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CONY: A Bayesian procedure for 
detecting copy number variations 
from sequencing read depths
Yu-Chung Wei1 & Guan-Hua Huang2 ✉

Copy number variations (CNVs) are genomic structural mutations consisting of abnormal numbers 
of fragment copies. Next-generation sequencing of read-depth signals mirrors these variants. Some 
tools used to predict CNVs by depth have been published, but most of these tools can be applied to 
only a specific data type due to modeling limitations. We develop a tool for copy number variation 
detection by a Bayesian procedure, i.e., CONY, that adopts a Bayesian hierarchical model and an 
efficient reversible-jump Markov chain Monte Carlo inference algorithm for whole genome sequencing 
of read-depth data. CONY can be applied not only to individual samples for estimating the absolute 
number of copies but also to case-control pairs for detecting patient-specific variations. We evaluate 
the performance of CONY and compare CONY with competing approaches through simulations and 
by using experimental data from the 1000 Genomes Project. CONY outperforms the other methods 
in terms of accuracy in both single-sample and paired-samples analyses. In addition, CONY performs 
well regardless of whether the data coverage is high or low. CONY is useful for detecting both absolute 
and relative CNVs from read-depth data sequences. The package is available at https://github.com/
weiyuchung/CONY.

Copy number variations (CNVs) are genomic structural mutations consisting of abnormal numbers of deoxy-
ribonucleic acid (DNA) section copies. CNVs were originally defined to range from one kilobasepair to several 
megabasepairs1,2 and widened to include small variants that are larger than 50 basepairs in size3,4. Currently, 
approximately 7 million CNVs identified in 1 million variant regions are catalogued in the Database of Genomic 
Variants (DGV)5,6. Half the identified CNVs overlap with protein-coding regions, which results in gene expres-
sion changes7. CNVs have been confirmed to play important roles in human diseases; for example, glycophorin 
CNVs in malaria resistance8, beta-defensin CNVs in Psoriasis9,10, CNVs in 15q11.2 for the perigenual anterior 
cingulate cortex in schizophrenia and Alzheimer’s disease11,12, and some pathogenic CNVs in developmental 
delay, autism spectrum disorders, and various congenital malformations13,14. Furthermore, somatic copy number 
aberrations have been considered to be associated with human cancers and to categorize the subtypes of cancer15, 
such as breast cancer16,17, lung cancer18,19, and colorectal cancer20,21.

Array comparative genomic hybridization22,23 and single nucleotide polymorphism arrays24,25 have been used 
to detect CNVs over the past few years; however, the boundaries of CNVs cannot be explicitly identified due to 
the sparse probe coverage. Recently, next-generation sequencing (NGS)26,27 has provided a more accurate option 
for CNV identification and breakpoint prediction through the high-resolution analysis of sequential DNA nucle-
otide bases. Various strategies, including read depth28–36, paired-end mapping37–40, split read41–43, assembly44–46 
and integrative approaches47–51, have been adopted to detect CNVs in NGS data. Read depth analysis becomes 
a major method because of less restriction for read lengths and insert sizes26,27,52, which are critical limitations 
for other strategies. Besides, depth data can be derived from both paired- and single-end sequencing reads with 
appropriate mapping and normalizing procedures.

In the read-depth approach, CNV identification assumes that the number of reads is proportional to the num-
ber of DNA copies. Hypothesis testing, change point segmentation, and the hidden Markov model are commonly 
used methods in this field. While many practical tools have been developed using these types of statistical algo-
rithms, the link between sequencing depth information and CNVs is not completely understood. In hypothesis 
testing methods, each depth is independently tested for a significant CNV35,36, but correlation of depths should 
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be considered through the corresponding genomic locations. The adjustment methods used for multiple testing 
issues also need to be evaluated rigorously. In change point algorithms, copy number (CN) regions are first iden-
tified by a segmentation algorithm, and then the states of the proposed CN regions are estimated30. However, 
the performance of the segmentation step has an obvious impact on the downstream CNV detection accuracy. 
To overcome these shortcomings, a statistical model approach that considers genetic information from whole 
genome sequencing depths to simultaneously identify CN regions and states is presented in this paper.

In addition, most existing approaches were proposed for a specific sample design. Single-sample analyses can 
estimate absolute CN callings28,29,36 and are implemented in personalized medicine53,54. However, read data from 
one single sample only contain individual genomic information, not population-level variations; as a result, it is 
not easy to find the potential biases especially in the low coverage data. In contrast, depth ratios of paired samples 
(case/control or tumor/normal) identify patient-specific relative CNVs and are conveniently utilized in association 
studies29,35. While background or platform noises may be efficiently eliminated through the comparative depths, 
combining sample information from different sequencing coverages or platforms remain difficult issues. The pro-
posed model-based algorithm in this study could be applied to various sample designs due to the thorough data 
transformation and the parameter settings.

Given the aforementioned challenges, we propose a comprehensive approach called copy number varia-
tion detection via a Bayesian procedure (CONY). A Bayesian hierarchical model is constructed to integrate the 
sequencing depth signals, the corresponding genomic position, and the potential CNV information. The efficient 
sampling algorithm, i.e., reversible-jump Markov chain Monte Carlo (RJMCMC)55, is modified to infer the states 
and breakpoints of the CN regions. An appropriate analytic section length of the genome for the RJMCMC algo-
rithm is suggested to reduce the unbalanced effects that result from the extreme difference between normal and 
variant region sizes. The usefulness of the CONY algorithm is demonstrated by both simulations and an analysis 
of experimental data from the 1000 Genomes Project56.

Materials
The 1000 Genomes Project.  Whole genome sequencing data of two samples NA12156 and NA12878 (SRA 
accessions ERX000125 and ERX000080, respectively) provided by the 1000 Genomes Project were analyzed. 
Each of the samples was used to identify the absolute CNVs, and they were matched to form case/control pairs 
(NA12156/NA12878 and NA12878/NA12156) to identify the case-specific relative CNVs. The identified CNVs 
were compared with CNV lists reported in the Database of Genomic Variants5,6. Sequencing reads generated by 
the Illumina platform with 4.1 to 5.7X coverage and mapped to the human genome 19 (hg19/GRCh37) reference 
genome with default adjustments were downloaded from the 1000 Genomes Project ftp.

Another two experimental samples HG00419 and HG01595 from the project, which were sequenced with 
both low (5.2 to 9.8X as SRA accessions SRX724413 and SRX720422, respectively) and high (33.6 to 35.4X as SRA 
accessions SRX550074 and SRX550114, respectively) coverages, were also analyzed to show consistency of results 
from CONY across samples and evaluate the coverage effect. Both samples were used for the single-sample anal-
ysis; HG00419/HG01595 and HG01595/HG00419 were matched for the paired-samples analysis. Reads mapped 
to the hg38/GRCh38 human reference genomes were adopted.

The simulation study.  In the single-sample analysis, DNA sequences were generated from one hundred samples 
with predetermined CNVs. We used the hg19 chromosome 20 (chr20) as the template. The template sequence was 
copied to one strand and deleted/duplicated in pieces to mimic the copy loss/gain to the other strand for each sample. 
Twenty pieces for copy losses were deleted from the variant strand as copy number (CN) 1, and twenty pieces for copy 
gains were randomly duplicated 1, 2, or 3 times as CN 3, 4, or 5, respectively. The artificial pieces were set at 10 differ-
ent sizes (1, 2.5, 5, 10, 25, 50, 100, 250, 500, and 1000 kilobasepairs (kb)) using 2 of each for the copy losses/gains. The 
synthetic CNV regions accounted for 12% of the human genome, which is consistent with a recent report1,7. In the 
paired-samples analysis, simulated samples from the single-sample analysis were used as case samples. One common 
control sample sequence was copied from the hg19 chr20 template for both strands. In total, two million paired-end 
reads with a length of 70 basepairs (bp) and a coverage of 2.2X (low coverage) or 22X (high coverage) were generated 
for each sample via the sequencing simulation software Wgsim57. The simulated reads were aligned to the reference 
genome by BWA58 and subjected to data preprocessing.

Methods
A Bayesian model-based procedure, i.e., CONY, that is able to identify both absolute and relative CNVs from both 
single-sample and paired-samples DNA sequencing is proposed. In this procedure, read-depth signals (RDSs) 
derived from preprocessed sequencing reads are used to estimate CNVs via a Bayesian hierarchical model and 
the RJMCMC algorithm.

The sequencing reads are aligned with the reference genome, subjected to preprocessing steps, and accumulated 
as read depths per base via published tools59. Next, the base-read depths in a small contiguous region (referred to as a 
window) are summed as the window read depth of each sample. After adjusting for potential biases, the window read 
depths are transformed to RDSs by logarithm (single-sample analysis) or log-ratio (paired-samples analysis) equations.

RDSs are linked to the states and breakpoints of CN regions via a comprehensive Bayesian hierarchical 
model. A modified RJMCMC algorithm is constructed to generate samples for parameter inferences with two 
main moves (updating CN states and updating boundaries) and four jumping strategies (merge, split, trifid, and 
boundary change) for updating the boundaries. After 5,000 burn-ins, the windows with the abnormal CNs are 
tested via Bayes factors in each additional 1,000 iterations until full coverage is achieved. The details of the CONY 
procedure are provided in the following discussion, and a flow chart of the analysis is depicted in Fig. 1.
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Read alignment, data preprocessing, and read-depth signal calculation.  First, the decoded sam-
ple sequencing reads (FASTQ format) are aligned with the reference sequence (FASTA file) to ensure the corre-
sponding locations in the genome via commonly used tools, such as BWA58 and Bowtie259. The best-matched 
position information of each read is written in SAM/BAM format using SAMtools software. The low-quality reads 
and experimental duplicates are removed, including base-calling quality scores lower than 13, mapping quality 
scores lower than 30, and PCR duplicates36,60,61. Then, the good-quality reads are piled to obtain accumulated 
measurements of each nucleotide, which are referred to as the “base-read depth”.

Base-read depths are insufficient for identifying CNVs with high specificity47. The potential systematic biases 
easily override the true CNV evidence because of the weak information from a single base. Moreover, a single 
signal has insufficient statistical strength to support the assumption of a uniform relationship between the CNVs 
and read depth. To increase the power of the read-depth information, the summarized signals from several bases 
are considered. A series of consecutive bases constitute a window, and the depths of the bases within the window 
are accumulated to obtain stable and convincing read-depth information35,36. Generally, the genome is partitioned 
into nonoverlapping sliding windows with an equal size of 100 bp as a default28,36,62, and the base-read depths in 
each window are summed as the raw “window read depth”. The ith raw window read depth is denoted by RRaw,i.

Two major bias effects (i.e., the percentage of indefinable bases and GC content) should be adjusted to 
strengthen the evidence of CNVs in the raw window read depths63,64. First, the percentage of bases with N code 
(i.e., indefinable bases) should be considered. Because no depths are counted for these indefinable bases, the 
window read depths should be adjusted to balance the information across windows. Then, the ith window read 
depth is adjusted by the following equation: =R RCorrSize i Raw i, ,  × (window size)/(window size -number of inde-
finable bases in the ith window). Second, the GC content is a notable source of noise in the depth estimation, 
especially using the Illumina platform63. The method used for the GC content adjustment follows that of a pub-
lished study65,66. The GC-adjusted window read depth is calculated by the following formula if the percentage of 
G and C codes in the ith window is in the range from 20% to 80%: R R R R/CorrGC i CorrSize i GC GC i, , ,= × , where RGC,i 
and RGC represent the predicted depth in the ith window via a local regression (LOESS) and the average depth 
over all windows. Regarding the LOESS model settings, the proportion of neighborhood points is spanned to 
75%, and the weight follows a typical tri-cubic function. Since the LOESS adjustment does not work for extreme 
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Figure 1.  Flowchart of read alignment, data preprocessing and CNV detection.
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GC percentages (<20% or>80%), the depths of these windows are not adjusted; thus, =R RCorrGC i CorrSize i, ,
. 

Furthermore, windows with more than half indefinable codes or zero depth are marked and excluded from fur-
ther analysis. Then, the window read-depth signals (hereafter referred to as RDSs, Di) for the single-sample and 
paired-samples analyses are calculated by logarithm (i.e., =D Rlog( )i CorrGC i, ) and log-ratio (i.e., 
D R Rlog( / )i CorrGC i CorrGC i Control, (Case) , ( )= ) transformations.

Bayesian hierarchical model.  Following the process outlined above, the adjusted window RDSs were pre-
pared for a downtrend application to estimate the CNVs. A Bayesian hierarchical model is proposed for detecting 
the absolute/relative CNVs from single-sample/paired-samples window RDSs.
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Figure 2.  Windows and copy number (CN) regions. The genome is partitioned into I sliding, nonoverlapping, 
equally sized windows as box symbols with RDSs of …D D D, , , I1 2  and boundaries of …B B B, , , I0 1  shown as 
dashed lines. The Bayesian model aims to group the I windows into M CN regions with states …C C C, , ,s s

M
s
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box colors that are determined by …∼ ∼ ∼C C C, , , M1 2
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Figure 3.  Jumping strategies for updating the copy number boundaries in the RJMCMC algorithm. (a) 
Merge and split, (b) merge (double merge) and trifid, and (c) boundary change. Each rectangular box 
indicates a window, and the texture indicates the state of the CN. Continuous windows with the same state 
are combined into a CN region. For example, in a the slash and argyle CN regions in the left graph are 
combined into a single region through the merge strategy. One of the original states is assigned to the new 
region shown in the right graph. Conversely, the slash or argyle region on the right graph is divided into two 
regions through the split strategy on the left graph.
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This model aims to divide the whole genome with I windows into M CN regions to group consecutive 
windows with the same underlying CN. The comprehensive structure constructs the relationships among 
the window RDSs ( D D DD [ , , , ]I1 2= …∼ ), CN states underlying CN regions ( = …∼ ∼ ∼ ∼C C C C[ , , , ]M1 2

) and CN 
breakpoint indicators of window boundaries ( B B BB [ , , , ]I0 1= …∼ ) (Fig. 2). The Bayesian approach starts 
with the prior belief that the parameters follow the prior distribution ∼ ∼p B C( , ) and uses the likelihood from 
data ∼ ∼∼p D B C( , ) to update the parameters a posterior. Unlike some existing tools, our proposed Bayesian 
hierarchical model comprehensively considers parameter relations across the analytic genome rather than 
just information in consecutive windows. The inferences are based on the posterior distribution p B C D( , )∼ ∼ ∼ , 
which is proportional to the priors multiplying the data likelihood, p p pB C D B C D B C( , ) ( , ) ( , )∝ ×∼ ∼ ∼ ∼ ∼ ∼∼ ∼

p p pB C B D B C( ) ( ) ( , )= × ×∼ ∼ ∼ ∼ ∼∼ . Three parts are included in factorization, including the window boundary 
( ∼p B( )), CN state (p C B( )∼ ∼ ), and depth (p D B C( , )∼ ∼∼ ). The details of factorization and the hyperparameter set-
tings are shown below.

Window boundary part 


p B( ).  Parameter = …


B B BB [ , , , ]I0 1  is used to represent whether the window 
boundaries are the breakpoints of the CN regions. Bi is 1 if windows i and i + 1 have different underlying CNs for 

= ... −i I1, 2, , 1 (i.e., the ith window boundary is the breakpoint of two CN regions). Otherwise, Bi is denoted 
by 0. B0 and BI are set to 1 due to the left and right borders. Assume that Bi follows an independent Bernoulli dis-
tribution with success probability λ. The probability of the window boundaries is p p B B BB( ) ( , , , )I0 1= … =∼
λ λ× −− −(1 )M I M1 , where = ∑ =M Bi

I
i1 . Thus, there is a quantity M of Bi with a value of 1 for i from 1 to I, and 

the genome is separated into M CN regions.

Copy number state part 
 

p C B( ).  The whole genome is divided into M CN regions when breakpoints 

∼B are given. Next, the CN states of each region ( = …∼ ∼ ∼ ∼C C C C[ , , , ]M1 2
) are described based on conditional 

probabi l i ty  ∼ ∼p C B( ) p C C B( , , )M1= ... |∼ ∼ ∼ ,  w hich  can  b e  fac tor ized  as  p pC B C C B( ) ( , )1 2 1| × | × …×∼ ∼ ∼ ∼ ∼
| ...∼ ∼ ∼ ∼−

p C C C B( , , , )M M1 1
. Because the consecutive CN regions must have different states, the state of each 

region is restricted to the adjacent sides. Therefore, the conditional probability is simplified as 
p p pC B C C B C C B( ) ( , ) ( , )M M1 2 1 1| × | × … × |∼ ∼ ∼ ∼ ∼ ∼ ∼ ∼−

.
For the state of the first region C C CC [ , , , ]K1 11 12 1= …∼ , a one-trial multinomial distribution with a prespeci-

fied category number K is adopted, i.e., ~C C C Multinomial W W W[ , , , ] (1; , , , )K F F FK11 12 1 1 2  . If the element 
C C1 s

1
 of ∼C1

 is equal to 1, then the CN state of the first region is denoted by C s
1 .The weight vector 

= …∼ W W WW [ , , , ]F F F FK1 2  fo l lows  a  conjugate  Dir ich le t  d is t r ibut ion with  hyp er parameter 
= …∼ w w wW [ , , , ]K0 01 02 0 .

The state of the other regions must be different from the previous state based on the above conditional  
probability factorization. Assuming the state of the (m − 1)th region is k (i.e., =−C 1m k( 1)  or =−C km

s
1 ), the  

state of the mth region C C C C CC , , , , , ,m m m m k m k mK1 2 ( 1) ( 1)= 
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
∼ − + 

 could decrease by one dimension  
with K−1 categories.  ∼Cm

 fol lows a one-trial  multinomial distribution with weight vector 
W W W W WW [ , , , , , , ]k k k k k k k mK1 2 ( 1) ( 1)= … …∼ − + , and the weight is Dirichlet distributed with parameter 
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W W W W W[ , , , , ]F K1 2= …∼ ∼ ∼ ∼ ∼  is estimated via the empirical method introduced in Supplementary Text 1 
(Hyperparameters setting).

The conditional probability of the CN states given the breakpoints is summarized as follows:
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where ′nk  is the number of regions located after the regions with CN state k′, and 
′

nk k is the number of regions with 
state k among these ′nk  regions. Based on this formula, this model connects information not only from these 
regions with identical CN states but also from the same previous regions to strengthen the state relationship.

In addition, the number of state categories K needs to be pre-assigned in this procedure. For a single-sample 
analysis, the states represent the absolute CN, and we set K = 5 as the default. For paired samples, the states 
represent the relative CN, and we set K = 3 as the default, representing copy loss, normal and copy gain statuses.

Depth part p D B C( , )
 

∼ .  Given the breakpoints and states of each CN region, we assume that RDSs within 
the same copy number region follow an independent normal distribution with a common mean and variance. 
Moreover, the normal and inverse-gamma conjugate priors connect windows from different CN regions that 
belong to the same CN state. Therefore, the conditional likelihood is derived as follows:
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where Lm is defined as the number of windows in CN region m, and L0 = 0. The settings of hyperparameters 


µ
0
, 

α∼, 


β, and 


κ are shown in Supplementary Text 1 (Hyperparameters setting).

Proportional posterior distribution.  By multiplying the window boundary, CN state, and depth parts 
mentioned above, the proportional posterior distributions of B∼ and ∼C are obtained.



∏

π
κ

κ

Γ α

Γ α

β

β

| ∝











×
+

×
+

×






+

















∼ ∼

α

κ µ

α
=

−

+ ∑ −

+
κ µ

κ= +...+ − +
+...+





+ ∑ = +...+ − +
+...+ 




+

( )

p

L

B C D( , )

(2 )
( )

m

M

L C

C m

C
L

C

C

C

D
1

2
2

2

m m
s

m
s

m
s m

m
s

m
s
Cm

s

m
s

Cm
s Cm

s i L Lm
L Lm i

Cm
s Cm

s i L Lm
L Lm Di

Cm
s Lm

Cm
s Lm

0
2

0 1 1
1 2 0 0 1 1

1
2 2

∏ ∏ ∏ λ λ×






Γ +
Γ






×










Γ +

Γ
′

+

Γ










× × −
= ′= ′ =

≠ ′

−

−

− −′

′

( )
( )

C w
w n

n( )
( )

1
(1 )

(1 )
k

K
k k

k k

K

k k
k k

K k k
w

w

w
w

M I M

1

1 0

0 1 1

1

1

1
k

k

k

k

0

0

0

0

The relationships among the parameters are depicted in Fig. S1.

Reversible-jump Markov chain Monte Carlo algorithm.  Two groups of variables, i.e., CN states ∼C and 
window boundaries B∼, are estimated from the derived posterior distribution ∼ ∼ ∼p B C D( , ). In our model, the num-
ber of parameters is not fixed, primarily because the values of ∼B can affect the numbers of CN regions and corre-
sponding states ∼C. A powerful algorithm, i.e., RJMCMC55, is adopted for sampling from a specified distribution 
with a variable number of dimensions. We construct a RJMCMC algorithm with two efficient moves, i.e., “Update 
copy number states ∼C” and “Update window boundaries B∼,” for each transition. The details are illustrated below.

To update CN states ∼C, all analyzed regions are updated together via a Gibbs sampler. Conditional on the 
values of boundaries ∼B and RDSs ∼D, the probabilities of all possible CN state combinations are calculated. The 
combination with the maximum probability is selected. The conditional probability is expressed as follows:
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However, updating window boundaries ∼B is complex. Because the values of the window boundaries are subject 
to the dimension of the CN regions and corresponding states, not only the boundaries but also the neighboring 
CN states are updated in this move. To explore the parameter space efficiently and completely, four novel 
jumping strategies are adopted: merge, split, trifid, and boundary change. The relationships among the jumping 
strategies are illustrated in Fig. 3.

In the merge strategy, one window boundary with value 1 (i.e., CN region breakpoint) is randomly changed to 
a value of 0, and then, the adjacent CN regions sharing the selected boundary are combined. The state of the new 
CN region is chosen from two states of the original CN regions with equal probability. Assume that the m and 
m + 1 regions are merged into a new region with index m*. Then, the candidate status is accepted with the accept-
ance probability min{1, AM1}. Furthermore, if the state of the newly combined region is accidentally equal to the 
state of the adjacent region, we automatically merge these regions with the same CN state as a double merge. Two 
situations require a double merge. First, the m and m + 1 regions are merged into region m*, and the state of the 
combined region is selected from m. If the state of the m + 2 region is equal to that of m*, we merge the m* and 
m + 2 regions into the new region m**. Then, the accepted probability is min{1, AM2.1}. Second, the m and m + 1 
regions are merged to region m*, and the state of the combined region is selected from m + 1. If the state of the 
m − 1 region is equal to that of m*, we merge the m* and m-1 regions into the new region (m − 1)**. Then, the 
accepted probability is min{1, AM2.2}.

For the reverse strategy named split, one window boundary with a value of 0 (i.e., not a CN region breakpoint) 
is updated to a value of 1, and then, the CN region is split into two regions. The state of one newly formed region 
is randomly set to be the same as that of the original region, and the other region is restricted to be unequal to the 
states of the original and adjacent regions. Assume the selected window boundary belongs to the CN region m 
and that the region m is split to m* and m**. Then, the accepted probability is min{1, AS}.

Moreover, the reverse strategy of double merge, which is named trifid (split into three), essentially changes 
the values of two of the window boundaries with 0 values in one CN region (assuming the mth CN region) to 1 
values, and then, three CN regions (indexed as m*, m**, and m***) are constructed. The states of the leftmost 
(m*) and rightmost (m***) regions are assigned to be the same as that of the original region, and the state of the 
middle region (m**) is randomly selected from the other states with equal probability. The accepted probability 
is min{1, AT}.

Finally, the breakpoint of the CN region randomly shifts to the left or right window boundary with equal prob-
ability without changing the CN states for the boundary change strategy. The accepted probability of the left and 
right shift are min{1, AB−1} and min{1, AB+1}, respectively. All of the above acceptance probabilities are derived in 
Supplementary Text 2 (Acceptance probabilities).

For setting the initial values of ∼C and B∼ in RJMCMC, a cubic smoothing spline model is fitted to the ordered 
read-depth signals (RDSs) across the windows. If the predicted RDSs in adjacent windows i and i + 1 are crossed 
to the threshold, then the window breakpoint Bi is initially set to 1. The thresholds are approximately defined as 
the 5th and 95th percentiles of all predicted RDSs. According to the initial breakpoints, we randomly assign the 
initial state of each region, but the restriction of neighboring regions with different states should be satisfied. The 
probabilities of selecting four jumping strategies for updating ∼B are set (as 1/3, 1/6, 1/6 and 1/3).

Additionally, to reduce the unbalanced effect that results from the extreme normal/abnormal state proportion, 
the whole genome is partitioned into several nonoverlapping sections to estimate the parameters. In our proposed 
procedure, we run RJMCMC for one genomic section at a time but set the initial values and hyperparameters 
based on whole genome to ensure that the evidence is sufficient. Advice regarding the section length is provided 
in the Results section.

Identification of copy number variations.  The samples generated from the posterior distribution 
through RJMCMC are summarized to identify the CN states of windows via Bayesian testing statistics and Bayes 
factor (BF)67. After burn-in (tburn = 5,000 iterations, as the default setting), K − 1 types of BFs representing the 
strength for the abnormal states (CN = 1, 3, 4, …, K) against the normal state (CN = 2) in each window are calcu-
lated. The BF of window i at iteration t with abnormal CN state k is defined as
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, k = 1, 3, 4, …, K. If the maximum BF in each window is larger than the threshold at the default of 20, decisive evidence 
is provided that the analytic window has an abnormal CN state = ( )j BF BF BFarg max , , ,ti ti ti K(1) (3) ( ) ; otherwise, the 
window is assigned to the normal state. The state of each window is evaluated every 1,000 iterations after burn-in. If all 
windows remain in the same state over the next 1,000 iterations, then the estimators are stable, and the sampling proce-
dure could be stopped.

Adjacent windows with the same CN state are combined into a CN region. We can then identify the bounda-
ries lying between two CN regions as the CNV breakpoints. However, these observed breakpoints may be just due 
to a single frequently occurring CNV or due to several CNVs with distinct breakpoints that overlap partially68. 
In fact, read depth methods are poor at localizing breakpoints69. Addition information (e.g., partially-mapped 
reads70) and/or computational strategies for merging the genomic regions with a similar copy number71 are 
needed to identify accurate CNV breakpoints. Therefore, current version of CONY does not provide CNV break-
point prediction.

Metrics for performance evaluation.  The performance of various algorithms is evaluated in terms of the 
base accuracy and CNV detection rate. In the 1000 Genomes Project analysis, the base accuracy is assessed by 
three numerical measurements, including the base recall (also called sensitivity), base false positive rate (FPR) 
and base precision. The base recall is defined as the percentage of basepairs listed as CNVs (i.e., CNV basepairs) 
in the DGV that are also identified by the algorithm. The base FPR is the percentage of basepairs not listed as 
CNVs in the DGV that are yet identified as CNVs by the algorithm. The base precision is the percentage of base-
pairs identified as CNVs by the algorithm that are also listed as CNVs in the DGV. All these metrics evaluate per 
basepair performance. The CNV detection rate represents the recall for CNV regions, which is the percentage of 
CNV regions in the DGV that have any position identified as a CNV via the algorithm. The CNV region precision 
and FPR are not calculated since CONY does not provide exact CNV regions and the DGV is only suitable for 
defining true positives.

For the simulation study, the base accuracy includes the overall base accuracy, base recall and base FPR. The 
overall base accuracy is summarized from the correctly identified basepairs. The base recall is defined as the per-
centage of CNV basepairs that are detected correctly. The base FPR is determined by the percentage of normal 
basepairs that are classified as copy losses or gains. In addition, the CNV detection rates are calculated for each 
combination of 2 CNV types (copy loss/gain) versus 10 CNV sizes (1, 2.5, 5, 10, 25, 50, 100, 250, 500 and 1000 kb). 
If the artificial CNV region is partially or fully identified, then the region is counted. Then, the detection rate is 
the percentage of detected artificial CNV regions averaged over 100 case samples (for the single-sample analysis) 
or 100 case-control pairs (for the paired-samples analysis).

Results
Application to samples from the 1000 Genomes Project.  For NA12156 and NA12878, after the pre-
processing steps, approximately 220 megabasepairs (Mb) on chromosome 1 remained for the subsequent analysis. 
In CONY, approximately 440 sections with 0.5 Mb each were operated in parallel for RJMCMC sampling. The 
number of possible CN statuses was assigned as 5 (CN 1, 2, 3, 4, and 5) for the single-sample analysis and 3 (copy 
loss, normal, and copy gain) for the paired-samples analysis. The other parameter settings followed the default 
settings (see Supplementary Text 1). Some commonly used tools based on read depths (with hundreds of citations 
through March 2020) were compared. The competing algorithms (CNVnator28, FREEC29, and rdxplorer36 for the 
single-sample analysis and CNVSeq35 and FREEC29 for the paired-samples analysis) used the default settings of 
each tool.

The CNVs identified via each tool were compared with the summarized lists in the Database of Genomic 
Variants6. The searching criteria for DGV were as follows: variant type = CNV, assembly = GRCh37/hg19, cohort 
name = 1000 Genomes, and the corresponding sample id. CNV regions smaller than 1,000 bp were removed. In 
summary, 36 CNV regions with 407,253 bp were reported in the DGV for NA12156, and 30 CNV regions with 
221,597 bp for NA12878. There were also 36 relative CNV regions with 515,073 bp for NA12156 that was com-
pared with NA12878, and 36 relative CNV regions with 515,073 bp for NA12978 compared with N12156. The 
numbers of basepairs and CNV regions with CNVs listed in the DGV that were also identified by the algorithms 
are reported in Table 1. In addition, various metrics for performance evaluation are shown.

In the single-sample analysis for NA12156, more than 90% of the DGV-reported CNV regions were identified 
by CONY. Notably, of the 407,253 CNV basepairs in the DGV, 371,984 bp (91.34%) was also detected via CONY. 
CNVnator and rdxplorer identified approximately 80% and 70% of the CNV positions, respectively. FREEC iden-
tified only a few validated regions. For basepairs not listed as CNVs in the DGV, rdxplorer identified only 2.28% 
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of them as CNVs while other methods identified about 10%. Disappointingly, all methods performed poorly in 
precision. Many of the CNVs identified by them were not listed as CNVs in the DGV. Results from NA12878 are 
generally similar to the findings above.

In the paired-samples analysis for NA12156/NA12878, CONY detected 23 of 36 CNV regions. Although the 
number of regions was less than that detected by CNVSeq (29 of 36), the proportion of identified CNV positions 
via CONY (73.10%) was twice that detected by CNVSeq (31.78%). Thus, CNVSeq merely identified a small part 
of each CNV region. FREEC identified only 3 validated regions, but the proportion of the identified regions 
(34.61%) was higher than that using CNVSeq. Furthermore, CONY had the lowest FPR and the highest precision 
among all compared algorithms. CONY’s precision was still low in the paired-samples analysis; it is about 10 
times higher than that from the single-sample analysis though. Analyzing paired-samples NA12878/NA12156 
leads to results similar to the findings from NA12156/NA12878.

Another two experimental samples (HG00419 and HG01595) with both low- (5.2 to 9.8X) and high- (33.6 to 
35.4X) coverage sequencing reads were also analyzed to show consistency of results across samples. These results 
can be found in Supplementary Table S1. The results from the single-sample and paired-samples analyses in both 
the low- and high-coverage sequencing data are generally similar to the findings from NA12156 and NA12878.

Overall, CONY detected many more validated CNV regions and positions in both the single-sample and 
paired-samples analyses than the comparative algorithms in the experimental data analysis. CNV positions iden-
tified by CONY but not listed in the DGV were also fewer than those by other algorithms. Among all CNV posi-
tions identified by the evaluated algorithms, many of them were not listed as CNVs in the DGV.

Algorithm performance comparisons in a simulation study.  The performance of the proposed 
procedure, CONY, was also compared with that of published methods for a single-sample analysis (CNVnator, 
FREEC, and rdxplorer) and paired-samples analysis (CNVSeq and FREEC) on simulation data. The competing 
algorithms utilized the default settings to identify the CNVs.

In the single-sample analysis, CONY performed satisfactorily in terms of overall base accuracy and base 
recall (Table 2). This comprehensive algorithm also had impressive CNV detection rates, especially for CNV 
sizes larger than 10 kb (Fig. 4a,b). The testing-based tool rdxplorer revealed great detection rates for all sizes of 
CNVs. However, the inaccurate breakpoints of the identified CNV regions yielded a low recall and high FPR. 
CNVnator was too rigorous to detect small CNVs (<10 kb), but its great performance in terms of the detection 
rates of the midsized and large CNVs contributed to its high overall base accuracy. Notably, CNVnator had high 
FPRs in detecting the absolute copy loss. FREEC had the worst performance in terms of the CNV detection rates 
for all sizes among all comparative methods. Overall, the methods had relatively high FPRs in deletion detection 
compared with duplication detection since copy loss was easier to identify than gain in sequencing platforms72. 

(%) Algorithm Overall accuracy

Copy loss Copy gain

Recall FPR Recall FPR

Single-sample analysis

CONY 99.21 99.44 0.70 97.85 0

CNVnator 99.09 99.67 0.88 99.11 0.04

FREEC 98.62 91.77 0.36 92.79 0.02

rdxplorer 97.12 93.67 0.59 82.18 0.18

Paired-samples analysis

CONY 99.86 99.50 0.02 98.82 0.01

CNVSeq 94.65 71.10 0.01 47.35 0.01

FREEC 99.72 98.49 0.06 98.90 0.07

Table 2.  Performance comparisons in the simulation study.

Sample(s) Algorithm

CNV bases CNV regions

Sample(s) Algorithm

CNV bases CNV regions

bpa Recall FPR Precision Regionb
Detection 
rate bpa Recall FPR Precision Regionb

Detection 
rate

Single- 
sample 
analysis (NA12156)

CONY 371,984 91.34% 9.71% 1.68% 33 91.67%

Single- 
sample  
analysis (NA12878)

CONY 202,607 91.43% 0.51% 1.65% 25 83.33%

CNVnator 343,308 84.30% 13.07% 1.15% 25 69.44% CNVnator 168,094 75.86% 0.54% 1.31% 11 36.67%

FREEC 86,204 21.17% 11.19% 0.34% 2 5.56% FREEC 124,272 56.08% 0.46% 1.13% 2 6.67%

rdxplorer 284,865 69.95% 2.28% 5.27% 11 30.56% rdxplorer 119,034 53.72% 2.17% 0.23% 7 23.33%

DGV 407,253 36 DGV 221,597 30

Paired- 
samples  
analysis 
(Case:NA12156/ 
Control:NA12878)

CONY 376,510 73.10% 0.74% 18.55% 23 63.89% Paired-  
samples  
analysis 
(Case:NA12878/ 
Control:NA12156)

CONY 355,947 69.11% 4.57% 0.32% 25 69.44%

CNVSeq 163,695 31.78% 15.44% 0.47% 29 80.56% CNVSeq 175,150 34.00% 0.50% 1.48% 33 91.67%

FREEC 178,282 34.61% 6.63% 1.18% 3 8.33% FREEC 230,142 44.68% 1.62% 0.59% 6 16.67%

DGV 515,073 36 DGV 515,073 36

Table 1.  Performance of CNV detection in the experimental data analysis for NA12156 and NA12878. aThe 
number of CNV basepairs in the DGV that are also identified by the algorithm. bThe number of CNV regions in 
the DGV that have any position identified as a CNV via the algorithm.
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In the paired-samples analysis, CONY was superior to the other methods in terms of CNV detection rates. While 
FREEC had slightly greater duplication recall than CONY, FREEC was significantly worse at finding small CNVs. 
CNVseq had a limited ability to detect CNVs.

In summary, CONY can detect both absolute and relative CNVs in single- and paired-samples analyses. CNVs 
with moderate to large sizes (>10 kb) can almost completely be detected by CONY. However, detecting small 
CNVs using a read-depth-based algorithm, including CONY, is challenging. The detection rates of small CNVs 
can be greatly improved by increasing the read coverage, which is demonstrated in the following results. Due to 
the poor power for detecting small CNVs for low-read-coverage data (e.g., 2.2X in our simulation), we suggest 
focusing on detecting CNVs with sizes >1,000 bp (as per the usual definition) to reduce potential false positives.

All simulations were run via the supercomputer Advanced Large-scale Parallel Supercluster (ALPS) at the 
National Center for High-performance Computing, National Applied Research Laboratories, Taiwan, with an 
AMD Opteron 6174 2.2 GHz × 4 CPU, a DDR3 ECC 128 GB of memory, and 512 nodes. In the RJMCMC proce-
dure, one chromosome was divided into several nonoverlapping sections of equal size 0.5 Mb, and the operations 
were performed in parallel. The running time corresponded to the components of the CN in each analytic section. 
If only one CN state was included in the section, then the computing time was less than 1 minute. For a section with 
complex CN components, in our experience, the greatest length of time until RJMCMC became stable was less 
than 10 minutes. The running time for the other competing approaches with complex CN components are shown 
below: rdxplorer (~4 minutes), CNVnator (~15 minutes), FREEC (10 to 20 minutes), and CNVSeq (2 to 3 hours).

Analytic section length decision.  To address the unbalanced structure of normal/variant regions in the 
genome, the whole genome can be partitioned into several nonoverlapping sections to estimate the parameters. 
The optimal section length for RJMCMC was derived via simulation. The samples generated for the algorithm 
comparisons in the above section were used. Six analytic lengths were adopted, including 60, 10, 5, 1, 0.5, and 

Figure 4.  Detection rates of different sizes of CNVs. (a) Copy loss results, and (b) copy gain results. The solid 
lines indicate the methods used for the single-sample analysis, and the dashed lines indicate the methods used 
for the paired-samples analysis.
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0.1 Mb per section. Both the CNV detection rate and the base accuracy were used to select the proper section 
lengths.

Supplementary Fig. S2 presents the CNV detection rates using various CNV sizes and section lengths. As 
shown in the figure, the detection rates of CNVs of various sizes were enhanced by reducing the analytic section 
lengths. However, enhancing the detection rate appreciably for small CNVs (<10 kb) was challenging, even after 
shrinking the section lengths. CNVs larger than 10 kb were considered to select an optimal section length. If the 
minimum requirement of the detection rate was set as 80%, then the section length should be shorter than 0.5 Mb. 
If a more severe detection rate was set, then a shorter section size was needed. In terms of CNV detection ability, 
the optimal section size was considered to be less than 0.5 Mb.

For the base accuracy, the results are shown in Supplementary Table S2. The recall was improved by shorten-
ing the section lengths. However, the FPRs dramatically increased when the sections were too small to provide 
sufficient evidence. In terms of the overall base accuracy, approximately 0.5–1 Mb (for single-sample analysis) and 
0.1–0.5 Mb (for paired-samples analysis) were the proper section lengths for achieving peak accuracy. Based on 
the two performance measurements mentioned above, the recommendations for the section length were simpli-
fied to 0.5 Mb, which was also adopted in our experimental data analysis and simulation studies.

Window read-depth estimation.  In this study, an alternative method was adopted for window read-depth 
estimation to enhance the completeness of the genetic information. Traditionally, the middle or start position 
of a read is located in a specific window, and the read is counted for the depth of this window. However, this 
strategy might underestimate the contribution of reads that span many windows. In our procedure, a summation 
approach was used. The read depths of each base were generated using the piling procedure in SAMtools, and 
then, the base depths in the specific window were summed as the window read depth. Supplementary Table S3 
provides evidence that the summation method can improve both the CNV detection rate and the overall accu-
racy compared with the traditional representative-position method in single-sample analyses, especially for low 
coverage sequencing.

Read coverage.  Because the NGS platform is still more expensive than other available technologies, 
researchers might process several samples in a single experimental run, which can result in low coverage. The 
depths based on sparse read coverage may lead to insufficient evidence for CNV identification. To evaluate 
the coverage effect, we followed the simulation settings mentioned above and generated 100 cases that were 
sequenced with a high coverage (22×). The CNV detection rates and base accuracies in the single-sample analysis 
are listed in Supplementary Table S3. Obviously, a great improvement was achieved in terms of CNV detection 
capability with high-coverage sequencing, especially for the detection of small variants. The impressive detec-
tion rates and outstanding recalls were attributed to the sufficient data information, but the false discoveries are 
expected to be accompanied by additional variations. Notably, no obvious differences were observed in the overall 
base accuracies between the low- (99.21%) and high–coverage (98.74%) data by CONY.

Two experimental samples (HG00419 and HG01595) from the 1000 Genomes Project, which were sequenced 
with both low (5.2 to 9.8X) and high (33.6 to 35.4X) coverages, were also analyzed to evaluate the coverage effect 
(Supplementary Table S1). High-coverage sequencing generally achieved better base accuracy and CNV detection 
rates in both single-sample and paired-samples analyses than low-coverage sequencing did for all tested algo-
rithms. The base recall from CONY in the single-sample analysis is an exception, where high-coverage sequenc-
ing did not do better than low-coverage sequencing.

Discussion
Based on a comprehensive Bayesian hierarchical model and an efficient RJMCMC inference algorithm, the pro-
cedure proposed in this article was proven to be robust and precise for CNV detection. This functional tool can 
be applied for different purposes, including the detection of absolute and relative CNVs under single-sample and 
paired-samples designs. Samples from the 1000 Genomes Project were analyzed. CONY detected more CNVs 
and positions validated by the DGV database than the compared algorithms. In the simulation studies, the esti-
mation methods performed well in terms of the overall base accuracy, recall and FPR for both single-sample and 
paired-samples analyses. Additionally, the CNV detection rates were effectively improved by selecting the proper 
analytic section length in the RJMCMC method and by adopting summation window read-depth estimation. The 
detection rates for small CNVs were still restricted even with suitable section lengths and depth estimation. In 
addition, we showed that the detection of small CNVs can be greatly improved by increasing the read coverage.

Although whole genome sequencing (WGS) is a comprehensive platform for exploring potential variants, tar-
get exome sequencing (TES) is an efficient choice because human exons constitute approximately 1% of the total 
genome73 but over 85% of genomic disease-causing regions74. Exome sequencing provides effective information 
with high coverage on a limited budget. Read generation with WGS and TES follows distinct procedures due to 
the concentrations of DNA, the environments of hybridization and the methods of sequencing. Because of these 
experimental differences, the algorithms used to detect CNVs from WGS28–30,35,36 and TES29,31–34,75 are distinct, 
with alternative preprocessing, bias corrections and model assumptions.

WGS can detect more CNVs and precise breakpoints due to the complete genome scanning. WGS-based 
methods consider the continuity of the genomic space, and the CNVs are estimated from the read depths across 
the genome with few significant bias corrections, such as for potential PCR duplicates and GC content. In con-
trast, the prediction of exact CNV breakpoints and small CNVs by segmentation algorithms in interrupted target 
exome sequences is challenging. In addition, exon-specific biases, such as exon sizes and batch and background 
effects, need to be corrected via multiple sample comparisons and/or additional adjustment steps. Therefore, the 
existing methods of WGS and TES seldom have commonalities. Modifying our approach for both WGS and TES 
under a common model framework will be a challenge for future research.
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Data availability
The datasets used and analyzed in this study are available from 1000 Genomes Project (http://www.1000genomes.
org). R code that implements the proposed procedure is available at https://github.com/weiyuchung/CONY, with 
direct links for downloading available at https://github.com/weiyuchung/CONY/archive/master.zip.
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