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Machine learning for characterizing 
risk of type 2 diabetes mellitus in 
a rural Chinese population: the 
Henan Rural Cohort Study
Liying Zhang1,2, Yikang Wang2, Miaomiao Niu2, Chongjian Wang   2 & Zhenfei Wang1*

With the development of data mining, machine learning offers opportunities to improve discrimination 
by analyzing complex interactions among massive variables. To test the ability of machine learning 
algorithms for predicting risk of type 2 diabetes mellitus (T2DM) in a rural Chinese population, we focus 
on a total of 36,652 eligible participants from the Henan Rural Cohort Study. Risk assessment models 
for T2DM were developed using six machine learning algorithms, including logistic regression (LR), 
classification and regression tree (CART), artificial neural networks (ANN), support vector machine 
(SVM), random forest (RF) and gradient boosting machine (GBM). The model performance was 
measured in an area under the receiver operating characteristic curve, sensitivity, specificity, positive 
predictive value, negative predictive value and area under precision recall curve. The importance of 
variables was identified based on each classifier and the shapley additive explanations approach. 
Using all available variables, all models for predicting risk of T2DM demonstrated strong predictive 
performance, with AUCs ranging between 0.811 and 0.872 using laboratory data and from 0.767 
to 0.817 without laboratory data. Among them, the GBM model performed best (AUC: 0.872 with 
laboratory data and 0.817 without laboratory data). Performance of models plateaued when introduced 
30 variables to each model except CART model. Among the top-10 variables across all methods were 
sweet flavor, urine glucose, age, heart rate, creatinine, waist circumference, uric acid, pulse pressure, 
insulin, and hypertension. New important risk factors (urinary indicators, sweet flavor) were not found 
in previous risk prediction methods, but determined by machine learning in our study. Through the 
results, machine learning methods showed competence in predicting risk of T2DM, leading to greater 
insights on disease risk factors with no priori assumption of causality.

Type 2 diabetes mellitus (T2DM) is a long-term metabolic disorder with high morbidity in humans around the 
world. The prevalence of diabetes is increasing rapidly worldwide, including in China1. In China, diabetes was 
estimated to affect 144.4 million people aged 20–79 according to the report of the international diabetes feder-
ation in 20172. The prevalence of diabetes in a rural population of Henan province is high which can be seen in 
the Henan Rural Cohort Study3. Although diabetes is an irreversible disease, it is largely preventable4. The risk 
of developing diabetes will be reduced through early detection and lifestyle interventions. For individual patient 
care, physicians are well prepared to identify those at risk for T2DM. However, when trying to screen thousands 
of patients with high-risk conditions, the challenges faced by physicians become apparent. There is a need for 
analytics techniques to assist in T2DM mass screening.

Many risk scores based on statistical knowledge have been developed for predicting individual’s risk of 
developing T2DM, such as risk evaluation formula5, Archimedes trial-validated diabetes model6, the diabetes 
risk score7, genetic risk score8, the New Chinese Diabetes Risk Score42 and the American Academy of Family 
Physicians risk model9. These methods made the implicit assumption that each risk factor was linear to the 
outcome. The complex relationships between nonlinear interaction factors might be oversimplified, leading to 
the potential loss of related information10,11. Moreover, when the number of variables increased, the hypothesis 
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testing method became complicated12. In contrast to traditional methods, machine learning can learn the non-
linear interactions iteratively from large amounts of data using computer algorithms13, which have been applied 
in various fields, such as disease risk assessment and prediction14,15. Recent research shows that machine learning 
methods can describe patients’ characteristics and identify patients at risk of developing T2DM16,17. A study 
illustrated the performance of support vector machine for detecting persons with diabetes and pre-diabetes18. To 
assess the ability to estimate the risk of developing T2DM, a study evaluated the performance of different machine 
learning and statistical techniques, and the experimental results showed the comprehensive performance the 
ensembles of ANN was better than other models19. A data mining pipeline based on classification algorithm was 
built to predict T2DM complications based on electronic health record data from nearly one thousand patients, 
which showed the validity of machine learning method20. An ensemble approach with the use of the vote method 
with three Decision Trees was developed to predict incident diabetes using 13 attributes21, and improved the 
value of AUC to 0.922. A novel joint clustering and classification (JCC) method which could discover hidden 
clusters features in the patient samples was developed to predict diabetes, and the method performed best among 
the methods that were applicable to the interpretation of prediction22. A study used neural network, decision 
tree, and random forest to predict diabetes mellitus with 14 attributes, and the results showed that the highest 
accuracy method was random forest23. Another study compared the performance of several machine learning 
techniques to predict the risk of developing T2DM in short, medium, and long term, and the results showed that 
logistic regression outperformed in short, medium term while support vector machines presented better perfor-
mance in long term24. A machine learning-based framework for identifying subjects with T2DM from EHR was 
constructed via feature engineering, and the results revealed that the framework performed higher identification 
compared with the expert algorithm25.

However, the current methods just focused on performance comparison of prediction techniques with fixed 
number of variables, and they were also done on a small population sample. To date, there has been no large-scale 
investigation applying machine-learning for risk assessment in the general rural population. Therefore, the pur-
pose of this study was to (1) evaluate an array of machine learning algorithms for predicting the risk of T2DM in 
a rural Chinese population; (2) identify the important variables, and (3) reveal the model performance of each 
model on a varying number of variables.

Method
Study participants.  The participants of this study came from the Henan Rural Cohort Study (Registration 
number: ChiCTR-OOC-15006699). A total of 39259 participants aged between 18 to 79 years were recruited 
from five rural areas in Henan province of China over the period between July 2015 and September 2017. The 
design and population characteristics of the study have been described in the previous articles26–28. Data on 
socio-demographic characteristics, information on physical examination, and laboratory test data were collected. 
Participants were excluded if they: (1) were diagnosed with kidney failure (N = 18) or cancer (N = 332); (2) had 
type 1 diabetes mellitus (N = 4); (3) had gestational diabetes mellitus (N = 634); (4) had incomplete information 
on diagnoses of T2DM (N = 63); and (5) had incomplete information of potential covariates (n = 2127). Finally, 
36,652 participants were included for the present study.

Definition of T2DM.  After excluding participants with type 1 diabetes mellitus, gestational diabetes mellitus, 
and other special type diabetes, T2DM was a self-reported previous diagnosis of diabetes by a physician or fasting 
plasma glucose level ≥7.0 mmol/L according to the American Diabetes Association (ADA) diagnostic criteria29.

Machine learning methods.  We used logistic regression, artificial neural networks, classification and 
regression tree, support vector machine, and ensemble learning (random forest and gradient boosting machine) 
to build the risk assessment model. From the description of basic characteristics of non-T2DMs and T2DMs, the 
data is imbalanced. The model is likely to be biased towards the dominant class, with poor accuracy in classifying 
negative cases. In view of this problem, the Synthetic Minority Over-Sampling Technique (SMOTE)24,30,31 algo-
rithm was used to address the data. All models were constructed using the package sklearn (0.21.3) of Python 3.7 
programing language.

Artificial neural networks.  Artificial neural networks32 are computing systems that are based on the neurons  
of the human brain. ANN can learn all complex and non-linear interactions between variables to look for patterns 
in the data. ANN is divided into multi-hidden layer neural network and single hidden layer neural network. Each 
layer contains a number of neurons connected by directed arcs with variable weights. In our study, the neural 
network consists of three layers: an input layer to accept all risk factors, a hidden layer to process information  
and an output layer to calculate responses.

Classification and regression tree.  A decision tree is a tree structure in which each internal node rep-
resents a test on an attribute, each branch represents a test output, and each leaf node represents a category33. 
Typical algorithms of decision tree include ID3, C4.5, CART, and so on. Considering the extensive application 
of CART in clinical and basic research, we used CART in this study34. CART is a non-parametric decision tree 
learning technology, which generates a classification tree or regression tree according to whether the dependent 
variable is classified or numerical35.

Logistic regression.  Logistic regression (LR) is a generalized linear regression analysis model, which works 
to find the best fitting model that can describe the relationship between dependent variables and independent 
predictors36. LR model is most widely used when people are interested in predicting disease or health status37. The 
LR model can compute the probability of an individual developing T2DM based on the risk factors input. If a 
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subject suffers from T2DM, the value of Y is 1; otherwise, Y is 0. We defined the probability of an individual  
developing T2DM is = | =p Y X p X( 1 ) ( ). Then, the formula of the LR model is defined as follows.
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Where X X X X( , )k1 2=  represents the risk factors, β β β β= ( , )k1 2  are the coefficients estimated by using the 
method of maximum likelihood.

Support vector machine.  Support vector machine (SVM) is a kind of generalized linear classifier that clas-
sifies binary data according to supervised learning. Its decision boundary is the maximum margin hyper plane for 
the positive and negative classes38. In our study, each data sample is made of 60 features. The value of each feature 
is a vector of a particular dimension. Then, we used SVM to construct a hyperplane in a high-dimensional space, 
which can distinguish the two classes nicely.

Ensemble learning.  Ensemble learning is an algorithm that combines basic learners such as decision trees 
and linear classifiers. The main idea of ensemble learning is to use multiple learning algorithms to achieve better 
performance than any constituent learning algorithm alone. Common types of ensembles are boosting, bagging, 
random subspace.

Random forest (RF) is an algorithm combines bagging ensemble learning theory with random subspace 
approach. RF generates many decision trees for splitting data randomly at training time. For each node of the 
base decision tree, a subset containing K attributes is randomly selected from the attribute set of that node, and 
then an optimal attribute is selected from the sub-set for partitioning. Each tree provides a classification as a vote 
for each tree, and the RF ultimately chooses the classification with the most votes39.

Gradient boosting machine (GBM) is an iterative algorithm whose core idea is to train different classifiers 
(weak classifiers) for the same training set, and then combine these weak classifiers to form a stronger final 
classifier (strong classifier). Through a series of iterations to optimize the classification results, each iteration is 
introduced into a weak classifier, to overcome the existing shortcomings of weak classifier combination. GBM is 
based on the residual of training data fitted by the previous weak classifier to enhance the model when training 
each weak classifier. Compared with most learning algorithms, it is less prone to over fitting.

Figure 1 showed the methodology of this study. In this study, risk assessment models for T2DM were devel-
oped using 6 ML algorithms on all variables. Next, algorithms were iteratively introduced to a growing number 
of ranked variables (5/10/15/…) selected by the algorithm itself. All models were trained and tested by 10-fold 
cross-validation during each iteration process, which was repeated 100 times. Performance of all models was 
calculated on the test samples. All models’ parameters were determined using 10-fold cross-validation and grid 
search on the training data (Supplementary Table 2).

Statistical analysis and evaluation on the model.  Model performance: Discrimination refers to the model’s 
ability to identify who is at risk of developing T2D and who is not. We used sensitivity, specificity, positive predictive 
value (PPV), negative predictive value (NPV), area under precision recall curve (AUPR) and area under curve (AUC) 
to evaluate discrimination. Sensitivity is a synonym for recall rate, true positive rate, and represents the proportion of 
real positive samples that are identified correctly. For instance, in our study, the subject who diagnosed with T2DM 
was defined as 1, namely the positive sample. Otherwise, it was a negative sample (0). Specificity indicates the rate of 
real negative samples can be detected correctly. PPV stands for the proportion of positive results in diagnostic tests that 
are true positive results. NPV is the proportion of negatives in diagnostic tests that are true negative results. For binary 
classification models, AUC and AUPR were also used to evaluate the performance.

Variable importance: For the diabetes study, we also listed the importance of variables. For LR and SVM models,  
variable importance was determined by the coefficient effect size. CART model estimated the variable importance 
by summing changes in the mean squared error due to splits on every variable and dividing the sum by the number  
of branch nodes. Variable importance of RF was estimated by permutation of out-of-bag variable observations. 
GBM computed the variable importance by summing these estimates over all weak learners in the classifica-
tion ensemble method. ANN used overall connection weights of variable to filter variables40. In order to com-
bine the variable importance of each method, the variable importance was also estimated using shapley additive  
explanations approach, which is a unified approach to explain the output of any machine learning model41.

Categorical variables were described as percentages (%), and continuous variables were shown as 
mean ± standard deviation (SD). Differences in the characteristics of T2DM and Non-T2DM groups were deter-
mined with the chi-square test for categorical variables and t-test for continuous variables. All statistical analyses 
were performed using SPSS (v.21, IBM) and a two-tailed P value < 0.05 was considered statistically significant.
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Ethics approval.  Ethics approval was obtained from the “Zhengzhou University Life Science Ethics 
Committee”, and written informed consent was obtained for all participants. Ethic approval code: [2015] MEC 
(S128). The present study was conducted in accordance with the guidelines of the Declaration of Helsinki.

Results
Basic characteristics.  The general characteristics of the study population were presented in Table 1. The 
study population consisted of 14,375 men and 22,277 women. Compared with participants without T2DM, indi-
viduals with T2DM tended to be with higher age, BMI, waist circumference, heart rate, waist to height ratio, 
urine glucose, low-density lipoprotein cholesterol, and were more likely to have a family history of T2DM, 
hypertension, coronary heart disease. In contrast, among participants without T2DM, higher creatinine, higher 
high-density lipoprotein cholesterol, and higher uric acid were more common. Further details were presented in 
Supplementary Table 1.

Variable importance analysis.  The top 10 variables according to the variable importance of each algorithm were 
presented in Table 2 (Supplementary Table 3). Elevated urine glucose level was presented as top-ranked variables by all 
algorithms. Indicators of obesity repeatedly were appeared at the top of the list, such as waist to hip ratio, and waist to 
height ratio. This phenomenon confirmed that obesity is a risk factor of T2DM. Hypertension was ranked as an impor-
tant factor of T2DM by most models, perhaps reflecting the relationship between hypertension and the development 
of T2DM. The risk factors in the New Chinese Diabetes Risk Score included sex, age, family history of diabetes, waist 
circumference, BMI, SBP. Several risk factors of the New Chinese Diabetes Risk Score (age, family history of diabetes, 
sex, and SBP) were shown in the list of top-ranked variables in our study. Common variables for diabetes were also 
identified by machine learning methods, such as genetic factors, hypertension, insulin, and so on. Also, new important 
variables (urinary parameters) were not found in previous risk prediction methods but determined by machine learn-
ing. Furthermore, the LR, SVM and ANN models prioritized genetic factor and urinary parameters, such as T2DM 
history of mother/father, urine glucose, urine protein, and so on.

We analyzed the importance of variables based on all models using the shapley additive explanations 
approach (Supplementary Table 4). As shown in Table 3. Among the top-10 variables across all methods were sweet fla-
vor, urine glucose, age, heart rate, creatinine, waist circumference, uric acid, pulse pressure, insulin, and hypertension.

Comparison of model performance.  Table 4 presented the comparison results of machine learning algo-
rithms. Using all available variables, all models for predicting risk of T2DM demonstrated strong predictive per-
formance, with AUCs ranging between 0.811 and 0.872. The GBM model performed best (AUC = 0.872 with 
laboratory variables), and also presented better specificity (81.71%), positive predictive value (28.83%), and AUPR 
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Figure 1.  Methodology. Abbreviation: LR, logistic regression; CART, classification and regression tree; GBM, 
gradient boosting machine; ANN, artificial neural network; RF, Random forest; SVM, Support vector machine; 
PPV, positive predictive value; NPV, negative predictive value; AUC, area under curve; AUPR, area under 
precision recall curve.
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(0.546). In terms of accuracy and negative predictive value, the data showed that RF model remained strong pre-
dictive performance (85.90%, and 97.52% respectively). ANN model’s sensitivity was best among all models’. 
Using only non-laboratory data, such as BMI, age resulted in large declines in model performance. Moreover, the 
models with only non-laboratory data were also significantly better than the New Chinese Diabetes Risk Score42 
based on statistical knowledge only using non-laboratory data (AUC = 0.728, p < 0.05) (Supplementary Figure 1).

Figure 2 displayed the receiver operator characteristic curves of each model with all variables. This visualiza-
tion revealed that the GBM performed similarly to RF model, and the two models exhibited greater superiority 
than the ANN model (p < 0.05), with 0.872, 0.868 and 0.858 respectively. The above three models (GBM, RF and 
ANN) performed significantly better than CART (AUC = 0.11), LR (AUC = 0.841), and SVM (AUC = 0.835) 
(p < 0.05). The area under precision recall curve also showed the same results (Figure 3).

Model performance with a varying number of variables.  In order to compare the performance of 
different models on a varying number of variables, the highest 5/10/15… ranked variables of each model were 
consecutively incorporated into each model. As shown in Figure 4. Overall, as the number of variables increased, 
the graph showed the increase of AUC values except the CART model. Before introducing with 30 variables, the 
LR, GBM, ANN, SVM, and RF models presented dramatic rise trends on the values of AUC. Performance of the 

Variable
Total 
(n = 36652)

Non-T2DM 
(n1 = 33296)

T2DM 
(n2 = 3356) P-Value

Age (years) 55.60 ± 12.17 55.11 ± 12.32 60.51 ± 9.20 <0.001

Men, n (%) 14375(39.22) 13114(39.39) 1261(37.54) 0.040

Education, n (%) <0.001

   ≤Primary school 16432(44.83) 14567(43.75) 1865(55.57)

   Middle school 14614(39.87) 13507(40.57) 1107(32.99)

   ≥High school 5606(15.30) 5222(15.68) 384(11.44)

Marry, n (%) 0.027

   Married/cohabitating 32927(89.84) 29949(89.95) 29877(88.74)

   Divorced/widowed/unmarried 3725(10.16) 3347(10.05) 378(11.26)

Average monthly individual 
income, n (%) <0.001

   <1000 25111(68.51) 22709(68.20) 2402(71.57)

   1000~ 8833(24.10) 8083(24.28) 750(22.35)

   ≥2000 2708(7.39) 2504(7.52) 204(6.08)

High fat diet, (≥75 g/day) 7088(19.34) 6544(19.65) 544(16.21) <0.001

Sweet flavor, n (%) <0.001

   No 15872(43.30) 13495(40.53) 2377(70.83)

   Mild 14217(38.79) 13500(40.55) 717(21.36)

   Middle 5720(15.61) 5494(16.50) 226(6.73)

   Heavy 843(2.30) 807(2.42) 36(1.07)

Waist circumference (cm) 84.13 ± 10.33 83.62 ± 10.22 89.32 ± 10.01 <0.001

Body mass index (kg/m2) 24.85 ± 3.53 24.72 ± 3.49 26.20 ± 3.62 <0.001

Waist to hip ratio 0.89 ± 0.07 0.88 ± 0.07 0.93 ± 0.07 <0.001

Pulse pressure (mm Hg) 48.25 ± 13.08 47.72 ± 12.85 53.45 ± 14.22 <0.001

Heart rate (beats/min) 75.72 ± 11.12 75.34 ± 10.94 79.54 ± 12.13 <0.001

Total cholesterol (mmol/l) 4.75 ± 0.97 4.72 ± 0.95 5.01 ± 1.11 <0.001

Triglyceride (mmol/l) 1.68 ± 1.12 1.64 ± 1.07 2.13 ± 1.44 <0.001

HDL-C (mmol/l) 1.32 ± 0.33 1.33 ± 0.33 1.23 ± 0.32 <0.001

LDL-C (mmol/l) 2.87 ± 0.81 2.85 ± 0.80 3.06 ± 0.93 <0.001

Insulin (ug/l) 10.85 ± 5.30 10.69 ± 5.04 12.51 ± 7.19 <0.001

Creatinine (umol/L) 62.07 ± 14.00 62.31 ± 13.75 59.61 ± 16.08 <0.001

Uric acid(umol/L) 286.50 ± 79.29 287.77 ± 79.19 273.87 ± 79.22 <0.001

Urinary protein, n (%) 1087(2.97) 797(2.39) 290(8.64) <0.001

Urine glucose, n (%) 915(2.50) 125(0.38) 790(23.54) <0.001

Hypertension, n (%) 11943(32.58) 10225(30.71) 1718(51.19) <0.001

Coronary heart disease, n (%) 1620(4.42) 1368(4.11) 252(7.51) <0.001

T2DM history of mother, n (%) 1070(2.92) 813(2.44) 257(7.66) <0.001

T2DM history of father, n (%) 532(1.45) 432(1.30) 100(1.45) <0.001

Table 1.  General characteristics of the study population. Abbreviations: SD, standard deviation; HDL-C, high-
density lipoprotein cholesterol; LDL-C, low-density lipoprotein cholesterol; T2DM, type 2 diabetes mellitus.
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five models plateaued when introduced 30 variables to each model. After that, all trends showed slight fluctuation, 
but the changes were modest. The CART model maintained a constant trend of AUC value.

Discussion
Using machine learning methods, this study developed several risk assessment models for characterizing the 
risk of developing T2DM. High predictive performance was achieved by all models, with AUCs ranging from 
0.811to 0.872. Compared to other models, the GBM model performed the best, with an AUC value of 0.872 (95% 
0.858–0.886) and the models’ performance significantly better than the traditional risk score. In addition to com-
mon factors for diabetes, new important factors (urinary parameters) were not found in previous risk assessment 
methods, but determined by machine learning in our study. Our study demonstrated that machine learning 
technologies are uniquely positioned to identify significant risk factors in large-scale epidemiological studies.

To our knowledge, this is the first study to assess the importance of variables and characterize the risk of devel-
oping T2DM with use of different machine learning methods in a Chinese rural population. Our results were 
consistent with the previous findings. The New Chinese Diabetes Risk Score showed that sex, age, family history 
of diabetes, waist circumference, BMI, SBP were important risk factors42. Our results also revealed their prom-
inent presence on the top-10 key factors for T2DM. Our data also indicated that obesity was a major risk factor 
for the development of T2DM43. The previous studies have demonstrated the significant role of boosting method 
in other medical fields, such as urinary tract infections44, hepatocellular carcinoma diagnosis45, prediction of hip 
fracture46. Our results confirmed the outstanding performance of the boosting method in the risk assessment of 
T2DM.

Rank

Machine-learning algorithms

LR CART GBM ANN RF SVM

1 Urine glucose Urine glucose Urine glucose Urine glucose Urine glucose Urine glucose

2 Diabetes history of 
mother Sweet flavor Sweet flavor Diabetes history of 

mother Sweet flavor Urinary protein

3 Urinary protein Sour flavor Waist to hip ratio Urinary protein Waist to hip ratio Diabetes history of 
mother

4 Diabetes history of 
father Waist to hip ratio Hypertension Urine latent blood Age Diabetes history of 

father

5 Urine ketone bodies Age More vegetables 
and fruits Sweet flavor Creatinine Urine ketone bodies

6 Hypertension Diabetes history of 
mother Age Diabetes history of 

father Uric acid Hypertension

7 Coronary heart 
disease Waist to height ratio Urinary vitamin C Urine ketone bodies Heart rate Coronary heart 

disease

8
Low-density 
lipoprotein 
cholesterol

Insulin Urine PH Gender Insulin
Low-density 
lipoprotein 
cholesterol

9 Urine PH Pulse pressure Sour flavor Systolic blood 
pressure Triglyceride Urine PH

10 Urine nitrite Heart rate Diabetes history 
of mother Hypertension Waist to height 

ratio Urine nitrite

Table 2.  The top-10 ranked variables by the variable importance for each algorithm. Abbreviation: LR, logistic 
regression; CART, classification and regression tree; GBM, gradient boosting machine; ANN, artificial neural 
network; RF, Random forest; SVM, Support vector machine.

Model LR CART GBM ANN RF SVM
Mean 
rank

Feature 
importance 
rank

Sweet flavor 3 2 1 4 1 3 2.33

Urine glucose 5 1 3 6 2 1 3

Age 2 4 2 5 4 2 3.17

Heart rate 8 10 4 10 6 8 7.67

Creatinine 7 13 6 9 9 6 8.33

Waist circumference 4 20 11 7 11 4 9.5

Uric acid 10 19 7 14 12 7 11.5

Pulse pressure 16 7 10 11 10 20 12.33

Insulin 12 8 14 15 18 13 13.33

Hypertension 15 32 9 18 5 11 15

Table 3.  Variable ranking based on the mean rank of all models based on shapley additive explanations 
approach. LR indicates logistic regression; CART, classification and regression tree; GBM, gradient boosting 
machine; ANN, artificial neural network; RF, Random forest; SVM, Support vector machine.
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Identifying the key factors is of great clinical significance in the risk assessment of T2DM. The severity of 
T2DM is often estimated through a lot of factors in different aspects, including socio-demographic character-
istics, anthropometric measures and laboratory test data. Given that the diversity and massive of factors in the 
development phase of T2DM, it is difficult to choose a specific number of variables for risk assessment. Compared 
to models with no laboratory data, the inclusion of laboratory data resulted in significant increase in the identi-
fication capabilities of models. This phenomenon shows that adding effective laboratory data can help identify 
the risk of T2DM patients. Our study also showed that the importance of different factors depended on the 
modeling technique. For LR, SVM and ANN models, the genetic factors and urinary indicators, such as diabetes 
history of mother/father, urine glucose, occupied center stage in the risk assessment of T2DM. Moreover, our 
results showed 30–35 variables were needed when the model performance reached a plateau, and the model 

Lab Model AUC Accuracy(%) Sensitivity(%) Specificity(%) PPV(%) NPV(%) AUPR

With lab LR 0.841
(0.825–0.858) 75.23 78.49 74.91 23.37 97.28 0.493

CART 0.811
(0.793–0.829) 80.06 66.97 81.33 25.91 96.19 0.433

GBM 0.872
(0.858–0.886) 81.20 76.04 81.71 28.83 97.22 0.546

ANN 0.858
(0.842–0.873) 74.01 80.95 73.34 22.83 97.53 0.520

RF 0.868
(0.854–0.883) 85.90 79.57 78.14 26.19 97.52 0.538

SVM 0.835
(0.818–0.851) 76.42 74.65 76.59 23.71 96.88 0.490

No lab LR 0.804
(0.787–0.821) 75.06 72.35 75.33 22.23 96.55 0.313

CART 0.767
(0.749–0.784) 62.79 79.26 61.18 16.60 96.80 0.235

GBM 0.817
(0.801–0.833) 70.28 78.96 69.43 20.11 97.13 0.345

ANN 0.808
(0.791–0.825) 70.52 78.03 69.79 20.11 97.02 0.328

RF 0.803
(0.786–0.820) 70.77 75.58 70.30 19.87 96.73 0.327

SVM 0.800
(0.783–0.818) 76.46 70.51 77.04 23.03 96.40 0.316

Table 4.  Performance of the machine-learning algorithms. Abbreviation: LR, logistic regression; CART, 
classification and regression tree; GBM, gradient boosting machine; ANN, artificial neural network; RF, 
Random forest; SVM, Support vector machine.

Figure 2.  Receiver operating characteristic curve of different machine learning models. Abbreviation: LR, 
logistic regression; CART, classification and regression tree; GBM, gradient boosting machine; ANN, artificial 
neural network; RF, Random forest; SVM, Support vector machine.
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performance would not be improved with too many variables. Over the past decade, the ability to collect data has 
become faster and cheaper, but we need to pay more attention to the model with too many features.

Data analysis techniques or model fitting ability are important in disease risk assessment and prediction. 
With the use of traditional statistical approaches, many risk scores and prediction models have been developed 
based on logistic regression. If the relationship among the data is linearly separable, traditional methods will fit 
better47,48. If not, such models may oversimplify complex relationships among factors with nonlinear interactions, 
leading to the potential loss of important relevant information. This suggests the important of choosing an appro-
priate model according to the characteristics of the data set. According to the data characteristics of the Henan 
Rural Cohort Study, our results showed the boosting model fit data best.

The performance of diagnosis model based on machine learning will be better if the number of training sam-
ples is large49. Compared to previous studies, the major strength of our study was the relatively large sample size 
including 36652 subjects from the rural population in China. Also, we compared the model performance from 
two aspects: the fixed number of variables and the dynamic number of variables, which confirmed models with 
several variables could perform no worse than the model with all variables50. Furthermore, the superiority and 
feasibility of nonparametric algorithms were proved compared with the model based on logistic regression.

However, several limitations should be worth mentioning. Firstly, the research findings were derived from 
a cross-sectional study without follow-up data; therefore, we may not be able to determine the causal and tem-
poral associations. Secondly, we need to do future research with external validation and other machine learning 

Figure 3.  Precision recall curve of different machine learning models. Abbreviation: LR, logistic regression; 
CART, classification and regression tree; GBM, gradient boosting machine; ANN, artificial neural network; RF, 
Random forest; SVM, Support vector machine.

Figure 4.  Performance variation of different models on a varying number of variables. LR indicates logistic 
regression; CART, classification and regression tree; GBM, gradient boosting machine; ANN, artificial neural 
network; RF, Random forest; SVM, Support vector machine.
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methods to assess the model performance. In addition, it’s difficult to explain the inherent complexity of variable 
interactions and their impacts on outcomes due to the “black box” nature of machine learning methods.

In conclusion, using a series of machine learning models, we developed a data mining approach to charac-
terize risk ofT2DM and compared the model performance from the fixed number of variables and the dynamic 
number of variables. Our results showed the advantage ability of machine learning to identify risk factors and 
predict outcomes across a wide range of data and an increasing number of variables, which leading to greater 
insights on disease risk factors with no prior assumption of causality.

Data sharing statement.  All relevant data are within the paper and its Supporting Information files. 
Contact to Dr. Chongjian Wang (tjwcj2005@126.com) for additional information regarding data access.
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