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Tracking respiratory mechanics 
around natural breathing rates via 
variable ventilation
Samer Bou Jawde1, Allan J. Walkey2, Arnab Majumdar1, George T. O’Connor2, 
Bradford J. Smith3, Jason H. T. Bates4, Kenneth R. Lutchen1 & Béla Suki1 ✉

Measuring respiratory resistance and elastance as a function of time, tidal volume, respiratory rate, 
and positive end-expiratory pressure can guide mechanical ventilation. However, current measurement 
techniques are limited since they are assessed intermittently at non-physiological frequencies or involve 
specialized equipment. To this end, we introduce ZVV, a practical approach to continuously track 
resistance and elastance during Variable Ventilation (VV), in which frequency and tidal volume vary from 
breath-to-breath. ZVV segments airway pressure and flow recordings into individual breaths, calculates 
resistance and elastance for each breath, bins them according to frequency or tidal volume and plots 
the results against bin means. ZVV’s feasibility was assessed clinically in five human patients with acute 
lung injury, experimentally in five mice ventilated before and after lavage injury, and computationally 
using a viscoelastic respiratory model. ZVV provided continuous measurements in both settings, 
while the computational study revealed <2% estimation errors. Our findings support ZVV as a feasible 
technique to assess respiratory mechanics under physiological conditions. Additionally, in humans, ZVV 
detected a decrease in resistance and elastance with time by 12.8% and 6.2%, respectively, suggesting 
that VV can improve lung recruitment in some patients and can therefore potentially serve both as a 
dual diagnostic and therapeutic tool.

Respiratory resistance (R) and elastance (E) in mechanically ventilated patients relate to disease severity and 
progression, and patient response to treatment or changes in ventilator settings1–3. The manner in which R and 
E vary with frequency can reflect lung heterogeneity, a sensitive indicator of pathology4. Thus, a technique that 
can continuously and reliably assess R and E at physiological frequencies and tidal volumes (VT’s) could advance 
the treatment of mechanically ventilated patients. For example, increases in R can reveal bronchospasm5 or a 
blocked endotracheal tube6,7, while increases in E can reflect pulmonary edema and alveolar derecruitment8,9. 
Tracking continuously R and E including their frequency dependencies could improve patient management 
via detection of airway obstruction in asthma, or optimization of mechanical ventilator settings for preventing 
ventilation-induced lung injury10–15.

Nevertheless, estimates of R and E are rarely performed in clinical practice16, likely due to current strategies 
of intermittent end inspiratory occlusion measurements that require deep patient sedation or paralysis or the 
need for specialized equipment10,17. In order to adjust ventilation settings, clinicians are currently guided by gas 
exchange parameters, breath-to-breath peak pressures, and plateau pressures16,18–20. However, these measures lack 
the ability to reveal whether abnormalities in mechanics are related to altered R or E and often require a heavily 
sedated or paralyzed patient9,21. The limitations in measuring R and E are not only present in the clinical setting 
but also extend to research settings in animals, where for example, commercial ventilators have to pause ventila-
tion and deliver non-physiological waveforms to assess respiratory mechanics.

Here, we report the development of a novel approach – termed ZVV – to provide continuous measurement of 
R and E at physiologically relevant frequencies and tidal volumes without requiring additional ventilator equip-
ment, patient manipulations, or ventilation interruption. ZVV exploits a relatively new approach to mechanical 
ventilation known as Variable Ventilation (VV). VV was introduced in 1996 by Lefevre et al.22 with the notion 
that natural breathing varies on a breath-by-breath basis, but mechanical ventilation eliminates this variability. 
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They showed that introducing breath-by-breath variability in tidal volume into mechanical ventilation improved 
gas exchange in an animal model of acute lung injury. Current clinical ventilators, however, only utilize conven-
tional ventilation (CV) in which both the delivered tidal volume and respiratory rate are fixed. On the other hand, 
VV provides physiological variation in tidal volumes and breathing frequencies on a breath-by-breath basis, 
which, in a mathematical model predicted to improve recruitment of atelectatic lung regions23, confirmed later 
by many animal studies24–37. Hence, with a distinct amplitude and frequency at each breath, the lung is exposed 
to multiple frequencies and tidal volumes surrounding those of natural breathing without the requirement of 
additional equipment.

We hypothesized that the variability present in VV can be utilized to assess dependencies of R and E on 
both tidal volume and frequency. To this end, we analyzed pressure-flow data previously collected during VV 
from patients with mild acute respiratory distress syndrome (ARDS) and mechanically ventilated mice under 
controlled experimental conditions before and after lung lavage as an ARDS model. Finally, we validated ZVV’s 
accuracy with computational modeling.

Methods
Measurement of respiratory impedance (Z) via Variable Ventilation (VV).  The ZVV (Z + VV) 
approach is introduced in Fig. 1 showing recordings of airway opening flow ( V , Fig. 1A) and pressure (P, Fig. 1B) 
tracings of two consecutive cycles from a patient. For the 2nd cycle, the respiratory impedance (Z) is calculated by 
dividing the Discrete Fourier Transform (DFT) of ∆P, the pressure difference between P and positive end-expir-
atory pressure (PEEP), with that of V . Respiratory resistance (R) and elastance (E) are evaluated at the spontane-
ous breathing frequency (FR) as the real part of Z and the imaginary part of Z multiplied with −2πFR, respectively 
(Fig. 1B). Calculating FR (Fig. 1C) and E (Fig. 1D) for each breath, E is plotted as a function of FR (Fig. 1E). By 
dividing the data in Fig. 1E into 5 equally-spaced FR bins, a final graph of the mean ± standard error is plotted 
(Fig. 1F). A similar process is carried out for R (Fig. 1F). In order to avoid systematic and random errors corre-
sponding to faulty breath detection and non-physiological values, the data are filtered by setting a minimum and 
maximum FR, R and E and excluding values outside the range. Then, for each bin, R and E values that are 2 stand-
ard deviations away from the mean are removed. The means and deviations of R and E are then recomputed.

Similarly, R and E can be binned as a function of VT. Furthermore, changes in mechanical function with 
respect to different time periods (T) can be obtained by separating the total data into different time segments. 
To capture the dependence of R and E on VT, FR, and T, they are plotted against various bin combinations within 
each time segment.

Human clinical trial.  The human data analyzed in this study, was previously collected from five male patients 
with mild ARDS (see Supplemental Table S1 for biographic data). The protocol to ventilate patients with VV was 
approved by the FDA (https://clinicaltrials.gov/ct2/show/NCT01083277) and the IRB of Boston University 
School of Medicine and all methods were carried out in accordance with relevant guidelines and regulations for 
human subjects. Additionally, informed consent was obtained from all subjects or a family member in case the 
patient was not able to sign the consent form. The patients were mechanically ventilated using a modified venti-
lator capable of delivering VV (Puritan Bennett 840 Ventilator, Covidien. Ireland, Dublin) with a graphical user 
interface to monitor outputs. A custom-designed computer program (LabVIEW, National Instruments, Austin, 
TX) was used to determine the ventilation settings. The ventilation was divided into two sections, one with CV 
and another with VV delivered in random order with a 1 h washout period between them using CV. However, 
ZVV requires VV, and thus, for the scope of this study, only the VV data is reported. All patients received seda-
tives with the goal sedation of Riker level 3 or 4. At the beginning of the VV session, the respiratory therapist set 
up the baseline ventilation parameters including tidal volume (VT,B) and respiratory rate (FB) based on biometric 
data and patient condition. A range of tidal volumes was calculated such that the peak inspiratory pressure (PIP) 
was uniformly distributed within a range of ±30% around the mean PIP corresponding to VT,B

23. This was 
achieved by first delivering 3 cycles with a VT = 1.4*VT,B and recording P and V  in order to obtain a partial 
pressure-volume curve. For each VV cycle during the protocol, a PIP was randomly chosen from this distribution 
and the pressure-volume curve was used to compute the corresponding VT to be delivered. To maintain constant 
minute ventilation on a cycle-by-cycle basis, FR was computed for each cycle as FR = FB*VT,B/VT. Finally, for 
patient comfort, the inspiratory time was allowed to vary only by 10%.

P and V  were recorded (50 Hz) by the ventilator and saved for off-line processing. The V  tracing was used to 
determine the beginning and end of every breath, from which VT and FR were computed. The recordings were 
then split into two equal time periods, and the ZVV analysis described above was separately carried out on both 
the 1st (T1) and 2nd (T2) period. R and E in each section were grouped according to 5 frequency bins allowed by 
the cycle-by-cycle fluctuations in FR and plotted for every patient as a function of FR. The full set of data was also 
binned into a low VT (VT,1) and high VT (VT,2) with the mean VT separating the two VT bins. Since the recorded 
data length varied between patients, the time analyzed varied as well: per period, the time interval ranged from 
23 to 64 minutes with the number of breaths between 200 and 900.

Mouse experiments.  The experimental protocol was approved by the Institutional Animal Care and Use 
Committee of Boston University and all methods were carried out in accordance with relevant guidelines and 
regulations for the care and use of animals. The experimental setup was described previously38. However, utiliz-
ing the data for ZVV is presented here for the first time. Briefly, mice (C57BL/6, n = 5, 29.8 ± 2.0 g) were anaes-
thetized, tracheostomized, and ventilated (flexiVent Legacy, Scireq, Montreal, CA) at VT,B = 8 ml/Kg using VV 
with a specific mouse-optimized VT distribution24. A differential pressure transducer (Biopac Systems, Model 
TSD160A) recorded pressure drop across a lab-designed flow sensor38, while a gauge pressure transducer (WPI, 
07B PNEU05) was connected distal to the sensor to measure airway opening pressure. The signals were digitized 
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(WPI, DataTrax) at 500 Hz. After delivery of 10 min VV, mice were disconnected from the ventilator and the 
lungs were lavaged with 0.1 ml warm phosphate-buffered saline instilled into the trachea. VV was then resumed 
with the same settings for 20 min. The purpose of the lavage was to demonstrate ZVV’s ability to capture changes 
in R and E due to ARDS. To assess respiratory mechanics using the ventilator via the standard forced oscillation 
technique (FOT, see Supplement A for details)39, at the end of each VV session, the ventilator delivered 4 optimal 
ventilator waveform (OVW, see Supplement B for details)40 perturbations separated by 12 seconds of CV.

ZVV was carried out both before and after lavage. The periods T1 and T2 included the first and last 5 minutes 
of VV, respectively. In addition, using all the VV time data before and after lavage separately (pooling T1 and T2), 
the mean values of R, E, and FR were calculated. The evaluated mean of FR was used to calculate the equivalent R 
and E from the OVW data. Specifically, the data obtained from OVW was used to fit the constant-phase model 
written as41,42:

Figure 1.  The ZVV approach. Airway opening flow (A) and pressure (B) time series of two consecutive cycles 
with different VT’s from a patient. Notice that the two breaths are different due to the statistically defined pattern 
of breaths in VV. The flow is used to detect breath cycles as shown in the 2nd cycle flow data (red solid circles). 
The corresponding Discrete Fourier Transforms (DFTs) are shown in the insets. Using the transforms, R and E 
are computed from the complex ratio of pressure and flow, Z, as the real part and −2πFR times the imaginary 
part, respectively. The pressure fit tracing is also plotted (red line). (C) FR and (D) E for every breath as a 
function of time. (E) E plotted as a function of FR can be divided into five equally-spaced frequency intervals 
separated by red dashed lines and (F) binned into histograms showing the mean and standard error at every bin 
center. Similarly, R is binned as a function of FR. (D) shows a decrease in E with time, while (F) shows that E is 
mainly constant unlike R which decreases with frequency.
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where RN, Iaw, G, and H are the Newtonian resistance, airway inertance, tissue damping, and tissue elastance, 
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π ( )atan H
G

2  and ω is the circular frequency (rad/s). Note that the circular frequency ω is normal-
ized with ω = 10  radian so that ω = ω
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0
 is used in Eq. (1) in order to obtain meaningful units for G and H43. For 

the range of frequencies applied, ≈I 0aw . Thus, the equivalent 2-element resistance (R) and elastance (E) at the 
mean normalized circular frequency ωm corresponding to the evaluated mean of FR are written as:

ω
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These values obtained from 4 OVW recordings were averaged and compared to the ZVV-derived ones.

Computational modeling.  The calculation of respiratory impedance (Z) with Fourier analysis requires that 
the measured system is in a steady state. However, since both breathing frequency FR and tidal volume VT vary 
from cycle to cycle during VV, the mechanical state of the respiratory system is also affected by transients. To test 
how such transients influence the estimated values of respiratory resistance (R) and elastance (E) using the ZVV 
approach, a linear viscoelastic Kelvin body was utilized to represent the lung44.

The mechanical model consisted of a dashpot (R1) in series with a spring (E1) and both in parallel with another 
spring (E2). The parameter values (R1 = 60 cmH2O.s.L−1, E1 = 20 cmH2O.L−1, and E2 = 5 cmH2O.L−1) were 
selected so as to replicate the magnitudes of R and E observed in the human data.

The equivalent resistance (Rk) and elastance (Ek) of the Kelvin body can be computed as follows45:
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Using a minimum and a maximum FR, and a sequence of VT’s similar to those in the human experiments, a 
time series of simulated VV was constructed by stitching the individual cycles together each having a different 
volume amplitude (Vo) and FR creating a volume signal (V) of the form:

π= − ∆ +V t V F t V( )
2

cos(2 ( ))
2 (6)

o
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o

where ∆t represents the difference in time from the onset of each breath cycle. The flow ( V) was computed as the 
volume trace differentiated with respect to time. Next, the pressure difference (∆P) with respect to the positive-end 
expiratory pressure (PEEP) was obtained for each breath using the analytical solution of the Kelvin body given by:
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where ∆Pi is the value of ∆P at the start of the current breath. Note that due to the variable nature of the ven-
tilation, the pressure difference includes both steady-state and transient pressure contributions from previous 
breaths. In particular, the last 2 terms in Eq. (7) are the conventional resistive and elastic pressure drops respec-
tively whereas the first 2 terms represent the transients.

In order to account for the transient effects, we approximate the transient part of ∆P, the first 2 terms in Eq. (7) 
denoted by ∆PT, to vary linearly from the beginning to the end of each breath as follows:

π∆ = ∆ − ∆P t F P P t( ) 2 ( ) (8)T R f i

where ∆Pf is the value of ∆P at the end of the breath. Finally, the estimated steady-state pressure difference (∆Ps) 
of the current breath is computed as:

∆ = ∆ − ∆P t P t P t( ) ( ) ( ) (9)s T

The concept behind this correction is that in the steady-state, the end of each breath should be the same; thus, 
any variation in pressure at the end of the breath is due to transients. While these transients might take different 
functional forms (e.g., not necessarily exponential as in the Kelvin body model), a linear approximation is the 
simplest. It is worth mentioning that for a pressure-controlled ventilation, a steady-state volume can be estimated 
in a similar fashion for the correction of transients.

The ZVV procedure was carried out to reconstruct the Kelvin body’s frequency dependent Z from the sim-
ulated VV data. To observe the effects of the transients and breath-to-breath variations in FR/VT, a secondary 
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binning was carried on both R and E. Specifically, after binning the data across FR, the R and E spectra were 
further binned based on the time difference in periods between consecutive breaths (∆Tb). Then the correction 
method to estimate a steady-state pressure difference (∆Ps) between absolute airway pressure and the PEEP in 
order to minimize the effects of transients was applied. To test the robustness of this correction (Eqs. (8) & (9)), 
starting from the baseline simulation (number of breath = 500 breaths, 10 ≤ FR ≤ 20 breath/min, minute ventila-
tion = 7.5 L/min), an additional 14 sets of simulations were carried out in which only one parameter was changed 
at a time. For each simulation, the mean values of R and E using both ∆Ps and ∆P were computed and grouped 
into 8 frequency bins and the errors with respect to the Kelvin body (Eqs. (4) & (5)) were calculated.

Statistical Analysis.  All data analyses and statistical tests were performed using MATLAB R2018b 
(MathWorks, CA). For the human data, to account for the effects of FR, T, and any interaction between these fac-
tors, a 2-way Anova was applied to the data set. For the Anova, the FR bins were categorized from 1 to 5 represent-
ing the lowest and largest frequency bin centers, respectively, while T was categorized to 1 and 2 corresponding 
to T1 and T2, respectively. For mice, a 3-way Anova was used with the additional effect of lavage. Following the 
3-way Anova, a multiple comparison test (Tukey’s honestly significant difference) was used to separate the effects 
of lavage within T. Paired t-tests were used to compare values of R and E from VV and OVW. Rank-sum tests were 
used to compare VT dependences. Statistical significance was accepted at p < 0.05.

Notation of prior abstract publication/presentation.  Part of this work was given as a poster presenta-
tion at the 2018 annual meeting of the Biomedical Engineering Society (October 17–20, Philadelphia, PA) and 
as an oral presentation at the 2019 annual meeting of the American Thoracic Society (May 17–22, Dallas, TX).

Clinical Trial Registration Number.  NCT01083277.

Results
Human Clinical Trial.  Applying ZVV to all patients made it possible to construct the dependence of R and E 
on FR and VT (Fig. 2). ZVV revealed both general trends as well as patient specific results within the population. 
For instance, R and E decreased from T1 to T2 in all patients while the amount of drop varied among patients. 
While R decreased with increasing FR, changes in E were patient specific. R increased with VT in all patients in 
both T1 and T2, but changes in E were again patient specific with patients 3–5 displaying an increase during both 
T1 and T2. The full statistics, summarized in Table 1, show that in all 5 patients, E decreased significantly with T 
(p < 10−5). In 4 patients, R also decreased significantly (p < 0.005) from T1 to T2. In all 5 patients, FR dependence 
of R and E was statistically significant, but the interaction between FR and T was significant only in 2 patients.

Mouse experiments.  Compared to the human data, ZVV under experimentally controlled conditions 
revealed qualitatively similar as well as mouse specific results (Fig. 3 & Supplementary Table S2). Interestingly, 
lavage reversed the effect of T: before lavage, E increased, while following lavage, it decreased from T1 to T2 
(Supplementary Table S3).

Next, we compared R and E from ZVV to those obtained using the OVW-based FOT (Supplements A&B)39,40. 
The means and standard errors of R and E, in units of cmH2O.s.ml−1 and cmH2O.ml−1, respectively, calculated 
using ZVV were 2.31 ± 0.36 and 38 ± 3.1 before lavage and 2.23 ± 0.18 and 49 ± 1.9 after lavage. The correspond-
ing values obtained from OVW at the mean FR were 0.93 ± 0.33 and 35 ± 0.8 before lavage and 0.96 ± 0.17 and 
48 ± 0.7 after lavage, respectively. While E from ZVV and OVW did not differ, the difference in R was significant 
(p = 0.036 and p = 0.002 before and after lavage, respectively).

Computational Modeling.  The extent to which the transients affected ZVV is summarized in Fig. 4. 
There was a systematic error in R that increased with ∆Tb, the difference in time periods in consecutive breaths, 
resulting in an overestimation at low FR but an underestimation at high FR (Fig. 4A). The error in E was much 
smaller (Fig. 4B). However, applying our correction for transient pressures (∆Ps) drastically reduced the error in 
R (Fig. 4C) from 19% to −1.9% for an FR close to 10 breath/min and from −42% to +1.6% for an FR close to 20 
breath/min. Nevertheless, E was properly estimated using both techniques with an error less than 2% (Fig. 4D). 
The proposed correction revealed the same findings and error reduction when the parameters of the model were 
varied (Supplementary Table S4). Finally, we also simulated the case when the algorithm missed the correct 
starting point of a breath randomly by up to 2 points (corresponding to a maximum absolute time difference of 
0.04 seconds using the clinical trial sampling frequency of 50 Hz). The effects of this was negligible on the final 
results (see Supplementary Fig. S3 in Supplement D).

Discussion
In this study, we introduced ZVV, an approach for continuously estimating a subject’s R and E at physiological 
breathing rates and tidal volumes during VV. We demonstrated ZVV’s feasibility in a clinical setting as a diagnos-
tic potential in patients with mild ARDS, in an experimental setting using a mouse model of ARDS, and through 
computational modeling to validate the accuracy of the measured values. Our analysis demonstrated that ZVV 
can accurately and continuously detect changes in functional lung mechanics even when they are minor, without 
requiring any patient or ventilator manipulations. Furthermore, our preliminary results suggest that VV has the 
potential to not only serve as a diagnostic tool, but to provide benefits to patients via lung recruitment during 
ARDS.

The main concept behind ZVV is to utilize the breath-by-breath variations in tidal volume and respiratory 
rate provided by VV. It has been shown that a standard waveform does not have sufficient energy at frequencies 
higher than the breathing rate to allow estimating resistance and elastance and may include nonlinearities which 
can distort estimates at the higher harmonics46. Thus, in general, it may not be possible to get further frequency 
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information from a single cycle of CV or even VV beyond the breathing rate. In other words, the technique itself 
can be applied to data collected during CV, but it will only provide resistance and elastance values at a single tidal 
volume and frequency (cycle’s breathing rate). In contrast, ZVV on data from VV produces a spectrum of values 
with specific physiological information that may provide more insight to the clinician.

Figure 2.  Human ZVV analysis results showing the binned means and standard errors of R and E as a function 
of FR (solid lines) and VT (bar chart insets) for both the first and second halves of the time recording (T1 and 
T2). Notice that the lowest FR in patient 2 was greater than the highest FR in all other patients. Note also that 
the error bars are often smaller than the symbols. (*): significance between VT within same T. (^) and (#): 
significance from T1 to T2 for VT,1 and VT,2 (VT,2 > VT,1).
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ZVV’s primary limitation is that it should be applied to ventilation-driven breath cycles with zero intrin-
sic PEEP (iPEEP) unless the esophageal pressure and iPEEP are measured and accounted for47–50. Otherwise, 
the patient’s spontaneous breathing (or muscular activity) and iPEEP will affect the estimated parameters. 
Nevertheless, because there are so many breath during a longer term ventilation, VV still provides ample data 
to apply the technique without the extra complications of accurately accounting for these. Notice, for example, 
that patient 3 has almost half the number of breaths as patient 1 but still provides smooth curves and estimates. If 
the patient regularly attempts to breathe, then measurement of esophageal pressure may be required to separate 
ventilator-drive from active muscle contributions. Some ventilators can also measure iPEEP, which can also be 
included in the analysis. In our study, the ventilator was not designed to detect patient respiratory effort or iPEEP, 
and thus related errors may have been included in the resistance and elastance estimates. However, we assumed 
that these were the same across time and affected all measurements equally.

A further limitation is that ZVV requires ventilators delivering VV. Adding this feature is practical, requiring 
only software modifications, and encouraging since VV provides continuous recording of mechanical parameters 
which are useful for tracking changes in lung function during any intervention or drug testing. This will also allow 
further investigation into VV’s possible potential of being clinically therapeutic.

Another limitation is attributed to the fact that ZVV analyzes the full breath including passive expiration. To 
examine how this may affect the results, a time domain analysis was also applied (see Supplement C for details). 
The main results demonstrated similar trends without major differences between the time-domain and the 
ZVV-derived mechanical parameters (Supplementary Fig. S1).

For the patients, we do not have a gold standard such as the FOT to which ZVV can be compared. 
Nevertheless, the results in mice comparing ZVV and OVW together with the computational modeling imply 
that ZVV provides accurate assessments of respiratory system parameters.

Finally, there have been several developments in monitoring E continuously in the time domain2,51. While 
these approaches assume a model structure, which may incorrectly represent respiratory mechanics, ZVV, being 
a frequency domain-based approach, requires no predefined model. Furthermore, since the essence of Fourier 
analysis is to separate a signal’s inherent frequencies, ZVV can reduce the signal processing time because it might 
not require filtering of the waveforms as is often done in time domain. This may allow live tracking of R and E of 
patients in the future. Compared to other frequency domain techniques (i.e. FOT), ZVV estimates R and E under 
physiological conditions since it utilizes the ventilator’s breathing waveform.

Human Clinical Trial.  From Fig. 2 as well as Table 1, it is observed that the data obtained from ZVV are 
smooth having small error bars with sufficient quality to allow fitting of parametric models. This is because the 
binning process and the breath selection criteria partition and average the data over a relatively long time period. 
Thus, abnormal breaths which might have been missed by the algorithm or due to the patient’s own attempts to 
breathe have little effect on the final R and E spectra. For example, it is worth noting that patient 5’s E spectrum is 
least smooth and this may be attributed to patient-ventilator asynchrony.

The decrease in R and E from T1 to T2 in the patients implies that VV induced an improvement in lung 
mechanics. Indeed, some patients showed minimal yet statistically significant improvements. Surprisingly, R in all 
patients, and E in most patients, increased with VT for both T1 and T2. While the increase in R can be attributed 
to nonlinear flow dynamics in the airways, the increase of E is less expected, yet it has been reported previously in 
patients52. This suggests that some recruited regions may have been over ventilated as higher tidal volumes reach 
the more nonlinear upper acinar pressure-volume curve. Regardless of the extent and cause of improvement, the 
ability to monitor the response to treatment or changes in ventilation settings provides a quantitative personalized 
approach to clinical ventilation. As Table 1 demonstrates, even a small improvement (or deterioration) in res-
piratory mechanics can be detected by ZVV. This has important implications for treating ARDS patients. Future 

T1 T2 T1 Vs. T2 p-values

Patient
Time Studied 
(min)

Number of 
Breath Mean

Standard 
Error

Number of 
Breath Mean

Standard 
Error (T2-T1)/T1 FR T T*FR

Respiratory Resistance (cmH2O.s.L−1)

1 107 677 10.8 0.05 688 8.9 0.03 −18.2% <10−80 <10−100 0.022

2 47 639 8.8 0.05 608 7.6 0.04 −13.2% <10−100 <10−50 0.26

3 60 327 10.58 0.063 419 10.56 0.054 −0.2% <10−100 0.4 0.71

4 120 895 10.13 0.028 888 10.07 0.028 −0.5% <10−100 <10−5 0.060

5 129 482 7.2 0.15 203 4.9 0.23 −31.8% <10−50 0.0049 0.019

Respiratory Elastance (cmH2O.L−1)

1 107 681 16.1 0.06 683 15.0 0.05 −6.4% <10−10 <10−30 0.0005

2 47 637 43.6 0.20 603 41.0 0.17 −6.0% <10−150 <10−30 0.020

3 60 326 17.7 0.07 423 16.9 0.06 −4.6% <10−5 <10−10 0.80

4 120 900 19.5 0.03 898 18.8 0.03 −3.3% <10−10 <10−30 0.080

5 129 487 13.8 0.30 199 11.6 0.52 −15.8% 0.0043 <10−5 0.34

Table 1.  Summary of human acute lung injury results. Note that the differences in the number of breaths used 
to evaluate R and E are due to removing absolute values larger than the mean plus two standard deviations for 
each parameter independently.
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Figure 3.  Mouse ZVV analysis results showing the means and standard errors of R and E as a function of FR 
and VT (bar charts insets) for T1 and T2 before (solid lines) and after (dashed lines) lavage. With respect to 
FR, R showed a decrease in all mice, while E increased in 4 out of 5 mice before and after lavage. With respect 
to VT, expect for mouse 1, R increased while E decreased significantly with increasing VT both in T1 and T2 
before and after lavage. Following lavage, E increased in all mice while R was subject specific either decreasing 
or increasing. However, the effect of T on E before and after lavage was different (Supplementary Table S3). 
Although the percent changes were small (<10%), they were statistically significant in 4 out of 5 mice. (*): 
Significance between VT within same T. (^) and (#): significance between T1 and T2 for VT,1 and VT,2 before 
lavage. (*) and (^): significance between T1 and T2 for VT,1 and VT,2 after lavage. (<) and (+): significance 
before and after lavage during T1 for VT,1 and VT,2. (—) and (>): significance before and after lavage during T2 
for VT,1 and VT,2.
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studies could benefit from ZVV by tracking responses to clinical maneuvers in ARDS such as surfactant therapy, 
PEEP optimization, or prone positioning.

The decrease in R and E with time signifies improvement in patient condition. It is likely that VV itself induced 
this improvement for the following reasons. First, the study was administered when patients were in a stable 
condition and VV was always preceded by CV. Therefore, while statistically speaking improvement and dete-
rioration would be equally likely, all 5 patients showed a decrease in both R and E. Second, previous studies 
provided evidence of improvement in lung mechanics, gas exchange, as well as reduction in ventilator-induced 
lung injury following VV compared to CV in both healthy and injured lungs of many animal models including 
pigs, mice, rats, and sheep24–37. Clinically, VV was also shown to improve gas exchange and respiratory mechan-
ics53, improve patient-ventilator synchrony54, and reduce inflammatory response55. The present results support 
that VV could also improve lung physiology in human patients with mild ARDS. The most likely mechanism by 
which VV improves lung mechanics is recruitment23 and enhanced surfactant secretion31,32. To our knowledge, 
only one study applied VV in human subjects during abdominal surgery which did not result in any physiological 
improvement56; however, the subjects had normal lungs and the results are similar to our mouse data before lav-
age. Another possibility is that the ventilation time and/or settings were suboptimal for improvements to occur. 
Regardless, our findings provide preliminary results that encourage further investigation into the therapeutic 
effects of VV in human subjects. For future application of ZVV in human patients, VV’s utility could be extended 
from a potential treatment strategy into a powerful diagnostic tool as well. This is not the first study to propose 
VV as a diagnostic tool. Smith & Bates57, through the use of modeling, demonstrated that breath-to-breath varia-
tions inherent to VV are adequate for a numerical optimization algorithm that captures lung recruitment dynam-
ics and derecruitment in healthy and injured mice. Their findings support VV’s ability to identify the extent of 
lung injury in ARDS. The real-time coupling of such models with ZVV could provide further insight into lung 
mechanics and optimized ventilation settings.

Mouse experiments.  Thammanomai et al.33 reported that E remained fairly constant during VV while it 
linearly increased with time during CV in mice subjected to acute lung injury via HCl instillation. Our ZVV find-
ings are in agreement with that study. In particular, they showed that E remained fairly constant after ~15 minutes 
of VV. Supplementary Fig. S2 plots the ZVV time binned data before and after lavage. As in their experiments, 
our data also show that E reached a plateau only after lavage and specifically after about 5 minutes of ventilation 
in mice 1, 2 and 5. More importantly, there is a minor but statistically significant improvement from T1 to T2 

Figure 4.  Kelvin body simulations. R (A) and E (B) as a function of FR and ∆Tb, the difference in the periods 
between consecutive breaths (different colored curves). The black dashed line is the theoretical impedance 
and the solid colored lines are obtained from the breath-by-breath ZVV analysis. Curves with different colors 
represent cycles corresponding to different ∆Tb. The R and E irrespective of ∆Tb are plotted in the insets with 
and without pressure correction (∆P and ∆Ps, respectively). Percent errors are shown with respect to theoretical 
steady-state values for R (C) and E (D) as a function of FR with (∆Ps) and without (∆P) transient pressure 
adjustment.
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after lavage (Supplementary Table S3). Unlike the patients, the therapeutic effects of VV are more apparent in 
mice since before lavage there was a slight increase in E attributed to progressive derecruitment, but following 
lavage there was a decrease indicating VV-induced recruitment. Similar to the patients, R mainly increased with 
increasing VT. However, opposite to the patient data, E decreased with increasing VT suggesting in this case either 
alveolar recruitment or inverse tidal volume dependence58,59.

We also found differences between R and E from ZVV and OVW; however, only the former was significant. 
The OVW provides instantaneous results whereas the ZVV produces an average across many breaths. A more 
likely reason for the difference in R is due to how nonlinearities contribute to the FOT during OVW and ZVV. 
Higher frequency data in the OVW approach are estimated from the OVW’s small-amplitude components. In 
contrast, values from ZVV are obtained at much larger breathing amplitudes. This supports the idea that different 
techniques result in different assessments60 and therefore ZVV might be more precise since it assesses R and E at 
breathing frequencies.

Computational Modeling.  Calculating Z using Fourier analysis requires that the system be in a steady 
state which is not the case due to cycle-to-cycle variations leading to transients during VV. After accounting for 
the transients through a simple linear correction in pressure, the error was reduced by an order of magnitude. 
The correction is simple and can be carried out automatically. Furthermore, based on our modeling simulations 
(Fig. 4A), it can be seen that simply discarding those breaths from the calculations that have an FR much larger 
or smaller compared to the previous cycle will significantly reduce the bias due to transients. However, for E, 
the difference was consistent and negligible even without correction (<2.5% in either case). Furthermore, E is 
more often used to guide mechanical ventilation since it reflects recruited alveolar units2,12,13,61. The frequency 
dependence of E in turn can reflect lung heterogeneity62 which might also provide useful information on how 
to set ventilation parameters. Hence, the frequency spectrum of E could be of significant relevance to clinicians, 
while the error in R may not be of concern in clinical applications.

Conclusion
We have introduced ZVV, a technique to assess respiratory mechanics around the breathing frequencies in 
mechanically-ventilated subjects using Variable Ventilation. The ZVV approach is an accurate, experimentally 
and clinically-practical, and a personalized diagnostic tool during Variable Ventilation. This method also pro-
vided preliminary results that Variable Ventilation may improve lung mechanical conditions in patients with mild 
acute respiratory distress syndrome, and thus encourages further investigation.

Data availability
The datasets generated during and/or analyzed during the current study are available from the corresponding 
author on reasonable request.
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