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Re-estimation improved the 
performance of two Framingham 
cardiovascular risk equations and 
the Pooled Cohort equations:  
A nationwide registry analysis
Christine Wallisch1, Georg Heinze1, Christoph Rinner2, Gerald Mundigler3, 
Wolfgang C. Winkelmayer4 & Daniela Dunkler1 ✉

Equations predicting the risk of occurrence of cardiovascular disease (CVD) are used in primary care to 
identify high-risk individuals among the general population. To improve the predictive performance 
of such equations, we updated the Framingham general CVD 1991 and 2008 equations and the Pooled 
Cohort equations for atherosclerotic CVD within five years in a contemporary cohort of individuals who 
participated in the Austrian health-screening program from 2009–2014. The cohort comprised 1.7 M 
individuals aged 30–79 without documented CVD history. CVD was defined by hospitalization or death 
from cardiovascular cause. Using baseline and follow-up data, we recalibrated and re-estimated the 
equations. We evaluated the gain in discrimination and calibration and assessed explained variation. 
A five-year general CVD risk of 4.61% was observed. As expected, discrimination c-statistics increased 
only slightly and ranged from 0.73–0.79. The two original Framingham equations overestimated the 
CVD risk, whereas the original Pooled Cohort equations underestimated it. Re-estimation improved 
calibration of all equations adequately, especially for high-risk individuals. Half of the individuals were 
reclassified into another risk category using the re-estimated equations. Predictors in the re-estimated 
Framingham equations explained 7.37% of the variation, whereas the Pooled Cohort equations 
explained 5.81%. Age was the most important predictor.

Cardiovascular disease (CVD) remains the leading cause of morbidity and death in developed countries. CVD 
strongly relates to life-style and other potentially modifiable risk factors, but atherosclerosis, usually the under-
lying pathology, progresses over many years without symptoms. CVD risk equations are used in primary care 
to identify high-risk individuals. However, an abundance of CVD equations already exists; e.g., in a systematic 
review Damen et al. found 363 CVD equations for the general population1.

Consequently, instead of developing new equations, research should utilize available evidence by focusing 
on validation and updating of promising, existing equations1,2. External validation is conducted often for CVD 
equations3–5, but updating studies are less frequent6–8. External validation studies often show severe under- or 
overprediction as the incidence of the outcome and the distributions of risk factors differ across populations9,10. 
Generally, risk equations will overestimate risk if applied to a lower risk population, and underestimate it if 
applied to a higher risk population. Damen et al. also confirmed the need for updating of equations as miscali-
bration varies across settings11.

We externally validated three well-known CVD equations—the 1991 and 2008 Framingham general CVD 
equations (FR1991 and FR2008 equations) and the Pooled Cohort (PC) equation for atherosclerotic CVD 
(ASCVD)—for occurrence of (AS)CVD within five years in a large contemporary cohort of 1.7 M participants 
of the Austrian health-screening program12–16. This program offers a yearly, standardized and free-of-charge 
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preventive health-screening to Austrian residents, a country with mandatory and near-universal health care cov-
erage17. During a health-screening, the risk of an non-fatal or fatal CVD event in the next five years is predicted 
for each participant using the New Zealand Risk Scale and the American Heart Association Risk Calculator18,19. 
The SCORE equation focusing only on CVD death is not considered, as the combined endpoint of non-fatal and 
fatal CVD is more relevant for individuals in this setting20.

In the Austrian study cohort, we found that both Framingham equations slightly overestimated the five-year 
risk, but underestimated the risk of individuals older than 65 years, whereas the PC equations systematically 
underestimated the five-year risk. Consequently, to improve the predictive performance of these equations in the 
Austrian and similar populations, we sought to update these equations utilizing contemporary data of a nation-
wide registry.

Methods
Updating of risk equations.  Equations are updated by enhancing information from the development 
cohorts captured in the original equations with information from a new cohort. In the present study, updat-
ing is achieved by recalibration and re-estimation21,22. A recalibrated equation corrects ‘calibration-in-the-large’, 
which means aligning the mean predicted probability to the observed outcome frequency in the new cohort. 
Re-estimation refers to the updating of the original regression coefficients with new data to adjust the equation to 
local and contemporary circumstances. More extensive updating methods are often not required11.

Evaluated risk equations.  The FR1991 equation is the best known CVD prediction tool for combined 
non-fatal and fatal CVD. The small development cohort had a high background CVD risk, and was mostly 
untreated as was standard of care in the late 1960s (the time of study entry). The FR2008 equation is an update of 
the 1991 equation based on an extended cohort. In the Framingham equations, CVD is defined as coronary heart 
disease (coronary death, myocardial infarction, coronary insufficiency, angina), cerebrovascular events (ischemic 
stroke, hemorrhagic stroke, transient ischemic attack), peripheral artery disease (intermittent claudication), and 
heart failure. The PC equations were derived from pooled US cohorts and focus on ASCVD, defined as nonfatal 
myocardial infarction or coronary heart disease death, or stroke. We applied the PC equations for non-Hispanic 
whites. Only traditional CVD risk factors are used in these equations comprising sex, age, blood pressure (BP), 
cholesterol, diabetes, and smoking.

The Austrian health-screening program.  Around 13% of the relevant population participates in the 
preventive health-screening program every year (e.g., 2011: n = 884,589, 12.8%)23. On average, people attend a 
health-screening every three years, which means that more than one third of the screening population is reached. 
A main goal of the program is the reduction of the incidence and mortality of CVD. During a health-screening, 
the absolute 5-year CVD risk is assessed using risk tables18,19; for participants up to 39 years the AHA risk calcula-
tor resulting in three risk categories and for older participants the New Zealand risk scale leading to four risk cat-
egories are currently applied. Clinically determined high-risk factors like diabetes (for the AHA risk calculator) 
and CVD in the family anamnesis (for the New Zealand Risk Scale) are additionally taken into consideration. The 
risk tables are shown to and discussed with the participants to explain the individual risk profile and to educate on 
important risk factors. Depending on the assessed risk, medical practioners may recommend and initiate various 
preventive interventions outlined in the guidelines of the program23,24.

Study population.  A pseudonymized database was provided by the Main Association of the Austrian Social 
Security Institutions containing all preventive health-screenings in Austria. A description of the data preparation 
can be found in Supplementary Methods S1. The database included information on hospitalizations (1/2008-
3/2015), health-screenings (1/2009-3/2014), and causes of death (1/2009-3/2015). At health-screenings, general 
practioners collected standardized information on individuals, e.g., demographics, laboratory values, BP and 
related medication, smoking status, and comorbidities like diabetes. Missing values were very rarely observed 
(Fig. 1). To ascertain CVD outcomes, information on hospitalizations, and primary causes of death classi-
fied according to the 9th or 10th revision of the International Classification of Diseases (ICD) were used. As 
the definitions of CVD differ slightly between the investigated equations, different ICD-codes were required 
(Supplementary Tables S2a-c). Causes of death were obtained by linkage with the registry of deaths from Statistik 
Austria, the Austrian Federal Institute for Statistics. For 10.3% of the combined outcome a probabilistic assign-
ment of CVD/non-CVD-related death was applied (Supplementary Methods S1). Individuals were followed-up 
until the date of their first CVD-related hospitalization, the date of fatal CVD, or 3/15/2015, whatever occurred 
first.

While the equations were developed for a time horizon of ten years, we mainly focused on five-year risk 
because of data availability. However, assuming a constant hazard, the predicted five-year risk can be used to 
approximate a risk prediction for ten years (for details see Supplementary Fig. 1). The five-year risk is roughly half 
the ten-year risk (for ten-year risk up to 20%). Considering constant hazards is the most plausible assumption 
given that the observational period did not start with an intervention such as a surgery or diagnosis of a disease. 
The plots of the hazard for (AS-)CVD in Supplementary Fig. 1 confirm that the assumption of constant hazards is 
approximately fulfilled for the first five years. For the FR1991 equation, the five and ten-year risk can be directly 
estimated. For the original FR2008 equation, we assumed a constant hazard to approximate the five-year baseline 
survival function, and for the PC equations, the five-year baseline survival was described in Muntner et al.4. In 
the FR1991 equation, we did not consider an indicator for left ventricular hypertrophy, which has a very low 
prevalence (0.8%)25, as in the New Zealand Risk Scale19. The final study cohort comprised 1,684,012 individuals 
between 30 and 79 years at their first health-screening without documented CVD (in a time window of one year 
prior to the health-screening), and with a potential follow-up of at least one year. Statin therapy at the time of 
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the health-screening was not considered. This is fully consistent with the evaluated risk equations, which did 
not consider statin use as an inclusion/exclusion criterion or a candidate variable. This cohort was randomly 
split into a training (66.7%, n = 1,122,632) and a test set (33.3%, n = 561,380) for split-sample validation, the 
recommended validation method for a data-rich situation26. The inclusion/exclusion criteria of the equations 
differ slightly regarding age limits and pre-existing diseases (Supplementary Tables S2a–c). Therefore, appropriate 
subsets of the final cohort were used for each equation. The study was approved by the ethics committee of the 
Medical University of Vienna (no. 1232/2014).

Statistical analysis.  Continuous variables were summarized using median and interquartile range (IQR); 
for categorical variables absolute frequencies and percentages were used. Mean linear predictors were compared 
between the study and the development cohorts to investigate their overall relatedness, i.e., the similarity in over-
all predicted outcome frequencies27. The equations were updated; each equation was recalibrated by re-shifting 
the baseline risk and re-estimated2. The FR1991 equation, which is a parametric Weibull accelerated failure time 
model with varying location and dispersion, could only be re-estimated.

First, the training set was used to recalibrate and re-estimate the equations. Second, in the independent test 
set performance of the recalibrated and the re-estimated equations was evaluated and compared with results 
from the original equations. Hence, all results except the recalibrated and re-estimated regression coeffi-
cients were derived from the test set. The performance of the original, the recalibrated and the re-estimated 
equations was assessed by evaluating discrimination using c-statistics28, and calibration examining calibra-
tion slope, calibration-in-the-large, and calibration plots. The calibration slope is the regression coefficient 
of a univariable model with CVD as outcome and the centered linear predictor as the independent variable. 
Calibration-in-the-large is the difference of the mean predicted risk and the observed cumulative incidence. 
Calibration plots display probabilities as predicted by the equations and the corresponding observed cumulative 
incidences for deciles of predicted probabilities. For re-estimated equations, explained variation of different pre-
dictors was assessed29. 95%-confidence intervals for c-statistics and explained variation were estimated from 1000 
bootstrap samples with the percentile method. Additionally, the performance of the equations in high-risk groups 
encompassing the elderly, individuals with diabetes or hypertension at baseline were examined. Risk reclassifica-
tions tables were obtained to highlight movement of participants between risk categories. To investigate the gen-
eralizability of the study cohort to the general Austrian population, data from the latest Austrian Health Interview 
Survey (2014)30, a representative Austrian-wide survey, were used. Re-estimated regression coefficients, baseline 
survival and mean linear predictors can be found in Supplementary Tables S2a–c.

Figure 1.  Flow-chart deriving the training and test set. At the bottom, Kaplan-Meier plots for the time to a first 
(atherosclerotic-) cardiovascular disease for the evaluated equations in the training and the test set are shown. 
aIndividuals with inconsistencies in repeated health-screenings (sex, date of birth, or death) were excluded.
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Results
Baseline characteristics.  Baseline characteristics of 1,684,012 individuals in the study cohort are detailed 
in Table 1. Individuals in the training set (n = 1,122,632) had almost identical baseline characteristics to indi-
viduals in the test set (Supplementary Table S3). The median age was 50 (IQR 41, 62) with 53.8% being female. 
Women reached more frequently recommended target values in high-density lipoprotein (HDL) cholesterol, 
had lower systolic BP, smoked less, and had a lower prevalence of diabetes. CVD risk is primarily assessed in 
individuals who attend health-screenings, matching this study cohort. Nonetheless, we wondered if equations 
updated with information from this cohort may also be applicable to the general Austrian population. First, our 
study cohort included participants from all Austrian provinces and represented 32.5% (n = 8,388,534; 2011) of 
all Austrian inhabitants between 30 and 79 years. Second, comparing baseline characteristics of this cohort to 
the latest Austrian Health Interview Survey showed that characteristics of individuals attending health-screen-
ings are representative of the general population regarding the distribution of sex, smoking habits, and dia-
betes (Supplementary Table S4). However, in the study cohort women older than 70 were underrepresented, 
and especially individuals older than 60 had a slightly better five-year overall survival compared to the general 
population31.

Compared to the development cohorts of the two Framingham equations, individuals in this study cohort had 
comparable risk factor distributions, thus, also mean linear predictors were similar (Supplementary Table S2a–c). 
Only the proportion of smokers was lower in the study cohort than in the Framingham cohorts.

CVD and ASCVD outcome.  While we observed a five-year general CVD risk of 4.58% and 4.63% according 
to the FR1991 and FR2008 CVD definitions; the five-year ASCVD risk was 5.69%. Men had a considerably higher 
five-year CVD and ASCVD risk (Table 1). Median follow-up time for the Framingham equations was 4.00 years 
(IQR 2.66, 5.00), and for the PC equations it was 4.08 years (2.75, 5.00).

Updating changed some regression coefficients.  The standardized re-estimated regression coefficients 
differed, sometimes considerably, from the original coefficients in all predictors and equations (Fig. 2). The dif-
ferences reached statistical significance (also due to the large sample size) in all predictors and equations. In the 
Framingham equations the impact of age increased strongly. The impact of sex, and the pairwise interaction with 
age became less important in the FR1991 equation, whereas the effect of treated BP was reduced in the FR2008 
equation. The impact of other predictors remained stable in both equations. In the PC equations a decreased 
effect of all predictors was observed. The reductions were most pronounced in the effect of age for women and in 
the effect of smoking for women and men.

Updating slightly improved discrimination.  By re-estimating the equations, c-statistics increased 
slightly in the study cohort (mean change 0.01; Table 2). In the re-estimated equations, c-statistics were between 
0.725 and 0.787, with the two Framingham equations reaching higher c-statistics compared to the PC equations. 
Equations always achieved higher c-statistics for women (mean 0.778) than for men (mean 0.750).

Updating enhanced the agreement of observed and predicted risk.  Calibration plots for the 
five-year risk, as shown in Fig. 3, visualize the agreement between observed cumulative incidences and pre-
dicted probabilities. In the study cohort, the best calibration of the original equations was achieved by the FR1991 

Baseline characteristics
Women (n = 905,806, 
53.8%)

Men (n = 778,206, 
46.2%)

Age, median (IQR), years 50 (41, 62) 50 (41, 61)

Total cholesterol, median (IQR), mmol/L 5.40 (4.73, 6.15) 5.35 (4.65, 6.08)

HDL cholesterol (mmol/L), median (IQR), mmol/L 1.60 (1.34, 1.91) 1.27 (1.06, 1.53)

Cholesterol ratio (total/HDL cholesterol), median 
(IQR), mmol/L 3.3 (2.7, 4.1) 4.2 (3.4, 5.1)

Systolic BP (mmHg), median (IQR), mmol/L 125 (115, 140) 130 (120, 141)

BP treatment, no. (%) 127,529 (14.1) 119,239 (15.3)

Smoking, no. (%) 182,808 (20.2) 187,896 (24.1)

Diabetes, no. (%) 40,293 (4.5) 48,910 (6.3)

Observed five-year riska in % for CVD as defined by

Framingham 1991 CVD (56,380 events)b 3.29 6.17

Framingham 2008 CVD (55,078 events)b 3.31 6.25

Pooled Cohort ASCVD equations (60,219 events) 4.32 7.49

Table 1.  Baseline characteristics of 1,684,012 individuals in the study cohort. Abbreviations: ASCVD, 
atherosclerotic cardiovascular disease; BP, blood pressure; CVD, cardiovascular disease; HDL, high density 
lipoprotein, IQR, interquartile range. aKaplan-Meier estimate. bThe two Framingham equations have slightly 
different inclusion/exclusion criteria (see Supplementary Table S2a,b). Individuals attending health-screenings 
between 1/2009 and 3/2014, aged 30 to 79, without a history of CVD, and their observed five-year general and 
atherosclerotic CVD risk. Baseline characteristics of individuals in the training set (n = 1,122,632) compared to 
individuals in the test set (n = 561,380) are almost identical (Supplementary Table S3).
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equation. Especially for individuals with higher predicted probabilities, re-estimation improved calibration for 
this equation. The original FR2008 equation overestimated the observed cumulative incidence of CVD especially 
for men. Updating improved its calibration as for the FR1991 equation. Applying the original PC equations led to 
considerable underestimation, also for individuals with low predicted probabilities. However, recalibration and 
especially re-estimation improved the equation reaching almost perfect calibration.

After updating all estimates of calibration-in-the-large were within 0.2 percentage points of the optimal value 
zero (Supplementary Table S5). Calibration slopes were already very good for the original Framingham equations 
reaching the optimal value of one. However, for the PC equations re-estimation improved the calibration slope.

Re-estimation improved the agreement of the predicted five-year (AS)CVD risk with the observed cumu-
lative incidence rate across different ages (Fig. 4). For the original Framingham equations for individuals up to 
65 years, the predicted risk corresponded to the observed incidence, but for older women the risk was underes-
timated. By re-estimating the equations, this underestimation was mostly removed. The original PC equations 

Figure 2.  Forest-plot comparing standardized re-estimated (R) to standardized original (O) regression 
coefficients. Note, the different scale of standardized regression coefficients in the last panel. a’ln(age)’ represents 
the natural logarithm of age; ‘ln(age)*sex’ is a pair-wise interaction of ln(age) with sex. bThe equation for men 
does not include a term for ‘ln(age)*ln(age)’.

Equation

Framingham 1991 CVD equation Framingham 2008 CVD equation Pooled Cohort ASCVD equations

C-statistic (95%-confidence interval)

women men women men women men

original 0.769 (0.764, 0.774) 0.755 (0.751, 0.759) 0.768 (0.762, 0.772) 0.759 (0.755, 0.763) 0.776 (0.771, 0.781) 0.715 (0.711, 0.720)

re-estimated 0.784 (0.780, 0.789) 0.770 (0.766, 0.774) 0.787 (0.782, 0.792) 0.773 (0.768, 0.776) 0.782 (0.777, 0.787) 0.725 (0.721, 0.729)

difference 0.016 (0.014, 0.018) 0.015 (0.013, 0.017) 0.020 (0.017, 0.022) 0.014 (0.012, 0.016) 0.005 (0.004, 0.006) 0.010 (0.009, 0.011)

Predictors
Explained variation (in % and 95%-confidence interval)

all women men women men

All 7.424 (6.139, 8.790) 7.727 (5.671, 9.886) 6.971 (5.461, 8.501) 6.919 (4.258, 12.258) 4.697 (3.152, 6.233)

Age 5.645 (5.368, 5.915) 3.323 (2.954, 3.638) 5.446 (5.050, 5.799) 6.638 (3.912, 6.910) 4.012 (3.711, 4.326)

Sex 0.517 (0.436, 0.604) — — — —

Diabetes 0.399 (0.339, 0.459) 0.162 (0.098, 0.227) 0.262 (0.199, 0.326) 0.289 (0.121, 0.333) 0.141 (0.089, 0.189)

Cholesterola 0.237 (0.190, 0.289) 0.299 (0.207, 0.389) 0.218 (0.153,0.285) 0.436 (0.237, 0.505) 0.175 (0.119, 0.231)

Smoking 0.214 (0.150, 0.279) 0.099 (0.007, 0.191) 0.274 (0.175, 0.363) 0.004 (−0.037, 0.069) 0.070 (0.008, 0.134)

Systolic BPb 0.021 (−0.020, 0.064) 0.243 (0.154, 0.333) 0.463 (0.388, 0.542) 0.416 (0.211, 0.471) 0.394 (0.326, 0.457)

Table 2.  C-statistics and explained variation for the five-year risk. Recalibrating an equation by updating the 
baseline risk does not change the original c-statistic. Explained variation is obtained from the re-estimated 
risk equations. For the Framingham 1991 CVD equation explained variation is estimated for all individuals, as 
women and men are modelled in one equation. Abbreviations: ASCVD, atherosclerotic cardiovascular disease; 
BP, blood pressure; CVD, cardiovascular disease. aDepending on the equation, the predictor cholesterol may 
include total and HDL cholesterol, and all interactions with these variables. For example, the PC equations 
include ln(total cholesterol), ln(HDL cholesterol), and the pair-wise interactions of the ln(age) with the ln(total 
cholesterol) and the ln(HDL cholesterol). bDepending on the risk equation, the predictor systolic BP includes 
systolic BP or untreated/treated systolic BP. For example, the Framingham 2008 equation includes ln(treated 
systolic BP), and ln(untreated systolic BP).
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severely underestimated the observed five-year incidence for individuals of all ages, but this underestimation 
could be removed by re-estimation. We also assessed calibration for important subgroups in the original and 
the re-estimated equations (Supplementary Fig. S2). For individuals in high-risk groups, i.e., older individuals, 
individuals with diabetes or with hypertension, the original equations exhibited worse calibration (mainly over-
prediction for the two Framingham equations and underprediction for the PC equations) than individuals in the 
respective low-risk groups. However, the re-estimated equations were well calibrated for all subgroups, except for 
the re-estimated FR2008 equation where individuals with diabetes received too low predictions.

Half of the individuals were reclassified in the re-estimated risk equations.  In the re-estimated 
FR1991 equation (n = 525,498), 61.5% of the individuals remained in the risk category as classified with the 
original equation, 12.5% were reclassified to a higher risk category, and 26.0% were reclassified to a lower risk 
category (Table 3). In the re-estimated FR2008 equation (n = 532,668), 49.0% remained in the same category, 
7.6% were up-classified, and 43.4% were down-classified. Absolute changes in predicted five-year risk due to the 
re-estimation were larger for FR2008 (1. to 99. percentile −10.83 to 4.29%), but were symmetric around zero 
for both FR equations (Supplementary Fig. 3). Men were more often reclassified than women (e.g., FR2008 men 
58.0%, women 45.1%; Supplementary Table 7). These reclassified men were usually down-classified (e.g., FR2008 
men 94.0%, women 74.7%). Reclassified individuals younger than 60 years were more often down-classified, 
while older reclassified individuals were more often up-classified. As indicated in Fig. 2, the regression coefficients 
of diabetes did not drastically change in the re-estimated Framingham equations. Consequently, reclassifica-
tions for individuals with and without diabetes were comparable, although individuals with diabetes were less 
often up-classified compared to individuals without diabetes. Individuals with hypertension were more often 
down-classified compared to individuals without hypertension (FR1991: 43.6% versus 16.8%, FR2008: 57.4% 
versus 36.0%).

For the PC equations (n = 445,185), the results were different; 35.5% remained in their risk category, but 
64.1% were up-classified and only 0.4% were down-classified. Absolute changes in predicted probabilities due to 
the re-estimation ranged from −1.05 to 9.58% (1. to 99. percentile). The distribution of reclassifications was sim-
ilar for women and men. In the PC equations, age is modeled with a non-linear effect and pair-wise interactions 
with age are included (Fig. 2). This can explain the relation between reclassifications and age:

Figure 3.  Calibration plots for the five-year CVD risk for women and men. Error bars represent 
95%-confidence intervals. Dotted lines visualize predictions from the original equations, dashed lines show 
predictions from recalibrated equations and continuous lines give predictions from re-estimated equations. 
In a perfectly calibrated equation, the calibration curve follows the diagonal; a calibration curve above the 
diagonal indicates underprediction, whereas a calibration curve below the diagonal indicates overprediction. 
The parametric Framingham 1991 equation cannot be recalibrated. Abbreviations: ASCVD, atherosclerotic 
cardiovascular disease; CVD, cardiovascular disease.
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Individuals from 50 to 69 (n = 233,797) were up-classified in more than 80%. Among young individuals (40 to 
49, n = 149,070) 39.9% were up-classified, while 51.9% of old individuals (70 to 79, n = 62,318) were up-classified.

As the two Framingham equations have identical definitions of the CVD outcome, the two re-estimated 
equations can be directly compared. Most individuals (83.1%, n = 436,579) remained in the same risk category, 
while 7.1% (n = 37,519) were up-classified in the re-estimated FR1991 equation (compared to FR2008), and 9.8% 
(n = 51,400) were down-classified. The percentage of reclassifications (no, up and down) was similar among 
women and men.

Risk equations are re-estimated to improve the discrimination of individuals with and without (AS-)CVD 
events. Hence, individuals who are down-classified after re-estimation should show lower observed 5-year risks 
compared to the classification from the original equation, whereas individuals who are up-classified should 
have higher observed 5-year (AS-)CVD risks (see different shadings in Table 3 and Supplementary Table 6). For 
example, the original FR2008 equation classified 101,442 individuals into the 5-year CVD risk category ‘1.25 to 
2.49%’ (Table 3). Of those, 36,074 individuals (35.6%) were classified into the same category with the re-estimated 
FR2008 equation. These individuals had an observed 5-year CVD risk of 1.66% (1.49; 1.84), while for the 60,326 
(59.5%) individuals who were down-classified a 5-year CVD risk of 1.04% (0.75; 1.33) was observed. Further 
4,059 (4.0%) individuals were up-classified by one risk category and had an observed 5-year CVD risk of 2.97% 
(2.32; 3.61), 743 (0.7%) were up-classified by two risk categories and had an observed 5-year CVD risk of 5.24% 
(3.43, 7.02), and 221 (0.2%) were up-classified by three risk categories and had an observed 5-year CVD risk of 
11.97% (6.84, 16.82). Improved discrimination was observed for all three evaluated equations.

Age was the most important predictor for CVD.  In the re-estimated equations, predictors explained 
on average 7.37% of the variation of general CVD, whereas the PC equations explained on average 5.81% of the 
variation of ASCVD (Table 2). Assessing the importance of groups of predictors (e.g. all age-related model terms) 
by evaluating the drop in explained variation caused by removing such a group, the FR2008 and the PC equations 
had similar rankings of the importance of groups of predictors. The ranking of risk factor importance was differ-
ent for the FR1991 equation where women and men were not separately modelled. In all equations, predictors 
relating to age were identified as the most important ones.

Discussion
We had previously shown that both Framingham general CVD equations slightly overestimated the average 
five-year risk, while the PC equations for ASCVD underestimated it in the general Austrian population12. As the 
predictive performance of these equations was not optimal and as such risk equations are currently used during 
standardized health-screenings in Austria, we evaluated to which extent risk prediction could be improved by 
updating the equations. Risk equations tailored to local and contemporary circumstances can improve the quality 
of predictions for individuals attending health-screenings in the future and can improve the decision making of 
healthcare professionals regarding lifestyle counseling and possible treatment initiation.

Figure 4.  Median predicted five-year CVD risk for different age groups for women and men. Dashed, gray lines 
visualize the observed incidence, dotted lines show predictions from the original equations, and continuous 
lines give predictions from the re-estimated equations. The range from the 2.5th to the 97.5th and the 25th to 
the 75th percentile of the predicted five-year risk are visualized as shaded areas for the re-estimated equations. 
(The largest estimated 97.5th percentile of the estimated five-year risk was 32.5% for women and 37.4% for 
men.).
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As expected, updating did not lead to large improvements in discriminative ability measured by c-statistics, 
as discrimination only assesses the order of the predicted risk in the study cohort. However, updating led to 
improved agreement of observed and predicted risk. Focusing on individuals in high-risk groups, e.g., the elderly, 
individuals with diabetes or with hypertension, the updated equations also performed better. The calibration 
of the three updated equations was superior to that of the original equations. Especially for the PC equations, 
re-estimated regression coefficients of some CVD predictors were considerably different from the original 
regression coefficients. This may be due to case-mix differences between the development cohorts, which mostly 
consisted of individuals who lived in the U.S. in the late 1980s, and the contemporary European study cohort. 
Additionally, changes over time with regard to the awareness of CVD risk, changes in lifestyle, or changes in 

Re-estimated equation

Framingham 1991 general CVD

<1.25% 1.25 – 2.49% 2.50 – 3.74% 3.75 - 4.99% 5.00 – 7.49% 7.50 - 9.99% ≥ 10.00% Total

Original equation

<1.25% 149,963 (28.5) 10,905 (2.1) 279 (0.1) 10 (0.0) 0 (0.0) 0 (0.0) 0 (0.0) 161,157 (30.7)

1.25 – 2.49% 24,297 (4.6) 43,903 (8.4) 10,101 (1.9) 1,639 (0.3) 274 (0.1) 0 (0.0) 0 (0.0) 80,214 (15.3)

2.50 – 3.74% 2,354 (0.4) 21,582 (4.1) 20,591 (3.9) 8,259 (1.6) 3,649 (0.7) 31 (0.0) 0 (0.0) 56,466 (10.7)

3.75 – 4.99% 282 (0.1) 6,271 (1.2) 14,364 (2.7) 11,976 (2.3) 10,038 (1.9) 1,001 (0.2) 11 (0.0) 43,943 (8.4)

5.00 – 7.49% 30 (0.0) 1,902 (0.4) 9,197 (1.8) 14,796 (2.8) 24,873 (4.7) 10,944 (2.1) 1,074 (0.2) 62,816 (12.0)

7.50 – 9.99% 1 (0.0) 113 (0.0) 1,260 (0.2) 4,106 (0.8) 14,310 (2.7) 13,637 (2.6) 7,201 (1.4) 40,628 (7.7)

≥10.00% 0 (0.0) 9 (0.0) 160 (0.0) 797 (0.2) 6,930 (1.3) 14,039 (2.7) 58,339 (11.1) 80,274 (15.3)

Total 176,927 (33.7) 84,685 (16.1) 55,952 (10.6) 41,583 (7.9) 60,074 (11.4) 39,652 (7.5) 66,625 (12.7) 525,498 (100)

Framingham 2008 general CVD

Original equation

<1.25% 104,862 (19.7) 1,921 (0.4) 34 (0.0) 1 (0.0) 1 (0.0) 0 (0.0) 0 (0.0) 106,819 (20.1)

1.25 – 2.49% 60,326 (11.3) 36,074 (6.8) 4,059 (0.8) 743 (0.1) 221 (0.0) 19 (0.0) 0 (0.0) 101,442 (19.0)

2.50 – 3.74% 7,863 (1.5) 37,049 (7.0) 16,900 (3.2) 5,026 (0.9) 2,585 (0.5) 274 (0.1) 24 (0.0) 69,721 (13.1)

3.75 – 4.99% 812 (0.2) 13,884 (2.6) 18,638 (3.5) 9,734 (1.8) 6,998 (1.3) 1,415 (0.3) 174 (0.0) 51,655 (9.7)

5.00 – 7.49% 99 (0.0) 4,632 (0.9) 16,019 (3.0) 17,749 (3.3) 21,158 (4.0) 8,086 (1.5) 2,236 (0.4) 69,979 (13.1)

7.50 – 9.99% 4 (0.0) 263 (0.0) 2,687 (0.5) 6,564 (1.2) 15,737 (3.0) 11,089 (2.1) 6,887 (1.3) 43,231 (8.1)

≥10.00% 0 (0.0) 33 (0.0) 390 (0.1) 1,827 (0.3) 10,427 (2.0) 16,216 (3.0) 60,928 (11.4) 89,821 (16.9)

Total 173,966 (32.7) 93,856 (17.6) 58,727 (11.0) 41,644 (7.8) 57,127 (10.7) 37,099 (7.0) 70,249 (13.2) 532,668 (100)

Pooled Cohort ASCVD Equations

Original equation

<1.25% 84,567 (19.0) 74,867 (16.8) 11,528 (2.6) 505 (0.1) 34 (0.0) 0 (0.0) 0 (0.0) 171,501 (38.5)

1.25 – 2.49% 13 (0.0) 11,515 (2.6) 40,907 (9.2) 20,176 (4.5) 5,614 (1.3) 185 (0.0) 14 (0.0) 78,424 (17.6)

2.50 – 3.74% 0 (0.0) 168 (0.0) 4,258 (1.0) 16,734 (3.8) 22,951 (5.2) 3,353 (0.8) 305 (0.1) 47,769 (10.7)

3.75 – 4.99% 0 (0.0) 14 (0.0) 176 (0.0) 2,754 (0.6) 18,402 (4.1) 9,925 (2.2) 2,166 (0.5) 33,437 (7.5)

5.00 – 7.49% 0 (0.0) 3 (0.0) 18 (0.0) 329 (0.1) 8,408 (1.9) 19,161 (4.3) 16,134 (3.6) 44,053 (9.9)

7.50 – 9.99% 0 (0.0) 0 (0.0) 0 (0.0) 7 (0.0) 513 (0.1) 4,127 (0.9) 22,348 (5.0) 26,995 (6.1)

≥10.00% 0 (0.0) 0 (0.0) 0 (0.0) 6 (0.0) 26 (0.0) 592 (0.1) 42,382 (9.5) 43,006 (9.7)

Total 84,580 (19.0) 86,567 (19.4) 56,887 (12.8) 40,511 (9.1) 55,948 (12.6) 37,343 (8.4) 83,349 (18.7) 445,185 (100)

Legend: Observed 5-year risk (in %) for CVD and ASCVD

<1 1-2 2-3 3-4 4-5 5-6 6-7 7-8 8-9 9-10 10-11 11-12 12-13 13-14 14-15 15-16 16-17 17-18

Table 3.  Risk reclassification tables. Risk reclassification tables for the estimates 5-year risk (in %) for general 
cardiovascular disease (CVD) for the two Framingham equations and for atherosclerotic CVD (ASCVD) 
for the Pooled Cohort equations. Assuming constant hazard, approximately twice the estimated 5-year risk 
corresponds to the 10-year risk. For more details on the appropriateness of this assumption in this context and 
on the conversion, see Supplementary Figure 1. Individuals classified to cells in the diagonal (cells with a black 
frame) remain in the same risk category, irrespective if the original or the re-estimated equation is applied. All 
other individuals are re-classified to another risk category. Grey colors indicate the observed 5-year risk. The 
darker the grey color in a cell, the higher the observed 5-year risk of the individuals classified to this cell. (The 
observed 5-year risk was computed only for cells with at least 100 observations and at least one event.) If a re-
estimated equation improves the discrimination of (AS-)CVD events, then separately for each row of Table 3, 
cells left of the diagonal should be colored in a lighter shade of grey compared to the cell in the diagonal, and 
cells right of the diagonal should be colored in a darker shade of grey compared to the cell in the diagonal. 
The observed 5-year risks and 95%-confidence intervals are reported in Supplementary Table 6. For a more 
precise view on the movement of participants between risk categories, we report reclassifications tables separate 
for women and men, individuals of different age groups, and for individuals with and without diabetes and 
hypertension in Supplementary Figure 3 and Table 7. Abbreviations: ASCVD, atherosclerotic cardiovascular 
disease; CVD, cardiovascular disease.
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utilization of lipid-lowering and antihypertensive medication, might be responsible for the observed differences. 
Finally, random variability, in particular in the smaller development cohorts, may be a cause of the discrepancies.

The evaluated equations only included traditional CVD risk factors that could not optimally predict the occur-
rence of CVD as the explained variation was 7.37% for general CVD and 5.81% for ASCVD in the re-estimated 
equations. The non-modifiable risk factor age was the most important predictor in all equations, explaining indi-
vidually 5.01% of the outcome variation. Age can be interpreted as a proxy of exposure time to known risk factors. 
However, age is associated with many risk factors of overall health, which are not included in the equations. As 
such the high explained variation of age might also be interpreted as a proxy for unmeasured risk factors for CVD.

More updating studies are required.  External validation studies evaluating the transportability of a risk 
equation to a new population are still not common; e.g., in a recent systematic review, Ban et al. found that only 
23% of 125 CVD equations were externally validated32. Updating studies combining evidence from published 
equations with new data to tailor the prediction tool to other populations or to update them because of changes 
over time are even rarer. In the field of cardiology, although many risk equations for CVD in the general popula-
tion were developed, the advantages of updating are not utilized enough6,8,11,33,34. Updating does not require new 
selection of predictors, their functional forms (e.g., transformations) or inclusion of possible pair-wise interac-
tions, and thus induces less uncertainty than developing a new equation from scratch.

Opportunities and limitations of this study.  This study was conducted with a large, contemporary 
cohort comprising almost a third of the Austrian population aged 30 to 79 years. All selected 1.7 M individuals 
met the inclusion criteria of the investigated equations and no further inclusion/exclusion criteria were applied. 
The random split of the data into training and test set did not have any impact on the results as the sample size was 
sufficiently large. Since the data were collected electronically as part of a standardized routine health-screening 
program, CVD risk factors were assessed in a homogenous way with almost no missing values. We only consid-
ered risk equations for the combined outcome of non-fatal and fatal CVD, because both have severe consequences 
and are of great relevance for individuals attending health screenings and for society. Morbidity and disability due 
to CVD are causes of major economic burden to societies and their health care systems35.

Our study had some limitations. We investigated the five-year risk because the data from the Austrian 
health-screening was available from 2009 to 2015 only. Risk equations for this time horizon are also currently 
applied in the standardized Austrian health-screenings. Assuming a constant hazard, the estimated ten-year risk 
can be extrapolated from the predicted five-year risk. The ten-year risk is roughly double the five-year risk (for 
five-year risk up to 10%). The extrapolation relies on constant hazard assumption, which seems plausible given 
that the observational period did not start with an intervention. A plot of the hazard for the (AS-)CVD outcome 
also substantiates this. For the FR2008 equation, only the information required to estimate the ten-year risk 
was reported. Therefore, we assumed a constant hazard over time to estimate the five-year baseline survival. 
Due to data availability of hospitalizations, we could not exclude individuals with CVD history prior to 2008. 
Misclassification of fatal events may have been introduced by the probabilistic assignment of ambiguous causes 
of deaths. Nonetheless, this potentially affected only 10.3% of the combined CVD outcomes. However, for this 
reason we did not re-estimate the SCORE equation, which focuses only on fatal CVD. In the context of preventive 
health-screenings in the general population, estimation of fatal and non-fatal CVD risk also seems more relevant 
for participants and their physicians. Although the health-screening program is free-of-charge and is offered by 
most general practioners, participation is voluntary and implies self-selection. Therefore, individuals in our study 
cohort may have had greater health awareness than the general population. Indeed, on average they were slightly 
younger and had a marginally better overall survival rate than the general Austrian population.

In general, the predictive performance of the equations could still be improved by considering additional 
non-linearities of or higher-order interactions among risk factors. Alternatively, one could leave the path of clas-
sical statistical modelling and apply machine learning methods (e.g. random forests or deep learning) to improve 
the accuracy of prediction. Previously, the application of such modern prediction methods was infeasible because 
of limited sample sizes. In our study, we aimed at making use of the existing knowledge from published equations 
as much as possible and focused on minimal changes resulting from recalibration and re-estimation approaches.

Conclusions
CVD risk equations are developed to inform individuals about their CVD risk in a certain time frame and to 
support healthcare professionals in their decision making with regard to advocate lifestyle changes and possibly 
initiating treatment. To optimize preventive care, we recommend our re-estimated equations based on a con-
temporary cohort of one third of all Austrian inhabitants for the Austrian and similar general populations. The 
five-year general CVD risk based on the re-estimated Framingham 2008 equation and the five-year ASCVD risk 
based on the re-estimated Pooled Cohort equation can conveniently be calculated using an online risk calculator 
available at https://cemsiis.meduniwien.ac.at/en/kb/science-research/software/clinical-software/cvdrisk/.

Data availability
The Main Association of the Austrian Social Security Institutions provided the data supporting the findings of 
this study. Within a collaboration with the Main Association of the Austrian Social Security Institutions access to 
the data is possible. Contact the corresponding author for more information.
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