expression data with the patient’s recurrence 
risk for disease and a hazard ratio and p-value for each gene was calculated. Genes with a hazard ratio (>1.5) and 
a significant p-value (<0.05) were defined as RRG.

Subsequently, a leave-one-out procedure was computed to cross-validate the predictive power of the classi-
fier genes. In each run, one dataset is left out (e.g. GSE4922), and the other datasets (e.g. GSE 17705, GSE7390, 
GSE2034) will generate three RRG lists separately. Only the common genes in these three lists were left and 
applied to the left-out dataset (e.g. GSE4922) to assess its correlation with recurrence. The leave-one-out proce-
dure was repeated with all datasets.

Pathway analysis of the classifier genes.  The selected gene list was imported into the Ingenuity Pathway 
Analysis (IPA) software, i.e. an online database widely used, to identify the statistically enriched functional path-
ways. P < 0.05 was considered as statistically significance.

An algorithm to calculate the expression of the classifier genes.  A simple algorithm was designed 
to calculate the average expression intensity of the selected genes, which will be used to quantify the risk grade of 
breast cancers.

∑= =Average expression Intensity(i)/N(i 1)
N

in which Intensity(i) represents the expression level of gene i and N is the total number of the selected 
genes. The intensity of gene expression is based on log2 at the range of 4 to 14, with a median value of about 8.5; 
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therefore, we categorized breast cancers into low expression (<7.5), intermediate expression (7.5–9) and high 
expression group (>9) based on the average expression of the classifier genes.

Performance of the classifier genes with other multigene signatures.  We draw comparison 
between the newly developed signature genes and the multigene signatures recommended by the ASCO guide-
line9, i.e. PAM50 (n= 50 genes)21,22, Oncotype DX (n= 16 genes by excluding 5 reference genes)23, Breast Cancer 
Index (BCI, n= 7 genes)24,25. Note, MammaPrint26,27 was not included in the comparison since of the original 70 
predictor genes only 53 genes are disclosed. For a consistent comparison, a k-means method was used to catego-
rize patients into low- and high- expression groups. Agreement charts for two-by-two gene signature compari-
sons between their low- and high- expression groups assignments were conducted.

Immunohistochemical analysis of tissue microarray.  Tissue microarray (TMA) sections contain-
ing both normal and cancerous breast tissues were retrieved from Cooperative Human Tissue Network, the 
University of Virginia. TMAs were deparaffinized and rehydrated using standard methods. The sections were 
then sequentially incubated with rabbit polyclonal anti-CDK1 (Sigma, St. Louis, MO), biotin-conjugated goat 
anti-rabbit, and ExtrAvidin Peroxidase (ExtrAvidin Kit, Sigma). Staining was developed with liquid DAB sub-
strate (DAKO, Carpinteria, CA), sections were counterstained with hematoxylin, and mounted with Permount 

Characteristics

Training 
cohort

ER positive 
validation cohort TNBC cohort

Neoadjuvant 
chemotherapy cohort

(n = 835) (n = 1315) (n = 634) (n = 1365)

Age, years

<=50 142(17.0%) 399(30.3%) 219(34.5%) 668(48.9%)

>50 197(23.6%) 811(61.7%) 312(49.2%) 574(42.1%)

Unknown 496(59.4%) 105(8.0%) 103(16.2%) 123(9.0%)

Tumor size, mm

<20 188(22.5%) 302(23.0%) 73(11.5%) 93(6.8%)

20–50 146(17.5%) 638(48.5%) 200(31.5%) 537(39.3%)

>50 5(0.6%) 219(16.7%) 138(21.8%) 507(37.1%)

Unknown 496(59.4%) 156(11.9%) 223(35.2%) 228(16.7%)

Lymph node status

N1 0(0.0%) 174(13.2%) 85(13.4%) 541(39.6%)

N2 0(0.0%) 49(3.7%) 29(4.6%) 142(10.4%)

N3 0(0.0%) 31(2.4%) 22(3.5%) 95(7.0%)

Positive but unspecified 181(21.7%) 455(34.6%) 112(17.7%) 3(0.2%)

Negative 654(78.3%) 606(46.1%) 241(38.0%) 363(26.6%)

Unknown 0(0.0%) 0(0.0%) 145(22.9%) 221(16.2%)

Histological grade

Well differentiated 91(10.9%) 227(17.3%) 16(2.5%) 61(4.5%)

Moderately differentiated 179(21.4%) 633(48.1%) 67(10.6%) 385(28.2%)

Poorly differentiated 67(8.0%) 368(28.0%) 375(59.1%) 611(44.8%)

Unknown 498(59.6%) 87(6.6%) 176(27.8%) 285(20.9%)

Hormone status

ER + & PR +  0(0.0%) 839(63.8%) 0(0.0%) 448(32.8%)

ER + & PR− 0(0.0%) 210(16.0%) 0(0.0%) 154(11.3%)

ER- & PR +  0(0.0%) 0(0.0%) 0(0.0%) 43(32.0%)

ER− & PR− 0(0.0%) 0(0.0%) 634(100.0%) 432(31.6%)

Unknown 835(100.0%) 266(20.2%) 0(0.0%) 288(21.1%)

EGFR/HER-2 status

Overexpression 0(0.0%) 87(6.6%) 0(0.0%) 262(19.2%)

Negative 0(0.0%) 745(56.7%) 634(100.0%) 891(65.3%)

Unknown 835(100.0%) 483(36.7%) 0(0.0%) 212(15.5%)

Chemotherapy response

Pathological complete 
response NA 30(2.3%) 57(9.0%) 334(24.5%)

Residual disease NA 255(19.4%) 113(17.8%) 1031(75.5%)

Unknown NA 1030(78.3%) 464(73.2%) 0(0.0%)

Years of follow-up

Median (range) 8.3(0.0–19.1) 5.1(0.0–17.8) 3.1(0.0–15.8) 2.7(0.1–7.4)

Table 1.  Patient characteristics of the breast cancer study cohorts.
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(Fisher Scientific, Pittsburgh, PA). Stained TMAs were scanned, and digital images were obtained with Aperio 
Scanscope System (Leica Biosystems, Vista CA). The intensity of CDK1 staining in a tissue from each patient was 
evaluated with the Positive Pixel Count Algorithm (Leica Biosystems). This algorithm quantifies the amount of 
specific stain present in a digital slide by evaluating an average intensity of all pixels for subsequent calculation of 
the optical density and the proportion of positively stained area.

Statistical analysis.  All statistical analyses were conducted with the JMP software (SAS Institute Inc., ver-
sion 12.1.0) or the R software (version 3.4.2) which included the Bioconductor package (version 3.5) and the 
R-Studio package (version 1.0.153). All tests were two-sided; a P < 0.05 was considered as statistically signifi-
cance. We tested the hypothesis that the proportion of patients who are free of recurrence would be significantly 
higher in the low expression group (<7.5) than in the high expression group (>9). The Kaplan-Meier analysis was 
computed to estimate the variance of recurrence free survival over time by the Greenwood variance estimate; a P 
value of less than 0.05 from log-rank test was considered statistically significant. A multivariate Cox model was 
developed to test the recurrence free survival in relation to age, tumor size, histological grade, and status of lymph 
nodes with or without the consideration of the signature genes. The pathway enrichment analysis with a p-value 
<0.05 was considered as statistically significant. Additionally, we used the R stats base package and pca3d (ver-
sion 0.10) package to display 3-D score plot of tissues distribution based on the newly developed signature genes.

Results
Identification and validation of classifier genes to predict disease relapse.  We collected data 
from 835 ER-positive breast cancer patients as training cohort; a set of 51-genes associated with recurrence were 
obtained by intersection of four unique gene lists derived from the leave-one-out procedure depicted in Fig. 1. 
Importantly, of these genes at least 17 are regulated by the estrogen receptor and include the proliferation index 
Ki67 (Supplemental Table S2). The 51 genes were imported into the IPA database to enumerate the statistically 
enriched functional pathways (Table 2) and apart from the estrogen-mediated pathway, cell cycle regulation path-
ways are prominent. Based on the pathway enrichment analysis we selected 10 genes highlighted in Table 2 as 
classifier for further validation.

We assessed the performance of the classifier genes for its capability to differentiate cancerous and normal 
breast tissues. Figure 2A presents a 3D-PCA score plot derived from pairs of cancerous and normal tissues of 43 

Figure 1.  Study workflow of the development of the classifier gene signature by incorporating biological 
pathway knowledge into the bioinformatics process. RRG: relapse related gene.

Ingenuity Canonical Pathways P-value Molecules

Cell Cycle: G2/M DNA Damage 
Checkpoint Regulation 8.71E-08 TOP2A, AURKA, CKS2, CCNB2, CDK1

Role of CHK Proteins in Cell 
Cycle Checkpoint Control 8.51E-06 SLC19A1, E2F8, E2F1, CDK1

Mitotic Roles of Polo-Like Kinase 1.51E-05 PRC1, CCNB2, KIF11, CDK1

Estrogen-mediated S-phase Entry 2.75E-05 E2F8,E2F1,CDK1

Cyclins and Cell Cycle Regulation 3.47E-05 E2F8,E2F1,CCNB2,CDK1

Protein Ubiquitination Pathway 0.0004 HSPB1,UBE2S,PSMD7,UBE2C,PSMD2

Role of BRCA1 in DNA Damage 
Response 0.0008 SLC19A1,E2F8,E2F1

DNA damage-induced 14–3–3σ 
Signaling 0.0009 CCNB2,CDK1

Table 2.  Enriched functional pathways associated with 51 genes that were associated with recurrence-free 
survival (P < 0.001). The 10 selected classifier genes are highlighted in bold.

https://doi.org/10.1038/s41598-020-65055-4
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patients. Obviously, the normal tissues (blue dots) clustered together, most of which are located within the 95% 
confident ranges defined by the green sphere. Conversely, most cancerous tissues (red dots) are spread in the PCA 
space and are away from the normal tissue cluster. This finding suggests that the classifier genes have a different 
expression pattern between cancerous and normal breast tissues.

We validate the capability of the classifier genes to predict the likelihood of recurrence by using 1315 
ER-positive breast cancers collected from 13 published datasets in the GEO database (Supplemental Table S1). 
The Kaplan-Meier survival analysis estimated 67% (95% CI: 65%-69%) patients have the 10-year recurrent-free 
survival after cancer diagnosis (Supplemental Table S3). Furthermore, the patients were categorized into low 
(<7.5), intermediate (7.5–9) and high expression (>9) groups as defined by the classifier genes. Figure 2B shows 
that the expression of classifier genes correlated with the grade of recurrence risk across time; specifically, the 
proportion of recurrence-free patients at 10 years is 82% (95% CI, 77–86%) in the low expression group, which is 
better than 71% (95% CI: 68–74%) in the intermediate expression group and 58% (95% CI: 55–61%) in the high 
expression group. The difference among the three groups is statistically significant (P < 0.001). Similar statisti-
cally significant results among high, intermediate and low expression groups were observed within the discovery 
cohort of 835 ER-positive cancer patients (Fig. 2C).

The estimated 10-year recurrent free survival rates in the subgroups categorized by age and other clinical fac-
tors for 1315 ER-positive breast cancers are illustrated in Fig. 3. Overall, patients with a low expression of classifier 
genes (<7.5) have less frequent recurrent events than patients with a high expression (>9.0). Prominently, the 
classifier genes differentiate recurrence risk of subgroups with high risk for relapse of disease (e.g. lymph node 
positive, age >50 years and tumor size >2) with statistical significance (P < 0.001). For example, among 709 node 
positive patients 62 with low expression (<7.5) and 306 with intermediate expression (7.5–9) have 73% and 68% 
of the estimated 10-year recurrence-free survival rates, respectively, which is better or equal to the entire cohort 
(67%). In contrast, the node-positive patients with a high expression of classifier genes (>9.0) have a 10-year 
recurrence-free survival rate of 52%, which is statistically significantly lower than the entire cohort. For now, the 
expression of the classifier genes presented no or borderline statistically significance in relation to age ≤50 years, 
tumor size ≤ 2 cm and negative lymph node invasion. Alike, no statistically significance was obtained when con-
sidering tumor grade subgroups.

Figure 2.  (A) The 3D PCA score plot of the classifier gene signature for n = 43 patients of paired cancer and 
normal breast tissues retrieved from GEO dataset of GSE15852. The red and blue dots represent the cancer and 
normal breast tissues, respectively; (B) Kaplan–Meier event-free survival analysis for the classifier genes in the 
validation cohort of n = 1315 ER-positive breast cancers (P < 0.001); (C) Kaplan–Meier event-free survival 
analysis for the classifier genes in the training cohort of n = 835 ER-positive breast cancers (P < 0.001); (D) 
Kaplan-Meier analysis for event-free survival among TNBC patients categorized by the classifier genes. There 
were 3 recurrence events of 24 TNBC patients in the low genomic score group,54 recurrences of 157 TNBC 
patients in the intermediate group, and 101 recurrence events of 453 TNBC patients in the high score group. 
The difference of recurrences among the high and low expression groups is statistically significant (P=0.037).

https://doi.org/10.1038/s41598-020-65055-4
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Next, a multivariate Cox model was developed to analyze the contribution of histological features of 1315 
ER-positive breast cancers towards risk of recurrence (Table 3). The recurrence free survival was evaluated against 
age, tumor size, node status and histological grade. As expected, tumor size (P = 0.050), node status (P = 0.02), 
histological grade (P < 0.001) were significantly correlated with the recurrence risk of breast cancer, while age 
didn’t show significance (P = 0.444). In a multivariate Cox model in which recurrence free survival was estimated 
in relation to the classifier genes, age, tumor size, histological grade and node status, the expression of classifier 
genes provided significant predictive power that was independent of age, tumor size, node status and histological 
grade (P = 0.0035).

Figure 3.  Kaplan–Meier estimates of the proportion of patients free of recurrences at 10 years, according to age, 
tumor size, lymph node invasion status and tumor grade.

P Value Hazard Ratio (95% CI)

Analysis without expression of classifier genes

Age 0.4442 1.11(0.85–1.48)

Tumor size 0.0499 1.39(1.01–1.95)

Lymph node invasion 0.02 1.37(1.05–1.79)

Histological grade

Well vs intermediate or 
poorly 0.0001 2.40(1.58–3.81)

Well or Intermediate vs 
poorly 0.1481 1.22(0.93–1.59)

Analysis with expression of the classifier genes

Age 0.5348 1.09(0.83–1.45)

Tumor size 0.047 1.40(1.01–1.96)

Lymph node invasion 0.0314 1.34(1.03–1.75)

Histological grade

Well vs intermediate or 
poorly 0.0007 2.16(1.41–3.45)

Well or Intermediate vs 
poorly 0.9826 1.00(0.74–1.34)

Expression of the classifier 
genes 0.0035 3.29(1.48–7.35)

Table 3.  Multivariate Cox Proportional Hazard Analysis associated with age, tumor size, lymph node invasion, 
histological grade, and expression of classifier genes in the validation cohort (N=1315 breast cancers).

https://doi.org/10.1038/s41598-020-65055-4
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We performed a meta-analysis and compared the classifier genes with the predictor genes defined by PAM50 
(n = 50)21,22, Oncotype DX (n = 16), BCI (n = 7). Overall there is not a single gene in common among these 
diagnostic tools as illustrated in Fig. 4A. Specifically, 9 of 10 herein proposed classifier genes were not used by 
any of these platforms, while AURKA is shared by Oncotype. Even putting the MammaPrint into consideration, 
there is only PRC1 overlapping with the classifier genes. The concordance of the low- and high-expression groups 
defined by the classifier genes and other signatures was examined based on the 1315 validation cohort. As shown 
in Fig. 4(B–D), the classifier gene signature reported in the present study has good concordance with BCI, fol-
lowed by PAM50 and Oncotype DX.

Of note, TNBC is a group of aggressive breast cancers with poor prognosis. So far, no gene signature was 
endorsed to stratify TNBC patients9. We collected 634 triple negative breast cancer cases to assess the predic-
tion power of the classifier genes for recurrence risk. Specifically, we identified 3 recurrence events among 24 
TNBC patients within 10 years follow-up within low expression of the classifier genes (<7.5) as compared to 
a 41% recurrence observed among 453 TNBC patients with high expression of the classifier genes (>9.0). The 
Kaplan-Meier analysis estimated a statistically significant association between expression of the classifier genes 
and recurrence free survival among TNBC patients (P = 0.037) (Fig. 2D).

The classifier genes predict response to neoadjuvant chemotherapies.  We evaluated whether the 
classifier genes can predict an individual patient’s response to neoadjuvant chemotherapy. Patients were cate-
gorized into pathological complete response (pCR) or residual diseases (RD), and the percentage of patients 
achieving pCR was used to determine the response rate to specific chemotherapy regimens. Data of 1365 breast 
cancer cases were collected from 11 datasets of GEO database (Supplemental Table S1) and included 334 pCR 
and 1031 RD patients. The patients achieving pCR have significant higher survival rates as compared to RD 
patients (Supplemental Fig. 1). The overall pCR rate is 24% without considering specific chemotherapy regimens. 
Importantly, the expression of the classifier genes significantly correlated with the possibility of achieving pCR 
after chemotherapy; i.e. the pCR rate in the low expression group is 9% (10 of 113 patients) as compared to 36% 
(229 of 644 patients) in the high expression group (Table 4), of which the difference is statistically significant 
(P < 0.001).

We also assessed whether the patients with high expression of the classifier genes was associated with 
a higher rate of pCR among different chemotherapy regimens. As shown in Table 4 and Supplemental 
Table S4 eight chemotheraputic regimens were considered, i.e. only FEC (fluorouracil, epirubicin, 

Figure 4.  (A) Venn-diagram plot among different diagnostic gene signatures: the classifier genes (n = 10), 
PAM50 (n = 50), BCI (n = 7), and Oncotype DX (n = 16 cancer-related genes). Overall, there is no single gene 
in common. Agreement charts for two-by-two comparison of n = 1315 ER-positive patients in the validation 
cohort are displayed according to high vs low expression groups as defined by the 10 classifier genes against 
(B)-(D) BCI, PAM50, and Oncotype. K-means algorithm (k = 2) was used to define high versus low expression 
groups for all the diagnostic gene signatures.
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The 10 classifier genes

pCR RD pCR% P-value

All patients

All patients expression of classifier genes

Overall 334 1031 24%

<0.001
High expression 229 415 36%

Intermediate expression 95 513 16%

Low expression 10 103 9%

FEC-Taxotere

Overall 25 41 38%

<0.05
High expression 21 21 50%

Intermediate expression 4 20 17%

Low expression 0 0

FAC-Taxol

Overall 83 273 23%

<0.001
High expression 57 107 35%

Intermediate expression 23 134 15%

Low expression 3 32 9%

Only FEC

Overall 30 104 22%

<0.01
High expression 18 31 37%

Intermediate expression 12 63 16%

Low expression 0 10 0%

ER + 

All patients expression of classifier genes

Overall 92 605 13%

<0.001
High expression 71 192 27%

Intermediate expression 18 326 5%

Low expression 3 87 3%

FEC-Taxotere

Overall 8 20 29%

0.1345
High expression 6 7 46%

Intermediate expression 2 13 13%

Low expression 0 0

FAC-Taxol

Overall 20 185 10%

<0.001
High expression 18 65 22%

Intermediate expression 1 93 1%

Low expression 1 27 4%

Only FEC

Overall 10 49 17%

0.4166
High expression 5 15 25%

Intermediate expression 5 28 15%

Low expression 0 6 0%

ER-

All patients expression of classifier genes

Overall 210 349 38%

<0.001
High expression 129 161 44%

Intermediate expression 75 173 30%

Low expression 6 15 29%

FEC-Taxotere

Overall 17 20 46%

<0.05
High expression 15 14 52%

Intermediate expression 2 6 25%

Low expression 0 0

FAC-Taxol

Overall 63 88 42%

0.1198
High expression 39 42 48%

Intermediate expression 22 41 35%

Low expression 2 5 29%

Only FEC

Overall 20 55 27%

<0.01
High expression 13 16 45%

Intermediate expression 7 35 17%

Low expression 0 4 0%

Table 4.  An evaluation of the 10 mechanistically relevant classifier genes identified by pathway enrichment 
analysis to predict response to chemotherapy. Abbreviation: FEC, fluorouracil, epirubicin, cyclophosphamide; 
FAC: fluorouracil, adriamycin, cyclophosphamide.
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cyclophosphamide), only FAC (fluorouracil, doxorubicin, cyclophosphamide), only Taxol, FEC + Taxotere, 
FAC + Taxol, FEC + Taxol+anti-HER2, FEC + Taxol, and FEC + Taxotere+ anti-HER2.The patients with 
high expression of the classifier genes had significantly higher pCR rates of 50% and 35% when receiv-
ing FEC + Taxotere and FAC + Taxol, respectively as compared to the overall average of 38% and 23% 
(P < 0.001), thus representing an improved therapeutic response rate. Another therapeutic regimen, i.e. 
only FEC, also showed a higher pCR (37%) with a borderline statistical significance (P < 0.05). Conversely, 
for the other regimens (i.e. FEC + Taxol+anti-HER2, FEC + Taxotere+ anti-HER2, FEC + Taxol, only FAC, 
and only Taxol) a statistically significantly higher pCR rate in the high expression group could not be estab-
lished (see Supplemental Table S4).

Furthermore, we found that HER2 positive breast cancers, high histological grade and triple negative status 
were prone to achieve better response to chemotherapy, but not for those of low histological grade, node nega-
tive, ER and PR positive. The age, tumor size, histological phenotypes didn’t significantly affect the possibility to 
achieve better responses (See Supplemental Table S5).

We also examined the immunohistochemistry findings related to the 10 classifier genes. CDK1 was 
selected for experimental validation considering the importance of CDKs genes as therapeutic target. 
Immunohistochemical analysis was used to measure CDK1 protein expression among 65 breast cancers and 
13 normal breast tissues. As shown in Fig. 5A–D, CDK1 expression in breast cancer tissues are statistically 
significantly higher than those in the normal tissues (P < 0.002) with an AUC value of 0.71. The expression 
of the classifier genes was also assessed by considering data deposited in the human protein atlas (https://
www.proteinatlas.org/), a content-rich resource to analyze the human proteins in cells, tissues and organs. 
Expectedly, 8 of the 10 classifier genes were overexpressed as protein in breast cancers, including CDK1 
(Fig. 5E).

Figure 5.  Immunohistochemical staining for CDK1 in both cancer (n = 65) and normal breast tissues (n = 
13). Examples of CDK1 stained tumor (A) and normal breast tissue (B,C) boxplot highlighting percentage 
stained area of CDK1 in cancer and normal breast tissues. (D) ROC curve analysis highlighting the sensitivity 
and specificity for the CDK1 staining. (E) Immunohistochemical evaluation of expression of the classifier genes 
of breast cancer tissues in individual patients; data are retrieved from the human protein atlas (https://www.
proteinatlas.org/).
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Discussion
Predicting individual responses to chemotherapy is a major breakthrough in personalized medicine and would 
be of great importance for therapeutic decision making. In this study, we identified 10 genes and a set of emerg-
ing targets for cancer therapies as classifier genes and designed a simple algorithm to quantify recurrence risk 
of breast cancers. These newly identified classifier genes have little overlap with published multigene signatures; 
however significantly correlate with risk of disease relapse and proved to be independent of age, tumor size, his-
tological grade and node status. Importantly, high expression of the classifier genes was significantly associated 
with a better outcome and to achieve pCR after receiving certain chemotherapies, especially those consisting of 
anthracyclines and taxanes.

In the past, some multigene signatures, including Oncotype and MammaPrint, have been endorsed by clinical 
guidance to predict prognosis of ER-positive breast cancers. Although diverse genes are measured, their prog-
nostic capability are largely due to proliferation predictors11. Other genes mechanistically linked to disease were 
sporadically claimed to predict breast cancer prognosis. For example, p27Kip1, was reported as low expressed 
among breast cancer cases with poor survival28.

As described above there was little overlap in signature genes among the different diagnostic tools even though 
the predictive power is similar. Concern has been voiced regarding the uniqueness of signature genes in predict-
ing outcomes29. To overcome limitations in the data analysis we selected 4 large data sets for the training and 
13 for the validation of the classifier genes (Supplemental Table S1). The newly developed signature is better in 
discriminating recurrence among patients with high risk of disease relapse. Especially, among patients of tumor 
size> 2 cm the high expression group had a significantly lower recurrence-free survival within 10-years than 
the intermediate or low expression groups (55% vs 65% or 85%); in the meantime, the difference among the 
three groups narrowed down (i.e. 75% vs 83% or 82%) and was not statistically significant among patients with a 
tumor size <2 cm. A similar tendency was observed for age. Conversely, the expression of cell cycle genes among 
node-positive patients was highly predictive with an estimated 10-year recurrence free survival rate of 80% and 
50%, respectively, for the low and high expression group. These evidences suggest that the use of classifier genes 
can identify high-risk breast cancers with relapse.

So far, no multigene assay are endorsed by clinical guidance for predicting prognosis of triple negative breast 
cancers30. In our study, the classifier genes categorized most TNBC patients into intermediate or high expression 
groups. Only 20 of 465 TNBC were grouped as low expression and the estimated 85% recurrence-free survival 
rate is statistically significantly lower as compared to the intermediate or high expression groups. Note, CDK 
inhibitors were reported to suppress the growth of TNBC cells in vitro and in vivo, thus underpinning the role of 
cell cycle genes in the development of TNBC31.

Chemotherapy is an important treatment option and was shown to reduce one third of annual death rate 
regardless of tumor characteristics2. It is recommended for triple-negative, HER2-positive breast cancers and 
high-risk ER-positive tumors. Apart from significant toxicity patients do not necessarily benefit from chemo-
therapy and there are no validated predictive markers to allow the tailoring of chemotherapy regimens to indi-
vidual patients30. Achieving pCR is associated with favorable outcomes32 though its predictive power as surrogate 
endpoint for improved overall survival has been challenged14,33. Notwithstanding, pCR is a valuable endpoint 
in assessing therapeutic response to treatment14. Although the overall response to chemotherapy or pCR was 
relatively low, i.e. 24% (Table 4); the pCR rate reported in pooled analyses of 5,000–10,000 patients is around 30% 
or less14,33. As observed in our study and by others14, ER-negative and HER2-positive, triple negatives and high 
grade tumors are more responsive to neoadjuvant chemotherapy than ER-positive, HER2-negative tumors, and 
the lobular subtype (Supplemental Table S5). Since the patients with a high expression of classifier genes were also 
at a high risk of disease relapse, it is reasonable to observe that this group achieved a higher pCR rate than those 
with low classifier genes expression.

Defining the optimal chemotherapy for a patient is a challenging issue30. Improving pCR responses could be 
achieved by identifying responders for specific chemotherapies, which was classified as one of priority issues for 
breast cancer research30. Patients respond differently to various regimens; for example, addition of taxanes into 
anchroacyclines regimens is well known to improve the efficacy of chemotherapy34 and even certain subgroups 
in triple-negative breast cancer could achieve a higher pCR rate when treated by certain regimens35. However, no 
validated biomarker was accepted to guide drug selection for chemotherapy in clinical practice30. In our study, 
patients with high expression of the classifier genes achieved a significantly higher pCR rate when treated by 
FEC + Taxotere and FAC + Taxol as compared to other regimens, suggesting the classifier genes can help guide 
the selection of patients for specific therapeutic regimens. In fact, our data (Table 4) is suggestive for an improved 
outcome for up to one half of patients with high expression of the classifier genes as compared with the overall 
treatment group.

Adding target therapy into conventional chemotherapy has shown a higher possibility of achieving clinical 
benefit30. Several CDK4/6 inhibitors (i.e. palbociclib, ribociclib and abemaciclib) were approved as first line ther-
apy for advanced ER-positive breast cancers, and preliminary studies show CDK4/6 inhibitors with aromatase 
inhibitors increased therapy response rates36. Shown in Supplemental Table S6 are certain cell cycle genes that 
have been used as drug targets for developing new cancer therapies, and some therapies have been approved or are 
in clinical trial. Although not validated yet, it is reasonable to speculate that patients with high expression of the 
classifier genes could benefit from the combined chemotherapy and target therapies of CDK4/6. Furthermore, the 
mechanistic relevant classifier genes we identified by pathway analysis outperforms the differentially expressed 
genes identified by statistical machine learning method or other statistical procedures for predicting response to 
chemotherapy and disease relapse (see Supplemental Materials).

We wish to address some caveats. First, this is a retrospective study and the performance of classifier gene 
signature still needs to be validated in prospective studies. Second, the datasets used are collected from different 
labs without following a consistent protocol, and therefore the data quality might vary. Third, we didn’t use the 
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original algorithm to measure the predictor genes of Oncotype and others, and therefore the predictions from 
these gene signatures might be not fully consistent with the original assays. Finally, a guideline for the selection 
of chemotherapeutic agents based on molecular profiling is still lacking; however, is needed for the development 
of personalized medicine.

Conclusion
Our study demonstrates the successful identification of classifier genes to predict disease relapse and treatment 
response to specific chemotherapies. Thus, patients can be selected who benefit best from a specific chemotherapy.

Data availability
All raw are available through NCBI Gene Expression Omnibus (GEO, https://www.ncbi.nlm.nih.gov/geo/) as 
detailed in Supplemental Table S1.
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