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Body-size Scaling is Related to Gut 
Microbial Diversity, Metabolism 
and Dietary Niche of Arboreal 
Folivorous Flying Squirrels
Po-Yu Liu   1,2,5, An-Chi Cheng2, Shiao-Wei Huang2, Hsiao-Pei Lu2,6, Tatsuo Oshida3, 
Wenhua Liu4 & Hon-Tsen Yu1,2 ✉

Thermal homeostasis of mammals is constrained by body-size scaling. Consequently, small mammals 
require considerable energy to maintain a high mass-specific metabolic rate (MSMR) and sustain target 
body temperature. In association with gut microbiota, mammalian hosts acquire absorbable molecules 
and fulfill their metabolic requirements. Our objective was to characterize gut microbes in wild 
mammals and relate those findings to host body-size scaling. Two large (Petaurista philippensis grandis 
and P. alborufus lena), one medium (Trogopterus xanthipes) and one small (Pteromys volans orii) species 
of flying squirrels (FS) were studied. Using 16S rRNA genes, 1,104 OTUs were detected from four FS, 
with 1.99% of OTUs shared among all FS. Although all FS gut microbiota were dominated by Firmicutes, 
they were constituted by different bacterial families. Moreover, Bacteroidetes accounted for up to 19% 
of gut microbiota in small FS, but was absent in large FS. Finally, based on metagenome predictions, 
carbohydrate and amino acid metabolism genes were enriched in small body-size FS. In conclusion, 
gut microbiota compositions and predictive metabolic functions were characteristic of body-size in FS, 
consistent with their adaptations to folivorous dietary niches.

Body size is a major factor in endothermic animals’ metabolism to promote survival. Mammals metabolize foods 
to generate enough heat to balance surface heat loss1. However, heat losses depend on the body surface area to vol-
ume ratio; this constraint is called body-size (allometric) scaling and considered “structural and functional conse-
quences of changes in size or scale among otherwise similar organisms”2. Basal metabolic rate (BMR) is the exponent 
of 3/4 or 2/3 of body mass (Kleiber’s law)3,4, whereas mass-specific metabolic rate (MSMR, in liters O2/kg/h)  
exponentially decreases as body mass increases (Fig. S1)2,4,5. Consequently, body size and energy metabolism 
fundamentally constrain the interaction between animals and their environment and determine their niche.

It remains unclear how small arboreal folivorous mammals maintain a high MSMR as they have small to 
moderate body sizes (~250 to 8200 g), due to both physical (habitat structures) and energetic (poor diet) limita-
tions of living in treetops6–8. With a plant-based diet comprised of 50 to 85% fiber and no endogenous enzymes 
to digest plant biomass, small arboreal folivorous mammals must address their MSMR through adapted digestive 
strategies9. There are two apparent solutions: 1) increased retention time of digesta in enlarged digestive chambers 
(e.g. cecum); and 2) assisted digestion from symbiotic gut microbes10. Mammals have suites of gut microbes to 
improve energy uptake11–13, enabling hosts to acquire absorbable molecules. For example, short-chain fatty acids 
(SCFAs) produced by gut microbes provide their hosts (e.g. sheep and cattle) with up to 70% of their caloric 
requirements14.

Variation of gut microbial composition is associated with hosts’ physiological circumstances, especially 
diet15,16. Diverse gut-microbial profiles converge according to dietary types of mammalian hosts13,17,18. Hosts 
acquire fitness within specific dietary niches that are reflected in variation in several dominant microbial taxa, 
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e.g. phyla Firmicutes, Bacteroidetes, Actinobacteria and Proteobacteria13,17–19. With these diversified symbionts, 
microbes colonizing mammalian gastrointestinal tracts may have adapted distinct functions. For example, gut 
microbiota of carnivores contain more genes for protein degradation, whereas those of herbivores have numerous 
genes for protein biosynthesis and plant fiber degradation18. Through cooperation with gut microbiota, herbivo-
rous hosts acquire absorbable nutrient molecules. Microbes not only release extracellular enzymes to break down 
polysaccharides and proteins, but also ferment SCFAs to provide energy for hosts20. Although cellulolytic gut 
microbes have been characterized (particularly from domesticated mammals), little is known about gut microbial 
diversity regarding wild mammals’ body-size scaling.

Leaf-eating flying squirrels are among the smallest arboreal mammals (range, 24 to 1500 g) and sustain a high 
metabolic rate (estimated as 0.41 to 1.82 liters O2/kg/h) despite a low-quality diet (i.e. tree leaves)21–23. Occupying 
specialized dietary niches in treetops, folivorous flying squirrels rely on symbiotic microbes in an enlarged 
cecum to degrade celluloses to meet energy demands20. To address scaling issues, we studied four species (from 
three genera) of folivorous flying squirrels, with body mass representing three size classes: 1) large (two spe-
cies), Petaurista philippensis grandis (PPG; ~1300 g) and P. alborufus lena (PAL; ~1500 g); 2) medium. Trogopterus 
xanthipes (TX; ~450 g); and 3) small, Pteromys volans orii (PVO; ~130 g)24–27. Mass-specific metabolic rates 
(MSMR) of mammals (measured by oxygen consumption) are well studied, i.e., the so-called mouse-elephant 
curve (Fig. S1). The curve is useful because we conducted field studies, making direct measurements for MSMR 
not feasible. For these species, MSMR were estimated as 0.42 (PPG), 0.40 (PAL), 0.59 (TX), and 0.90 (PVO) liters 
O2/kg/h, respectively (Fig. S1). The MSMR of small flying squirrels is more than double that of large species. 
Therefore, it was anticipated that small folivorous flying squirrels had very effective digestion-absorption strat-
egies. Lignocellulose, which constitutes the majority of plant biomass, is the major dietary component of these 
folivorous flying squirrels. Large flying squirrels (PPG and PAL) consume primarily leaves of broadleaf trees, 
accounting for up to 74.0% of their annual diet28,29. Captive TX in this study were fed natural diets, including 
leaves of Chinese arborvitae (Platycladus orientalis), pine nuts, and acorns30,31, whereas wild PVO consumed 
young leaves, buds, flowers, and seeds of Salix spp. and Picea spp.25.

Our objectives were to investigate differences in gut microbiota composition among folivorous flying squir-
rels of various sizes. We hypothesized that gut microbiota and microbial energy metabolism are constrained by 
body-size scaling and that gut microbial composition and functions reflect dietary niches of each flying squirrel 
species. Consequently, we elucidated gut microbial composition of the four folivorous flying squirrels in reference 
to their body mass by sequencing bacterial 16 S rRNA gene libraries from fecal samples. Thereafter, we predicted 
the metagenome and pathways of energy metabolism contributed by gut microbiota.

Materials and Methods
Animals and fecal sample collection.  Analysis of gut microbiota was done for four species of flying squir-
rels: Siberian Flying Squirrel (Pteromys volans orii, PVO; n = 19), Complex Toothed Flying Squirrel (Trogopterus 
xanthipes, TX; n = 4) and two species of Giant Flying Squirrels (Petaurista philippensis grandis, PPG; n = 3 and 
P. alborufus lena, PAL; n = 3). Fecal samples from PVO flying squirrels were collected during a mark-recapture 
study conducted from May to August in 2013 and 2014 at The University of Tokyo Hokkaido Forest in Furano 
City (Hokkaido, Japan). Permits for live trapping were approved by Hokkaido Government Kamikawa General 
Subprefecture Bureau (No. 45 in 2013 and No. 10 in 2014) and by The University of Tokyo Hokkaido Forest (No. 
A13-12 in 2013 and No. A14-07 in 2014). These samples were sequenced in our previous study32; sequence reads 
were retrieved from NCBI Sequence Read Archive database (accession numbers: SRX3793743- SRX3793761). 
Fecal samples of both PAL and PPG were collected from wild individuals in March 2013 and in March-April 2014 
at Wulai District, New Taipei City, Taiwan (collection permissions No. 1023228856 and No. 1022101678 were 
granted by the Government of New Taipei City and Forestry Bureau, Council of Agriculture, Executive Yuan 
in 2013 and 2014), in accordance with the Wildlife Conservation Act33. The TX squirrels were farmed animals 
(Supplementary Text) and fed Chinese arborvitae (Platycladus orientalis) leaves, pine nuts, acorns, etc. (Shangluo, 
Shaanxi Province, China)30,31 For these animals, fecal samples were collected from their cages in May, 2012 and 
immediately preserved in RNAlater® (Thermo Fisher Scientific, Carlsbad, CA, USA) for subsequent bacterial 
genomic DNA extraction. We did not retain live animals for any sampling. Feces of TX squirrels are used in folk 
medicine (see Supplementary Text).

DNA extraction, PCR, library preparation and sequencing.  Bacterial genomic DNA was extracted  
from fecal samples (~200 mg) using QIAamp Fast DNA Stool Mini kit (QIAGEN, Valencia, CA, USA), following  
pathogen detection protocols. The V3-V4 region of the bacterial 16 S rRNA gene was PCR-amplified using barcoded  
forward primers (XXXXXXCCTACGGGNGGCWGCAG) and reverse primers (XXXXXXGACTACHVGGG 
TATCTAATCC); 6-bp barcodes were indicated by XXXXXX. The PCR was performed under the following condi-
tions: 94 °C for 4 min, followed by 25 cycles of 94 °C for 30 s, 57 °C for 30 s and 72 °C for 30 s, with a final elongation  
step at 72 °C for 8 min. Amplified products of expected size (464 bp) were purified with QIAquick Gel Extraction 
Kit (QIAGEN) and DNA concentrations determined using Qubit® 3.0 Fluorometer (Invitrogen, San Diego, CA, 
USA). Three amplicon libraries were constructed by pooling 20 samples with equal amounts of DNA for each 
library. The 16 S rRNA gene amplicons were pair-ended sequenced (2 ×300 bp) with 1 Gb qualified outputs per 
library using an Illumina MiSeq platform at Yourgene Bioscience Company (Taiwan).

Sequence analysis.  Raw data acquired from the three libraries were processed according to the Amplicon 
SOP v2 of the Microbiome Helper workflow (https://github.com/mlangill/microbiome_helper)34. Paired-end reads  
were trimmed of barcodes with Cutadapt 1.8.135 (-g XXXXXX -G XXXXXX–discard-untrimmed; XXXXXX indicates  
6-bp barcodes). Trimmed sequence data were processed with QIIME 2 v. 2019.436. The ‘DADA2’ plugin embedded in  
QIIME2 were used to identify amplicon sequence variants (ASVs) from de-multiplexed sequence files (with 
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parameters:–p-trunc-len-f 270–p-trunc-len-r 210–p-max-ee 3)37. Then, taxonomy was assigned by the 
‘classify-sklearn’ function of ‘feature-classifier’ plugin with a Naïve Bayes Classifier trained on SILVA 132, using 
99% OTUs full-length sequences of 16 S rRNA genes38. In total, there were 277,256 qualified sequences repre-
senting 3,455 taxonomic features across the 29 samples (range, 959 to 33,265 reads). Due to over-classification of 
ASVs and unclear taxonomy assignment for wild animals’ microbiota, we re-clustered representative ASV fea-
tures in OTUs with 97% similarity using uclust v1.2.22q39 and re-assigned taxonomy with SILVA 123, using 97% 
OTUs full-length sequences of 16 S rRNA genes using blastn 2.6.0 + 40 with e-value 1e-5 and extracted best hit 
according to bitscore (using SILVA 123 database in order to further predict metagenome by Tax4Fun; see below). 
Finally, 1,104 OTUs were redefined by the alternative method. After fine-tuning for the ASV table, the 97% repre-
sentative sequences were aligned with MAFFT41 using the ‘alignment’ plugin and variable positions were masked 
with ‘mask’ function. A phylogenetic tree was built with the ‘Fasttree’ function42 in the ‘phylogeny’ plugin and 
then rooted with the ‘midpoint-root’ function.

Biodiversity and statistical analyses.  Microbial community analyses were conducted with R package 
vegan43. A Kruskal-Wallis test in R software44, with α=0.05, was used for all statistical analyses and Dunn’s test for 
post-hoc comparisons. To normalize sequencing output among samples, we rarefied the ASV/OTU table to 959 
reads per sample. Alpha diversity indices, Shannon index (H’) was calculated by ‘diversity’ function, species rich-
ness (S) was counted by ‘specnumber’ function and species evenness (J) was calculated by following formula 

= ′J H
Sln
, Faith’s phylogenetic diversity then was calculated by ‘pd’ function of picante package. For beta diversity, 

dissimilarities among microbial communities were measured by Bray-Curtis distance and conducted with prin-
cipal coordinates analysis (PCoA). PERMANOVA (permutational multivariate analysis of variance) with pair-
wise comparisons, ANOSIM (analysis of similarity)45 and ADONIS (permutational multivariate analysis of 
variance using distance matrices)46 were used to test heterogeneity of microbial communities among host 
species.

Network analysis for identifying co-occurrence microbial community members.  Network anal-
ysis of co-occurrence microbial community members was done with the R package igraph47. A co-occurrence 
matrix was constructed from the OTU table, according to SparCC correlation coefficients48 (≥0.3) between OTUs 
(calculated by ‘sparcc’ function of SpiecEasi R package49); these coefficients were also used for assessing length of 
edges on the network. The latter was conducted with the fast greedy modularity optimization algorithm50 to iden-
tify clusters in the network. Nodes with <5 connection degrees were removed from the network and hub nodes 
from each cluster were extracted for further community structure analyses.

Metagenome and functional prediction.  Tax4Fun51 was used to predict the metagenome, which was 
based on SILVA 123 16S database to evaluate potential functions of flying squirrels’ gut microbiota. An OTU 
table was used for predicting Kyoto Encyclopedia of Genes and Genomes (KEGG) Orthology (KO) relative abun-
dances and being categorized by KEGG pathways. The FTU (fraction taxonomic units unexplained) scores were 
evaluated for reliability of metagenome prediction (0.21 ± 0.09; Fig. S2). Metabolic pathway enrichment analysis 
was conducted with the R package gage52 (testing by ‘gage’ function to test metabolic pathway enrichment by 
comparing equal gene abundance distribution for within FS categories and by comparing mean gene abundance 
among FS categories; significant pathways were identified from one-tailed tests for up-regulation). The P values 
from multiple-testing were adjusted with false discovery rate (FDR), with a p-value adjusting function embed-
ded in the gage package; significances of enrichment analyses were defined by FDR q-value <0.05. Enrichment 
scores were calculated according to the gene-set enrichment analysis (GSEA) algorithm of DAVID bioinformatics 
resources53,54.

Results
Characterization of folivorous flying squirrel gut microbiota.  The Illumina MiSeq platform gener-
ated a total of 3,665,256 high quality paired-end sequences, with an expected sequence length of 464 bp and an 
average of 9,561 non-chimeric reads/sample, ranging from 959 to 33,265 reads/sample. The SILVA NR123 SSU 
rRNA database was applied to identify a total of 1,104 OTUs by re-clustering ASVs to 97%-identity OTUs. On 
average (mean ± SD), PVO had the most bacterial OTUs (111.47 ± 106.07), followed by TX (108.50 ± 56.01), 
PPG (107.00 ± 33.87), and PAL (76.67 ± 30.89). Overall, 1.99% of OTUs were shared by all four species, whereas 
2.72-55.1% of unique OTUs were present in each of the four species (Fig. S3A). Since the two species of Petaurista 
(PAL and PPG) shared a substantial proportion of OTUs (41.2%; 103 OTUs; Fig. S3B), a comparison was also 
done by combining the two Petaurista, resulting in 4.08% of OTUs shared in three genera and 12.3-55.1% unique 
OTUs present in each genus (Fig. S3C). The two species of large flying squirrels (Petaurista) were much more 
similar in gut microbiota than species of other genera, whereas PVO harbored more than four-fold unique OTUs 
compared to either of the other two genera.

Regarding relative abundance of all flying squirrel fecal microbiota (Fig. 1A), the most abundant micro-
bial phylum identified was Firmicutes (average 62.36-100%), accounting for ~95% of gut microbiota in the two 
host species of Petaurista (Fig. 2, Fig. S1). The next dominant phyla were Bacteroidetes (0-7.2% on average), 
Actinobacteria (2.16-4.46% on average) and Cyanobacteria (0.63-3.42% on average; Fig. 1B,C and Fig. S4). 
Interestingly, Bacteroidetes was absent in the two species of Petaurista, but accounted for 0-19.29% in PVO and 
0-0.52% in TX. It was noteworthy that from 1.21 (PVO) to 1.90% (TX) of OTUs were low confidently identified 
(<90% identity) in database and were suspected to be unknown prokaryotic species.

Additionally, a lower Bacteroidetes to Firmicutes ratio (B/F ratio) was regarded as obesity-related microbial 
biomarkers in laboratory models and human studies; in other words, the B/F ratio may reflect ability of energy 
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extraction via gut microbiota55,56. The B/F ratios of four FS were measured (Fig. 1D). All FS had extreme low B/F 
ratio (less than 1 and close to 0), although PVO had a slightly higher B/F ratio (maximum 0.29). The FS B/F ratios 
are compared to other folivorous mammals (with higher B/F ratios) in the Discussion.

Although gut microbiota of PVO was more diverse in phylum composition, there were no differences (species 
level) among all host species in Shannon’s diversity index (p=0.76, Kruskal-Wallis test), Margalef ’s species rich-
ness index (p=0.69), Pielou’s evenness index (p=0.95), or Faith’s phylogenetic diversity (p=0.97; Fig. 2). Further, 
we discussed host-specific order and lower levels of microbial composition by using co-occurrence network 
analysis (see below). A principal coordinates analysis (PCoA) (Fig. 3) presented gut microbial beta diversity 
among host species and had three clusters corresponding to three FS genera (PERMANOVA, pseudo-F=25.07, 
p=0.001).

Network analysis identifies distinction among microbiota at lower taxonomic 
level.  Co-occurrence network analysis was done in addition to PCoA, because it not only identified clus-
ters but also enabled visualization of taxa underlying distinctions among clusters (Fig. 4A). Clusters identi-
fied corresponded to the three genera in PCoA graph. Moreover, the network also identified centers (hubs) of 
core microbes at a finer taxonomic level. Taxonomy of the three clusters were profiled (Fig. 4B); all were dom-
inated by families Lachnospiraceae and Ruminococcaceae which belong to order Clostridiales (>80%). Both 
PVO and TX clusters contained Clostridiales vadinBB60 group in their core microbiota (0.74 and 10.74%, 
respectively). However, only PVO cluster included additional featured families Christensenellaceae (1.43%), 
Clostridiales Family XIII (0.64%), Elusimicrobiaceae (Elusimicrobia, 0.42%), and two families under Bacteroidales, 
Muribaculaceae (was named as S24-7, 8.29%) and Prevotellaceae (0.78%). Family Eggerthellaceae, which belongs 
to (Actinobacteria, Coriobacteriales), was common in all FS and accounted for 3.68, 5.6 and 1.7% in small (PVO), 
medium (TX), and large (PPG and PAL) FS, respectively. Family Coriobacteriales Incertae Sedis which also 
belongs to phylum Actinobacteria and uncultured Rhodospirillales (Proteobacteria) bacteria were detected in 
both large (Coriobacteriales: 0.75%, Rhodospirillales: 0.46%) and small (Coriobacteriales: 2.34%, Rhodospirillales: 
0.39%) FS. Conversely, Akkermansiaceae (Verrucomicrobia) was present in large (1.18%) and medium (3.08%) FS. 
Gastranaerophilales, which was named YS2, a non-photosynthetic Cyanobacteria, was present in small (1.39%) 
and medium (2.45%) FS.

We further identified hub OTUs of each cluster on the network according to node connectivity (third quantile 
or greater connection degrees within cluster; Fig. 4A). There were 33, 8, and 11 hub OTUs detected from PVO, 

Figure 1.  Relative abundance profiles of four folivorous flying squirrel species. (A) Phylum level relative 
abundance (%) barplots of gut microbiota from 29 FS individuals (19 PVO, 4 TX, 3 PPG, 3 PAL). Relative 
abundance of (B) Firmiutes and (C) Bacteroidetes grouped by four flying squirrel species. (D) Bacteroidetes to 
Firmicutes ratio of flying squirrel gut microbiota. PVO, Pteromys volans orii; TX, Trogopterus xanthipes; PPG, 
Petaurista philippensis grandis; PAL, Petaurista alborufus lena.
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TX, and PPG-PAL clusters, respectively. Although three clusters shared a large proportion of Lachnospiraceae and 
Ruminococcaceae at the family level, distinct genera and species served as key OTUs for discriminating micro-
bial compositions of FS hosts with varying body sizes. For example, genera Roseburia and Shuttleworthia were 
two core microbes of the PPG-PAL cluster, as was Ruminiclostridium of the TX cluster, the genera Roseburia, 
Acetitomaculum, Oscillibacter, Enterorhabdus, Moryella, Butyricicoccus, Coprococcus, Blautia, Acetitomaculum, 
Eubacterium nodatum related genera, and Lactonifactor longoviformis of the PVO cluster.

Folivorous flying squirrels’ gut microbiota harbored high energy producing potential and small 
flying squirrels’ microbiota enriched more diverse pathways.  Using Tax4Fun as a metagenome pre-
dictive exploratory tool, genes were categorized into KEGG Orthology metabolic pathways. All predicted KEGG 

Figure 2.  Alpha diversity indices of gut microbiota of four species of flying squirrels. (A) Margalef ’s species 
richness index, (B) Shannon’s diversity index, (C) Pielou’s evenness index, and (D) Faith’s phylogenetic diversity. 
None of the indices differed among the four taxa, based on a Kruskal-Wallis test (p=0.69 for Margalef ’s species 
richness index, p=0.76 for Shannon’s diversity index, p=0.95 for Peilou’s evenness index, and p=0.97 for Faith’s 
phylogenetic diversity). PVO, Pteromys volans orii; TX, Trogopterus xanthipes; PPG, Petaurista philippensis 
grandis; PAL, Petaurista alborufus lena.

Figure 3.  Principle coordinates analysis (PCoA) by Bray-Curtis distance metric of gut microbiota from four 
species of flying squirrels. Gut microbiota of flying squirrels are indicated by colors, Pteromys volans orii (PVO; 
purple), Trogopterus xanthipes (TX; blue), Petaurista philippensis grandis (PPG; red) and Petaurista alborufus 
lena (PAL; orange). Three distinct groups were distributed along the first two PCs. Shaded ellipses represented 
the 95% confidence intervals of FS groups. PERMANOVA, ANOSIM and ADONIS tests for the four host 
species differed (p=0.001, p=0.001, and p=0.004, respectively).
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Orthology (KOs) were mapped to 43 (“within” FS comparisons) and 94 (“between” FS comparisons) pathways 
among the 154 KEGG metabolic pathways. Each pathway was tested with gene-set enrichment by comparison 
to expected gene abundance within each FS category (“within” comparisons; Fig. 5A, Fig. S5, and Table S1) and 
mean gene abundance among FS categories (“between” comparisons; Fig. 5B–D and Table S1). There were 43 
microbial metabolic pathways enriched in any or all of the three FS categories through the “within” compari-
sons). The top 10 enriched pathways were mainly related to carbohydrate and amino acid metabolism (Fig. 5A), 
followed by nucleotide, glycan, cofactor-vitamin and lipid metabolism pathways, and phytochemical or xeno-
biotic degradation (Fig. S5). For the “between” FS comparisons, various carbohydrate metabolic pathways in 
the small-FS gut microbiota were more enriched than in medium or large FS, such as fructose and mannose 
metabolism (ko00051), pentose phosphate pathway (ko00030), starch and sucrose metabolism (ko00500), gly-
colysis / gluconeogenesis (ko00010), and amino sugar and nucleotide sugar metabolism (ko00520); in addition, 
methane metabolism (ko00680) was also enriched in the small-FS gut microbiota (Fig. 5B). A few carbohydrate 
and amino acid metabolic pathways were more significantly enriched in medium- versus large-FS gut microbiota, 
e.g. pyruvate metabolism (ko00620), carbon metabolism (ko01200), TCA cycle (ko00020), butanoate metabo-
lism (ko00650), prokaryotic carbon fixation (ko00720), and glycine, serine and threonine metabolism (ko00260) 

Figure 4.  Core gut microbiota composition of three genera of flying squirrels. (A) Correlation network of 
OTUs in four species of flying squirrels. SparCC correlation (≥0.3) identified sub-communities based on a fast 
greedy modularity optimization algorithm. Nodes on the network were clustered into three groups delimited 
by host genus and body sizes; purple nodes: PVO/small FS featured OTUs; blue nodes: TX/medium FS featured 
OTUs; red node: PPG and PAL/large FS featured OTUs. Nodes with labeling species, genus, and/or family 
taxonomy names were hub/central OTUs within clusters which were identified by connection degree> the 
third quantile within a cluster. (B) Gut microbiota phyla/order/family stacked relative abundance barplots of 
three clusters (corresponding to PVO, TX and PPG & PAL) based on the correlation network. The phyla and 
orders are shown on the y-axis and bars filled with various colors represent families belonging to corresponding 
phylum and order.
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(Fig. 5C). However, only porphyrin and chlorophyll metabolism (ko00860) – a cofactor /vitamin metabolic path-
way– was significantly enriched in the large-FS gut microbiota compared to both smaller flying squirrels’; and 
starch and sucrose metabolism was the only significant pathway of the large-FS gut microbiota that was enriched 
compared to medium FS.

Discussion
Strictly folivorous mammals may rely on gut microbiota to maintain a mass-specific metabolic 
rate.  Folivorous mammals consume leaves with low nutrient content and have specific ecological niches and 
physiological adaptations21,22. Symbiotic gut microbiota likely have important roles to support ecological and 
evolutionary adaptations16. As small endothermic mammals have larger body surface area (BSA) to mass ratio, 
they consume energy to compensate heat loss at a faster rate than larger endothermic mammals in a resting con-
dition. Furthermore, strictly folivorous arboreal mammals have a lower limit of body mass of ~1 kg57. Therefore, 
to maintain high MSMR, small leaf-eating mammals must rely either on a diet of high-nutrient content, or on 
a high digestion-absorption rate assisted by gut microbiota4,57. Our study contributed to understanding distinct 
gut microbiomes associated with folivorous FS of various body sizes, i.e., two large (PAL and PPG), one medium 
(TX), and one small FS (PVO), which reflect host’s diet niche and metabolic efficiency. Although distinction 
of FS gut microbial compositions may have been confounded by factors inherent to the hosts (e.g. taxonomy, 
physiology) or by environmental factors (e.g. diet, geographical distribution), this study was valid and valuable in 
terms of all sub-tribe Pteromyina flying squirrels (Sciuridae, Brandt, 1855) based on Kleiber’s law3 (i.e. body-size 
scaling).

Flying squirrels with distinct body sizes and dietary niches had distinct gut microbi-
ota.  Nineteen (1.99%) gut microbial OTUs were shared among all four species of FS, whereas 54-103 (7.9-
41.2%) OTUs were shared between any two FS species (Fig. S3). We re-analyzed data of Muegge et al. (2008) of 
six herbivorous hindgut fermenters housed in US zoos (two zebras, African elephant, two black rhinos, African 
wild ass, orangutan, and rabbit). There were 478 OTUs identified, but no OTUs shared among these divergent 
species. In contrast, four FS in this study are phylogenetic kin. Despite geographic disparity, they occupy similar 
ecological niches – inhabiting treetops and consuming leaf-based diets. The two large FS (PPG and PAL) with 
comparable body sizes harbored gut microbiota with similar composition (42.2%), whereas the medium-small FS 
in our study with discrete ranges of body sizes harbored distinct gut microbiota (Fig. 3). In the two large FS, the 
majority (95%) of gut microbiota were composed of the phylum Firmicutes with two dominant families, namely 
Lachnospiraceae (52.52%) and Ruminococcaceae (40.62%) (Fig. 4). Both of these families are common in mam-
malian guts, especially highly abundant in herbivores, due to their ability to degrade complex polysaccharides 
to SCFAs58–60. In contrast, in medium and small FS, Firmicutes (Lachnospiraceae, 46.27% and Ruminococcaceae, 
32.79%) comprised only ~70% of gut microbiota. Based on a genomic comparison study, both of these two dom-
inant bacterial families are common in gut environments and have similar fibrolytic functions61.

Figure 5.  Enrichment analysis for predictive KEGG metabolic pathways of “within” and “between” flying 
squirrels’ gut microbiota. (A) Top 10 of “within” FS comparisons of KEGG metabolic pathways. All 43 
significantly enriched pathways are shown in Fig. S5. (B–D) The “between” FS comparisons of KEGG 
metabolic pathways; (B) The enriched metabolic pathways of small FS by comparisons to medium and large 
FS, respectively; (C) medium FS by comparison to small and large FS; (D) large FS by comparison to small and 
medium FS. The dash lines indicate that the FDR q-value = 0.05. PVO, Pteromys volans orii; TX, Trogopterus 
xanthipes; PAL, Petaurista alborufus lena; PPG, Petaurista philippensis grandis.
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In addition, two minor Firmicutes (Christensenellaceae, 1.95% and Clostridiales vadinBB60, 2.78%) were also 
enriched in medium and small FS. It was reported that Christensenellaceae was significantly enriched in humans 
with a lean body mass index (BMI; < 25)62; however, Clostridiales vadinBB60 was enriched but Christensenellaceae 
was decreased in mice on a high-fat diet63. Based on our findings and previous studies, that Clostridiales vad-
inBB60 were enriched in medium-small FS implied that TX’s and PVO’s lipid-rich diet (pine nuts and seeds; see 
Introduction) in either captive or wild environments and that Christensenellaceae were more abundant in lean 
animals was consistent with greater heat losses in smaller body size FS.

There were up to 19.3% phylum Bacteroidetes in gut microbiomes of PVO. The Bacteroidetes family 
Muribaculaceae (was known as S24-7), accounting for ~8.3% of core microbiota in PVO, is a common bacte-
rial family in herbivore gastrointestinal tracts; it has high potential for degradation of plant glycans and can be 
enriched by high-fat diets in laboratory mice64–69. Presumably, Muribaculaceae partially replaced the function of 
Firmicutes for cellulose degradation and may have promoted lipid absorption in gut microbiomes of TX and PVO 
that ate seeds with high lipid content25,29–31,70.

It is noteworthy that some bias may have occurred while assessing gut microbial composition in this study 
(also see Limitations and perspectives below). The four species of FS in this study are naturally distributed in 
disparate geographical regions of Asia (China, Japan, and Taiwan), and adapted to local environments, e.g. cli-
mate, phenology and different plant-source diet, which may also affect their gut microbial composition. Despite 
sampling bias and study design limitations, we tried to explore body-size issue of host-microbe interactions based 
on comparative physiology (Kleiber’s law). We limited research targets to four FS that shared largely evolutionary 
and ecological niches: shared common ancestors, adapted leaf-based diets and inhabited treetops.

Bacteroidetes/Firmicutes ratio may be related to gut microbiota and host metabolism relation-
ships.  Regarding the Bacteroidetes to Firmicutes ratio of gut microbiota, increased Firmicutes was associated 
with obesity in a laboratory mouse model and humans55,56,71; however, wild animals, especially herbivorous mam-
mals, harbor much more Firmicutes than Bacteroidetes72–74. For strictly leaf-based diet cases, folivorous mam-
mals can be either foregut- or hindgut-fermenters, with distinct strategies to degrade a high-fiber diet9, thereby 
contributing to unique gut microbial communities. In the present study, as hindgut-fermenters, folivorous flying 
squirrels had a lower (0-0.29 in PVO; 0-19.3% of Bacteroidetes versus 62.4-100% of Firmicutes) or even zero 
(absence of Bacteroidetes in all large FS) ratio of Bacteroidetes/Firmicutes in their gut microbiota, in contrast to 
non-ruminant foregut-fermentative folivores (e.g. 23.2-88.4% of Bacteroidetes versus 10.2-51.79% of Firmicutes in 
Colobus monkey and langur; re-analyzed data from Ley et al. 2008)13,75,76. Other hindgut-fermentative folivores 
also had a low Bacteroidetes/Firmicutes ratio in their gut microbiota, e.g., 13.3% of Bacteroidetes versus 68.4% 
of Firmicutes in black Howler Monkey (Alouatta pigra)77. Taken together, we inferred that folivorous mammals 
independently acquired their own unique gut microbiota in response to distinct digestive strategies, i.e., foregut- 
or hindgut-fermentation13.

Gut microbiota drive biomass conversions of leaf-based diets.  Mammals have a variety of diets that 
create taxonomic and functional diversities of gut microbiota13,18. Variations in gut microbiota affect multiple 
aspects of host physiology14, especially adaptation for extracting energy from various types of feed16. Muegge et al. 
(2011) indicated that convergence of mammalian gut microbiota is related to dietary type instead of host phylog-
eny. However, there are few studies on variation in gut microbiota in relation to host body size and metabolic rate. 
In this study, we focused on gut microbiota of strictly folivorous, small mammals for two reasons: 1) leaf-based 
food sources, with a high fiber content, are expected to supply marginal nutrients; and 2) small mammals usually 
need to maintain a higher MSMR. Thus, we were also interested in gut-microbiota aided metabolic pathways of 
energy extraction from low-quality diets.

In previous studies, gut microbiota of two folivorous mammals (Yunnan Snub-Nosed Monkey Rhinopithecus 
bieti, foregut fermenter and Petaurista alborufus lena, hindgut fermenter) were enriched with carbohydrate 
metabolic pathway genes, the second most abundant orthologues after those involved in protein/amino acid 
metabolism73,78. With a high diversity of glycoside hydrolases (GHs), folivores can degrade a variety of lignocel-
lulosic biomass from leaf-based diets. Valid microbes harbored in Rhinopithecus bieti were phyla Bacteroidetes 
(Bacteroides vulgates, and B. fragilis), Fibrobacteres (Fibrobacter succinogenes), and Spirochaetes, whereas P. alboru-
fus lena had predominately Firmicutes73,78.

For this study, we predicted gut metagenomes of four species of folivorous flying squirrels. Irrespective of body 
size, carbohydrate and amino acid metabolism were potentially enriched in metabolic pathways. Gut microbiota 
harboring more energy-producing genes may have been due to high energy demand of small body-size mammals 
(i.e. PVO). The medium FS (TX), with three-fold higher estimated MSMR than large FS, had energy-producing 
enriched in microbiota, although the difference was not significant. Conversely, large FS microbiota were com-
posed of>90% of Firmicutes bacteria (mainly from families Lachnospiraceae and Ruminococcaceae), which might 
harbor most energy-producing genes of whole large FS microbiome. Despite decreasing Firmicutes in medium 
and small FS microbiota, there were other sub-dominant phyla such as Bacteroidetes (Families Bacteroidaceae, 
Prevotellaceae, Muribaculaceae/S24-7), Cyanobacteria (Order Gastranaerophilales/YS2), Proteobacteria, and 
Verrucomicrobia (Family Akkermansiaceae) that may have complemented energy-producing functions or 
replaced Firmitutes’ ecological roles in the gut.

In addition, as mentioned above, our metagenome prediction was consistent with previous studies that amino 
acid biosynthesis genes are the most abundant orthologues in herbivorous mammalian gut microbiota18,73,78. 
However, herbivorous diets may provide limited protein intakes and incomplete essential amino acid compo-
sition. Like most small hindgut fermenters, a digestive strategy perhaps used by folivorous flying squirrels is 
coprophagy (also known as cecotrophy). Many small mammals (most are rodents and rabbits) with plant-based, 
low-protein diets acquire nitrogen through coprophagy, which provides energy and increases protein uptake9,79. 
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Nitrogen sources are mostly converted to amino acids by cecal microbes of small hindgut fermenters. Coprophagy 
by flying squirrels occurs in the wild (personal, unpublished observations). Moreover, based on metabolic func-
tion predictions, amino-acid-related genes were relatively complete in the gut microbiota of flying squirrels 
Therefore, we inferred that folivorous flying squirrels obtain essential nutrients (products of microbial metabo-
lism) through coprophagy, similar to other small hindgut fermenters.

To cope with both poor diet and rapid heat-loses, arboreal folivorous flying squirrels adapted by nurturing 
suitable microbes in their enlarged ceca. Our findings provided insights regarding comparative physiology of 
thermal regulation would supported by adaptations of gut microbiota. We demonstrated that gut microbiota 
compositions were closely linked to differences in body sizes/MSMR in folivorous flying squirrels. In particu-
lar, microbial gene counts of metabolic pathways were also associated with body-size scaling of flying squirrels. 
Estimated high MSMR in small flying squirrels (PVO) would demand greater potential to extract energy by 
“co-operation” with gut microbiota. In addition, understanding adaptation of leaf-based dietary niche of fly-
ing squirrels may elucidate how microbial assistance enables these animals to function on low-quality diets. 
Large flying squirrels mutualizing with>90% cellulolytic microbes (Firmicutes) was consistent with their strictly 
leaf-based diet. In contrast, small flying squirrels harbored additional versatile phyla capable of cellulolytic activ-
ity as well as utilizing a high-lipid diet (e.g. Eggerthellaceae80). These results were consistent with the observation 
that a dietary adaptation of small flying squirrels is supplementing their leaf consumption with increased seed 
intake29. Further studies are required to characterize how dietary variations affect composition and function of 
gut microbiota.

Limitations and perspectives.  Although our study revealed interesting aspects of mammalian gut micro-
bial symbionts regarding their diversities and metabolic potentials from the perspective of hosts’ body-weight 
scaling, results were preliminary and must be interpreted with precaution because our study remained largely 
exploratory in nature. First, more animals of each species involved could have been included and replicate species 
(at least two) of comparable sizes added, especially for medium and small body size, preferably from one locality 
with more uniform diets, either complete natural diet or one artificial diet. These measures would have prevented 
the compounding effects caused by geographical and diet heterogeneity which our current data cannot overcome. 
Second, some experimental approach must be drawn into the future study design, such as using species of small 
and large flying squirrels and applying some control of animals’ genetic backgrounds by using animals of the 
same or similar mitochondrial haplotypes (a commonly used genetic marker for studying wild animals). Finally, 
the resolution power of the prediction on metabolic pathway, although widely employed, is yet to be confirmed. 
It would be desirable to examine expression levels of a suite of enzymes that are relevant to energy production 
linked to gut microbial contributions.

Data availability
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