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Verifying molecular clusters by 
2-color localization microscopy and 
significance testing
Andreas M. Arnold1,3, Magdalena C. Schneider1,3, Christoph Hüsson2, Robert Sablatnig2, 
Mario Brameshuber1, Florian Baumgart1* & Gerhard J. Schütz1*

While single-molecule localization microscopy (SMLM) offers the invaluable prospect to visualize 
cellular structures below the diffraction limit of light microscopy, its potential has not yet been fully 
capitalized due to its inherent susceptibility to blinking artifacts. Particularly, overcounting of single 
molecule localizations has impeded a reliable and sensitive detection of biomolecular nanoclusters. 
Here we introduce a 2-Color Localization microscopy And Significance Testing Approach (2-CLASTA), 
providing a parameter-free statistical framework for the qualitative analysis of two-dimensional SMLM 
data via significance testing methods. 2-CLASTA yields p-values for the null hypothesis of random 
biomolecular distributions, independent of the blinking behavior of the chosen fluorescent labels. 
The method is parameter-free and does not require any additional measurements nor grouping of 
localizations. We validated the method both by computer simulations as well as experimentally, using 
protein concatemers as a mimicry of biomolecular clustering. As the new approach is not affected by 
overcounting artifacts, it is able to detect biomolecular clustering of various shapes at high sensitivity 
down to a level of dimers.

Single Molecule Localization Microscopy (SMLM) has boosted our insights into cellular structures below the dif-
fraction limit of light microscopy1. Common to all SMLM variants is the stochastic switching of single dye mole-
cules between a bright and a dark state. Conditions are chosen such that only a marginal portion of the molecules 
is in the bright state, so that single molecule signals are well separated on each frame. The final superresolution 
image is reconstructed from the localizations of all single molecule signals.

Researchers have been particularly intrigued by the possibility to determine the spatial distribution of biomol-
ecules in their natural environment, in most cases the intact cell. For example, models for cellular signaling are 
crucially affected by the spatial organization of receptor and downstream signaling molecules at the plasma mem-
brane2,3. Application of SMLM to various plasma membrane proteins revealed the presence of nanoclusters to 
different degrees4. More recently concerns were raised that the stochastic activation process of the fluorophores, 
along with the presence of more than one dye molecule per labeled biomolecule, may lead to multiple observa-
tions of the same biomolecule in the superresolution image5,6. Different attempts were undertaken to approach 
this problem5,7–11, e.g. by merging localization bursts into one localization12, by analyzing the number of blinking 
events per localization cluster10,11, or by evaluating the spatial spread of the localization clusters7. A disadvantage 
of existing methods is the requirement of user-defined parameters7,12 or additional experiments to characterize 
the blinking statistics of the chosen fluorophores10,11. We recently developed a parameter-free method to identify 
global protein clustering based on a label titration approach8 (see also Spahn et al.9), however, in case of faint 
bimolecular clustering the discrimination is difficult and rather subjective. Taken together, it would be helpful 
to provide a parameter-free quantitative assessment for the reliability of the statement, whether biomolecular 
nanoclusters occur in an image or not.

Here we present a method to assess biomolecular nanoclustering in two-dimensional SMLM via p-values in 
the framework of statistical significance tests, termed 2-Color Localization microscopy And Significance Testing 
Approach (2-CLASTA). The idea is to target the same biomolecule of interest with different fluorescent labels, 
determine the localizations in the respective color channels and calculate the nearest neighbor distances between 
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them. The test compares the nearest neighbor distances for the recorded data with the distances for a rand-
omized data set calculated from the measured data. As an output, the method provides a p-value for the null 
hypothesis that the experimental data set corresponds to an underlying biomolecular distribution, which is not 
significantly different from a completely random distribution as described by a spatial Poisson process. In this 
respect, 2-CLASTA differs from existing quantitative approaches, which typically aim at determining quantitative 
parameters before actually testing the mere presence of biomolecular clusters. The method is parameter-free and 
does not require any additional measurements nor grouping of localizations. We validated the method experi-
mentally in cells expressing artificially clustered proteins by showing that sizes down to 2 molecules per cluster 
can be reliably detected.

Results
Testing the null hypothesis of a random biomolecular distribution.  Labeling the biomolecule of 
interest in two different colors yields different two-color SMLM images for a random versus a clustered biomo-
lecular distribution (Fig. 1a). Both images show clear clustering of localizations in each of the color channels due 
to multiple observations of single dye molecules. The localization clusters of different color, however, correlate 
only in case of an underlying clustered distribution of biomolecules. As a quantitative measure of this correlation 
we used the empirical cumulative distribution function cdf  of the nearest neighbor distance r between the local-
izations of the two different color channels. Importantly though, cdf r( ) not only depends on the spatial distribu-
tion of the labeled biomolecule. Particularly, the blinking statistics of the fluorophore and the number of dye 
molecules conjugated to the biomolecule of interest affect the distribution functions. Since these parameters are 
commonly unknown, the different contributions to cdf r( ) are difficult to disentangle.

To analyze the data, we hence opted for a strategy which is independent of prior information on label proper-
ties. The idea is to determine a randomized distribution function cdf r( )rand  for a scenario in which correlations 
between the two color channels are broken, by directly using the experimental data contained in the original 
SMLM recording. Our approach is similar to a goodness-of-fit test, in which the experimental data are compared 
with Monte Carlo-simulated control data sets using a global deviation measure for calculation of a p-value13.

In order to construct a randomized two color data set we transformed the localizations of one color channel 
and calculated their nearest neighbor distances to the untransformed localizations of the other color channel. As 
transformation we used a so-called toroidal shift14, which denotes a shift by an arbitrary distance in an arbitrary 
direction, assuming periodic boundary conditions (Fig. 1b). This breaks potential correlations between the two 
color channels while conserving the univariate pattern characteristics. The resulting cdf r( )rand  implicitly accounts 
for the correct blinking statistics and degree of labeling, and can hence be taken as ground truth for the situation 
of two uncorrelated images, irrespective of their univariate clustering that may be present in each color channel 
itself. Ideally, for a completely random protein distribution the cumulative density functions are equal 
( =cdf r cdf r( ) ( )rand ), whereas for a non-random distribution they are not (cdf r cdf r( ) ( )rand≠ ). Note that 
cdf r( )rand  does not need to correspond to a truly random distribution of molecules.

For the statistical assessment, we compared the original empirical cdf r( ) with a set of N = 99 realizations of 
cdfrand i,  ( = …i N1, , ) for random choices of the toroidal shift vector →v  (Fig. 1c) and ranked the summary statis-
tics gdata of the original curve (green) with respect to the control curves (gray) (see Methods). Since we are inter-
ested in nanoclustering of biomolecules, we determined the one-sided p-value by ranking the original cdf r( ) with 
respect to all calculated cdfrand i, ; the rank is measured in descending order (note that the method also allows for 
assessing biomolecular repulsion by calculating the rank in ascending order). In practice, prior knowledge on 
cluster sizes can be taken into account e.g. by constraining the analysis to short distances. For this, we introduced 
a parameter rmax, which should be chosen close to the sum of the localization errors and the expected cluster size. 
Here we ignored prior knowledge and set rmax to the maximum occurring distance, if not mentioned otherwise.

Naturally, the p-value as defined here is limited to discrete numbers with steps of 
N

1
1+
, which also defines the 

minimum p-value obtainable with this method. As expected, the p-value is uniformly distributed in the interval 
[0, 1], when testing realizations of the null hypothesis against the null hypothesis itself (Fig. S2). Hence, this 
p-value allows for the correct interpretation of the significance level α as the probability of falsely rejecting the 
null hypothesis. α can also be interpreted as the inevitable false positive rate for the erroneous detection of 
overcounting-induced clustering for a random distribution of biomolecules. Taken together, by offering an appro-
priate significance test, 2-CLASTA is hardly susceptible to the inadvertent interpretation of localization clusters 
as biomolecular nanoclusters.

Sufficient sensitivity to detect even faint spatial biomolecular clustering is crucial to this test. We assessed the 
sensitivity (also frequently termed power) of 2-CLASTA for two clustering scenarios: i) biomolecular oligomeri-
zation (dimers, trimers, and tetramers), and ii) spatially extended clusters with varying load. The spatial distribu-
tion of the biomolecules and the according localization maps were generated with Monte Carlo simulations and 
evaluated with 2-CLASTA. We quantified the test performance via the sensitivity defined as =

+
sensitivity tp

tp fn
, 

with tp denoting the true positives (here defined as correctly detected clustering) and fn the false negatives (here 
defined as erroneously missed clustering). We used a significance level α = 0.05 in the following.

Sensitivity to detect biomolecular oligomerization.  We first assessed the sensitivity of 2-CLASTA to 
detected different degrees of oligomerization. For this, we simulated 10 × 10 µm2 sized localization maps  contain-
ing randomly distributed dimers, trimers, or tetramers, assigned labels of the two colors with the according blink-
ing statistics and added localization errors. Each localization map can be considered as a realization of a two-color 
superresolution experiment. The localization maps were analyzed by 2-CLASTA, yielding a p-value for each 
localization map and the sensitivity for each parameter set. We showcased the performance of the method with 
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a simulated “ideal” scenario, which lacks the presence of unspecific signals. We further assumed a global degree 
of labeling of 100%, i.e. each biomolecule was represented either by a blue or a red label, yielding localizations 
according to the experimentally derived blinking statistics for SNAP488 and SNAP647, respectively (Fig. S1). If not 

Figure 1.  Analysis of localization maps with 2-CLASTA. (a) Simulated two-color localization maps for a 
random (left column) and a clustered (right column) distribution of biomolecules. Localization maps  show a 
2 × 2 µm2 region. For the simulation of blinking we used experimental data obtained for SNAP488 (blue channel) 
and SNAP647 (red channel). (b) Shifting all localizations of the blue color channel by the shift vector v→ breaks 
correlations between the two color channels. (c) The cumulative distribution function of nearest neighbor 
distances, r, between the two color channels is plotted in green for the localization data shown in (a). cdfrand of 
N = 99 control curves, generated with randomly chosen toroidal shifts, are depicted in light gray. The mean of 
all control curves is shown in black. From the rank of the curves, we calculated a p-value of p = 0.50 for the 
random case, and p = 0.01 for the clustered case.
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specified otherwise, we simulated a balanced labeling ratio for the two colors. Unspecifically bound fluorophores 
and background signals may be present in the final localization maps, which may affect the obtained statistics. We 
hence also analyzed a more “realistic” scenario, for which we added 5 unspecifically bound labels per µm2 in each 
color channel, and 1 or 2 unspecific background signals per µm2 in the red or blue color channel, respectively; 
the characteristics of the unspecific background signals were experimentally determined on unstained cells. For 
the “realistic” case, we further assumed a reduced global degree of labeling of 40%. All simulation parameters are 
listed in the Materials and Methods section under the subheading Simulations.

Firstly, we were interested in the total number of biomolecules per image that are required for a reliable 
detection of oligomerization. Already low numbers of biomolecules of ~1,000 per image (corresponding to 10 
molecules per µm2) allow for a sensitive detection even of dimerization, both for the “ideal” and the “realistic” 
scenario (Fig. 2a). As expected, the sensitivity is somewhat reduced with decreasing degree of oligomerization: 
this is a consequence of the reduced fraction of oligomers carrying two different labels, particularly for the “real-
istic” scenario. For the following simulations, we used 7,500 molecules per image (75 molecules/µm2). We next 
tested the influence of a reduced labeling efficiency. In general, sensitivity was found to be high even down to a 
labeling degree of ~20% (Fig. 2b). To test the influence of different blinking statistics or of multiple dye mole-
cules per label, we compared the simulation results obtained with the blinking statistics of the pair SNAP488 and 
SNAP647 with results obtained using the blinking behavior of the pair PS-CFP2 (blue channel) and an Alexa Fluor 
647-conjugated antibody (KT3647, red channel)15, yielding virtually identical curves (Fig. S3). We also tested arti-
ficial blinking statistics assuming log-normal distributed numbers of localizations for each label16. Even for the 
rather extreme case of ten-fold difference in the mean number of localizations per biomolecule we observed only 
minor effects on the sensitivity of our method.

Importantly, all blinking statistics were obtained under low labelling conditions in cells and hence adequately 
reflect the variability in the local environments of the dye molecules.

In a real-life experiment, differently colored ligands may have different affinities for the target biomolecule, 
leading to unbalanced labelling. While this can be compensated experimentally by adjusting the concentrations 

Figure 2.  Robustness of 2-CLASTA for the detection of different degrees of oligomerization. To assess the 
influence of individual parameters we determined the sensitivity as a function of the number of molecules 
(a), the labeling efficiency (b), the labeling ratio (c), and directional stage drift (d). We simulated dimers (+), 
trimers (▲) and tetramers (■), both for the “ideal” (solid line) and the “realistic” scenario (dashed line). For 
panel (d), virtually all simulated scenarios yielded a sensitivity of 1. If not varied in the respective subpanel, 
parameters in all simulations were set to a molecular density of 75 molecules/µm2, a labeling efficiency of 
40% for the real case and 100% for the ideal case, a labeling ratio of 1:1, and no stage drift. Each data point 
corresponds to 100 independent simulations.
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of the two labels, we found the sensitivity to remain high also for unbalanced labeling (Fig. 2c). Next, we also 
tested the influence of randomly distributed unspecific labels added onto the simulated oligomer distributions, 
yielding only marginal influences (Fig. S4a). Further, the magnitude of the localization errors hardly affects the 
obtained results (Fig. S4b). Interestingly, an assessment of the influence of stage drift showed that drift-velocities 
of up to 500 nm over 10.000 frames hardly affected the test sensitivity (Fig. 2d). This is not unexpected, as moder-
ate drift hardly diminishes the correlations between the two color channels in an experiment performed at alter-
nating laser excitation. Moderate chromatic aberrations have a negligible effect on the sensitivity of 2-CLASTA 
(Fig. S4c,d). We also evaluated the influence of different values of rmax on the sensitivity of the method, yielding 
only minor effects (Fig. S5). Finally, we compared different test statistics in their sensitivity to detect dimers. 
Using k-nearest neighbor statistics (k = 3,5,10) or Lcross statistics17 did not improve sensitivity (Fig. S6); note that 
Lcross statistics is not parameter-free.

Sensitivity to detect areas of enrichment or depletion of biomolecules.  As a second realization 
of a non-random spatial distribution of biomolecules we considered spatially extended circular domains, the 
centers of which were randomly distributed across a two-dimensional plane. Molecules were placed either inside 
or outside of the domains, which thereby represent areas enriched or depleted in biomolecules compared to the 
surface density outside of the domains. To facilitate comparison with our previously published approach8,15, we 
used here the same parameter settings for assessing the performance of 2-CLASTA: we varied the domain radius 
between 20 nm and 150 nm, the domain density between 3 and 20 domains per µm2, and the fraction of molecules 
in domains between 20% and 100% (Fig. S7). The average density of biomolecules across the whole field of view 
was kept constant at 75 molecules per µm2.

In general, virtually all scenarios with a substantial heterogeneity in the lateral distribution of the biomolecule 
can be detected by 2-CLASTA (Figs. 3a and S8): both biomolecular clustering (top right corner) and exclusion 
areas (bottom left corner) yield a high level of correctly identified scenarios. In particular, the new method even 
outperforms our previous approach based on label titration, as can be seen by comparing the new figures with the 
respective plots from our previous paper (Supplementary Figs. 5 and 6)15.

The diagonal in Fig. 3a represents scenarios, in which the biomolecular concentration inside the domains 
is similar to the concentration outside of the domains. In other words, these situations correspond to random 
distributions of biomolecules, which – if detected – would lead to false positive results. Per definition, a random 
distribution leads to a false positive rate that is identical to the chosen level of significance (here α = 0.05). Indeed, 
for scenarios corresponding to identical biomolecular densities (±10%) inside versus outside the domains we 
obtained sensitivity values close to α, hence reaching the principal limit for analyzing a statistical data set.

Again, we simulated a more “realistic” scenario as defined above, yielding similar results as for the ideal sce-
narios (Figs. 3a and S9). Also in the case of extended areas of enrichment or depletion the localization error had 
only marginal influence on the sensitivity (Fig. S10). To assess whether the use of different fluorescent labels with 
altered photophysical properties affect the results, we repeated the simulations both for the “ideal” and the „real-
istic“ case using the blinking statistics derived previously for a multi-labelled antibody and the photoactivatable 
protein PS-CFP215, yielding virtually unchanged results (Fig. S11). Finally, we tested the algorithm on rectangular 
clusters of 80 × 400 nm2 size (Fig. 3b), yielding similar sensitivity as for circular domains of the same area cover-
age. In conclusion, the new approach allows for reliable detection of even faint biomolecular clustering, and is not 
susceptible to false positives due to overcounting artifacts.

Experimental validation.  For experimental validation of the 2-CLASTA approach, we mimicked protein 
monomers and oligomers by concatemers of SNAP-tags with 1 to 4 subunits. These concatemers were anchored 
in the plasma membrane of HeLa cells via a glycosyl-phosphatidylinositol- (GPI-) anchor. For example, 
SNAP-concatemers of 4 SNAP-tag subunits would correspond to tetrameric protein oligomers. Clustering of the 
GPI anchor per se is not expected7,8. All experiments were performed at similar labeling densities of SNAP-Surface 
Alexa Fluor 488 (SNAP488) and SNAP-Surface Alexa Fluor 647 (SNAP647). dSTORM experiments were performed 
at alternating excitation, yielding superresolution images of the two color channels (Fig. 4a). For each concatemer, 
we recorded ≥25 cells, and determined the according p-value for the null-hypothesis of a random protein distri-
bution, as described above (Fig. 4b). For SNAP-monomers, we observed a uniform distribution of p-values in the 
interval [0, 1], hence providing no indication for a non-random distribution. In contrast, dimeric, trimeric, and 
tetrameric SNAP-constructs yielded clear deviations from a uniform distribution, with a substantial peak at low 
p-values. This reflects the expected signature for an underlying non-random distribution of SNAP-tags.

There is, however, a non-negligible fraction of cells which show p-values > 0.05, even in the case of oligomeric 
SNAP constructs. This effect is rather prominent for dimers and decreases with increasing degree of oligomer-
ization. In a practical situation, however, one should note that different cells show different protein expression 
levels, thereby yielding a variability in the number of molecules within the region of interest. As shown in Fig. 2a, 
a low number of molecules would reduce the sensitivity for the detection of oligomers, or – in other words – 
would likely yield a high p-value. Indeed, when plotting the obtained p-value versus the number of localizations 
obtained per cell, we found a trend for high p-values at low localization numbers, which became more pro-
nounced with increasing degree of oligomerization (Fig. S12). Particularly, for appr. 1,000 molecules per image 
– corresponding to appr. 5,000 localizations, we expect reduced sensitivity, which agrees with Fig. S12.

Discussion
We present here a parameter-free method to statistically assess the question whether biomolecules are distributed 
randomly in two dimensions, yielding a p-value as output parameter. As for all SMLM methods, live cell applica-
tions are inherently restricted by dynamic cellular processes within the rather long recording times. The method 
is compatible with most fluorescence labeling techniques, as long as it is ensured that each protein molecule is 
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connected to one color channel only: this includes fluorescent antibodies or nanobodies, tags, or low affinity 
binders18.

Up to now, statistical detection of biomolecular nanoclustering demanded for obtaining the localization maps 
of a truly random protein distribution as a reliable standard for comparison with the experimental data. If such a 
distribution was available, comparative analysis such as Rényi divergence19 would be feasible. It turns out, how-
ever, that localization maps - as they would result from a truly random biomolecular distribution - are difficult 
to obtain, particularly since the photophysics of organic dyes often changes with the local environment of the 
chromophore20. We circumvented the problem by analyzing not the images themselves, but a correlation metric 
between the localizations of the two color channels (in our case, the nearest neighbor distances). In principle, also 

Figure 3.  Sensitivity of 2-CLASTA to detect protein enrichment or depletion. (a) We determined the sensitivity 
of 2-CLASTA for varying densities of circular domains and percentage of molecules inside the domains. Data 
are shown for a cluster radius of 100 nm for the “ideal” case and the “realistic” case (see Fig. S8 & S9 for other 
cluster radii). (b) The sensitivity for the detection of rectangular clusters with a size of 80 × 400 nm2 is shown 
for the ideal case and the “realistic” case. Numbers in individual fields indicate the average number of molecules 
per domain, and the relative enrichment or depletion of molecules compared to a random distribution with 
identical average density. The gray sale indicates the fraction of scenarios with a p-value below the significance 
level α = 0.05, reflecting the sensitivity. Each field corresponds to 100 independent simulations.
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other metrics could be used for the significance test (e.g. pair cross-correlation analysis7,21 or Ripley’s covariate 
analysis17), especially for testing deviations on length scales beyond the nearest neighbors.

The chosen analysis strategy based on correlation metrics offers the advantage that potential correlations 
between the two color channels can be deliberately broken, here by applying a toroidal shift to one of the two 

Figure 4.  2-CLASTA analysis of an experimental data set. We analyzed GPI-anchored concatemers of SNAP-
tags with n = 1 to 4 subunits expressed in HeLa cells as mimicry of n-mers. For dSTORM experiments, cells 
were labeled with SNAP488 and SNAP647. Panels (a) show two-color localization maps for representative cells, 
and panels (b) histograms of p-values obtained from at least 4 independent experiments per n-mer. Scale bars 
250 nm (inset) and 2 µm.
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color channels. By this, the univariate spatial structure of each localization pattern is conserved, while possible 
correlations are removed. This provides the possibility of significance testing between the original data and the 
randomized control data sets as an additional advantage.

To make the method immediately applicable, we provide a plugin for ImageJ (see Supporting Material). The 
experimental basis is a chromatically corrected two-color SMLM data-set analyzed by standard single molecule 
localization tools22.

In the following, we give a brief discussion on the strengths and potential pitfalls of our approach:

Strengths. 

	 (i)	 2-CLASTA is stable against errors in two-color image registration or drift correction. As long as these 
errors are smaller than typical cross-correlation distances of the two color-channels, the effects on the 
obtained p-values are marginal.

	(ii)	 The sensitivity of 2-CLASTA is virtually unaffected by increased localization errors. Such errors do not 
change the physical separation of the biomolecules, but only distribute the single molecule localizations 
over larger areas, while preserving the correlation of the two color channels. As the method is essentially 
sensitive to the biomolecular separation, localization errors have no strong effect on the sensitivity.

	(iii)	 2-CLASTA is not impaired by blinking dye molecules, and does not require the recording of single mol-
ecule blinking statistics (as e.g. in the methods published in refs. 5,10,11), making it insensitive to over-
counting problems. In addition, 2-CLASTA can directly be applied to single images, thereby simplifying 
experimental efforts compared to our previously published method of label density variation8.

	(iv)	 The sensitivity of 2-CLASTA is not affected by any unknown characteristics of the clusters. No assumptions 
on cluster parameters (size, shape, occupancy) are required for the test. The test performs well even down 
to the detection of dimers, reflecting the smallest possible clusters.

	(v)	 2-CLASTA is stable against real life experimental challenges: A typical experiment contains non-specific 
localizations, or false negatives as a consequence of insufficient degree of labeling. Also the labeling ratio 
of the two colors may be unbalanced. We extensively tested the influence of such issues in Monte Carlo 
simulations, and found that the test is very robust over a wide range of parameters.

Potential pitfalls.  The sample topography may influence the obtained results: Without further information, 
it is reasonable to assume a completely random distribution of biomolecules on a flat two-dimensional surface 
parallel to the focal plane as the null hypothesis of the test. Randomly distributed biomolecules on an arbitrary 
two-dimensional manifold, however, may lead to virtual clustering in the projection onto a two-dimensional 
plane. For example, invaginations of the plasma membrane or height differences near the cell borders will cause 
the accumulation of the detected positions of membrane proteins in the 2D projection23 and hence will likely lead 
to a rejection of the null hypothesis. Also, care should be taken when selecting the region of interest: ideally, a 
central region of the cell should be chosen for analysis, avoiding cell edges and apparent vesicular structures. In 
principle, whenever reasonable one may further restrict the region of interest in order to specifically scrutinize 
subcellular structures (e.g. synapses) for the presence of local biomolecular clustering. This comes, however, at the 
cost of lower molecule numbers, hence reducing the sensitivity.

Conclusion
Taken together, we believe that the 2-CLASTA approach is well suited for a qualitative assessment of spatial 
two-dimensional biomolecular distributions, before more sophisticated methods are used to characterize the 
clustering quantitatively6. It thereby addresses an interest by the community to include hypothesis testing in 
SMLM analysis24. By providing p-values, it makes use of the appropriate statistical parameter to test whether a 
specific data set is in agreement with a particular hypothesis25. Here, small p-values indicate suspicious deviations 
from randomness. Large p-values, in contrast, do not indicate any peculiarities in the sample; most notably, they 
do not prove a spatially random distribution of biomolecules. One should note that care has to be taken when 
interpreting the results of significance tests25,26. As a particular example, fishing for data sets with small p-values 
should be avoided.

A further application of 2-CLASTA is the analysis of co-localization of two different types of biomolecules: 
in this case, the two colors would be used to target the two different biomolecules. In this paper, we provide 
the framework to test for biomolecular association: extension towards assessment of biomolecular repulsion is 
straightforward and described in the Methods section.

Materials and Methods
Cell culture, DNA constructs, and reagents.  All chemicals and cell culture supplies were from Sigma 
if not noted otherwise. All reagents for molecular cloning were from New England Biolabs. HeLa cells were pur-
chased from DSMZ (ACC 57 Lot 23) and cultured in DMEM high glucose medium (D6439) supplemented with 
10% fetal bovine serum (F7524) and 1 kU/ml Penicillin-Streptomycin (P4333). All cells were grown in a humid-
ified atmosphere at 37 °C and 5% CO2.

For transient transfection of HeLa cells with GPI-anchored SNAP concatemers, we fused one or multiple cop-
ies of the SNAPf sequence to the N-terminus of the GPI-anchor signal of the human folate receptor. To this end, 
we carried out PCR to amplify the SNAPN9183S sequence from pSNAPf (N9183S) with >15 nt overhangs comple-
mentary to adjacent regions of the following SNAPf copy. We then used the Gibson assembly Master Mix (E2611) 
following the supplier’s instructions to iteratively insert multiple consecutive copies of the SNAPf sequence in 
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frame with the GPI anchor. The resulting colonies were screened by site specific restriction digest using HindIII 
(R3104) to verify the number of inserted copies.

SNAP-Surface Alexa Fluor 488 (SNAP488) and SNAP-Surface Alexa Fluor 647 (SNAP647) were from New 
England BioLabs. Both labels were reconstituted in water-free DMSO (276855) at 10 mg/ml, aliquoted and stored 
at −20 °C until used.

STORM blinking buffer consisted of PBS, 50 mM β-Mercaptoethylamine (30070), 3% (v/v) OxyFluor 
(Oxyrase Inc., Mansfield, Ohio, U.S.A.), and 20% (v/v) sodium DL-lactate (L1375)27. The pH was adjusted to 
8–8.5 using 1 M NaOH.

Sample preparation.  Cells were transfected by reverse transfection using Turbofect (ThermoFisher, R0531) 
according to the supplier’s instructions with Opti-MEM (Gibco, 31985062) as serum-free growth medium. 
Briefly, cells were detached from tissue culture flasks using Accutase (A6964). Subsequently, approximately 50,000 
cells were mixed with Turbofect-DNA complexes and seeded on fibronectin-coated (F1141) LabTek chambers 
(Nunc) and incubated overnight. The following day, cells were labeled for 30–45 min in the incubator with 50 nM 
SNAP488 and 1 µM SNAP647 diluted in cell culture medium. After labeling, cells were extensively washed with 
HBSS, and fixed with 4% formaldehyde (Thermo Scientific, R28908) and 0.2% glutaraldehyde (GA) for 30 min 
at room temperature. After another series of two washing steps, we added 450 µl freshly prepared STORM buffer 
immediately prior to imaging.

Superresolution microscopy and image reconstruction.  A Zeiss Axiovert 200 microscope equipped 
with a 100x Plan-Apochromat (NA = 1.46) objective (Zeiss) was used for imaging samples in objective-based 
total internal reflection (TIR) configuration. TIR illumination was achieved by shifting the excitation beam paral-
lel to the optical axis with a mirror mounted on a motorized table. The setup was further equipped with a 640 nm 
diode laser (Obis640, Coherent), a 405 nm diode laser (iBeam smart 405, Toptica) and a 488 nm diode laser 
(iBeam smart 488, Toptica). Laser lines were overlaid with an OBIS Galaxy beam combiner (Coherent). Laser 
intensity and timings were modulated using in-house developed LabVIEW software (National Instruments). 
To separate emission from excitation light, we used a dichroic mirror (Z488 647 RPC, Chroma). Images were 
split chromatically into two emission channels using an Optosplit2 (Cairn Research) with a dichroic mirror 
(DD640-FDi01-25 × 36, Semrock) and additional emission filters for each color channel (690/70 H and FF01-
550/88-25, Chroma). All data was recorded on a back-illuminated EM-CCD camera (Andor iXon DU897-DV).

Typically, we recorded sequences of 20 000 frames in alternating excitation mode. Samples were illumi-
nated repeatedly at 640 nm, 405 nm, and 488 nm with 2–3 kW/cm2 intensity (640 nm and 488 nm) and 3–5 W/
cm2 (405 nm); intensities were measured in epi-configuration. We selected the illumination times in ranges of 
3 ms–10 ms (640 nm), 3 ms–30 ms (488 nm), and 6 ms (405 nm). Time delays between consecutive illumina-
tions were below 6 ms. The camera was read out after the 640 nm and after the 488 nm illumination, yielding 10 
000 frames in each color channel. Thus, the total recording time for a full dataset ranged from 3 to 7 minutes. 
Only data from those frames were included in the analysis, in which well-separated single molecule signals were 
observable.

We recorded calibration images of immobilized fluorescent beads after each experiment (TetraSpeck 
Fluorescent Microspheres, life technologies, T14792) and registered the images as described previously28. 
Single molecule localization and image reconstruction was performed using the open-source ImageJ plugin 
ThunderSTORM29.

Quantitative analysis of single label blinking.  We quantified single label blinking on HeLa cells 
expressing GPI-anchored SNAP-monomers, using the identical illumination protocol as for 2-color dSTORM 
recordings. To assure sufficient separation between individual label molecules, dSTORM experiments were 
performed at low labeling concentrations of either SNAP647 or SNAP488. To statistically quantify the blinking 
of SNAP647 and SNAP488, localizations from individual label molecules were grouped and quantified in MATLAB 
(R2019b, The MathWorks Inc., Natick, MA). We determined the first frame of appearance, the total number of 
detections per label (N) (Fig. S1), the time a label is detectable in consecutive frames (ton) and the time a label is 
not detectable (toff).

Calculation of p-values.  We compared the positions of all localizations obtained in the red color channel 
x y( , )red red  with those obtained in the blue color channel x y( , )blue blue . For this, we calculated the distribution of 

distances, r, from each red localization to the nearest blue localization, and determined the cumulative distribu-
tion function cdf r( ). To determine the distribution of nearest neighbor distances under the null model we applied 
a so-called toroidal shift14 to the positions of the red color channel 

  = + →x y x y v( , ) ( , )red red red red , where 
v x y( , )shift shift
→ =  is the shift vector, with periodic boundary conditions set by the region of interest. Repeating this 
procedure N times with random shift vectors v→ chosen uniformly within the region of interest, yielded N  reali-
zations of the null model of a random distribution of biomolecules. The according nearest neighbor distributions 
for each randomized control i was determined as described above, yielding cdf r( )rand i, . We defined the test statistic 
as the integral ∫=g cdf r dr( )r

0
max , since it captures the whole spectrum of distances, without bias. If not men-

tioned otherwise we set rmax to the maximum nearest neighbor distance occurring during the whole analysis, 
making the method independent from any user-defined parameter (Fig. S5). To compare the distributions, we 
computed the value of the test statistic for the original data g cdf r dr( )data

r
data0

max∫= . Calculating the test statistic 
for all randomized controls yielded the set ∫= = | = … .G g cdf r dr i N{ ( ) 1, , }rand rand i

r
rand i, 0 ,

max  We next deter-
mined rank g G( , ),data  which is defined as the rank of gdata within the set union ∪=G G g{ }rand data , where the 
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statistical rank is measured in descending order. Naturally, =
+
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1
data  yields the one-sided p-value30, since 
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 (Fig. S2). The 

calculated p-value is limited to discrete numbers with steps of N
1

1+ . Real molecular clustering results in a bias 
towards lower nearest neighbor distances, yielding low p-values as shown in Fig. 1c. In principle, the method can 
also be used to test for biomolecular repulsion; in this case, gdata needs to be ranked within g  in ascending order 
for calculation of the p-value.

To calculate a p-value from k-nearest neighbor statistics, cumulative distribution functions cdf r( ) for the mean 
distance of the k-nearest neighbors (k = 3, 5 or 10) were processed and analyzed as described above. When using 
Lcross as basis of the test statistic, cumulative distribution functions cdf L( ) with ⁎=L L r( )cross  were generated for a 
radius of ⁎r nm50= . The test statistic g  was then calculated as ∫=g cdf L dL( )L

0
max . Since clustering results in 

high values of Lcross the rank g G( , )data  was measured in ascending order.

Simulations.  Conceptually, simulations were performed as described previously15. All simulations were car-
ried out in MATLAB (R2019b, The MathWorks Inc., Natick, MA) on a standard personal computer.

First, we simulated the underlying protein distributions for regions of 10 × 10 µm2, reflecting approximately 
the size of a typical cell. For all simulations we used 75 molecules per µm2, if not mentioned otherwise.

Simulation of oligomers.   We distributed oligomers randomly within the region of interest, and assigned n bio-
molecules to each n-mer position (n = 1 to 4). A random distribution of biomolecules is naturally reflected by 
the case of n = 1.

Simulation of areas of enrichment or depletion of biomolecules.  Circular domains with a radius of 20, 40, 60, 80, 
100 or 150 nm were distributed randomly onto the region of interest with adjustable number of domains per µm2 
(3, 5, 10, 15, 20 and 25). The number of biomolecules per domain was calculated from the total number of sim-
ulated molecules (here 7,500), the fraction of molecules inside domains (20, 40, 60, 80, 100%), and the number 
of simulated domains, assuming a Poissonian distribution. Biomolecules were distributed randomly within the 
domains. The remaining molecules were distributed randomly in the areas outside of the domains.

Second, two different types of labels, corresponding to the two colors, were assigned randomly to the mole-
cules according to the specified labeling ratio, assuming Binomial statistics.

Third, to simulate blinking, we assigned a number of detections to each label (Fig. S1). For the simulations 
shown in Fig. S3 and Fig. S11, we used blinking statistics determined previously15 or artificial blinking statistics 
following a log-normal distribution. Localization errors were simulated by spreading these detections using a 
Gaussian profile centered on the molecule position with a width of 30 nm, which corresponds to typical localiza-
tion errors achieved in SMLM experiments. We assumed identical localization errors for the two color channels.

Fourth, to account for experimental errors in the “realistic” scenarios, we included unspecifically bound labels 
at a mean density of 5 labels/µm2 for each color channel, assuming the blinking statistics determined for SNAP488 
and SNAP647. We finally considered also false positive localizations by adding a background of 1 (2) signals/µm2 
for the red (blue) color channel, again with experimentally determined blinking statistics obtained in unlabeled 
cells.

Fifth, to account for stage drift in Fig. 2d we assumed alternating laser excitation and hence added a global 
drift vector d

→
 to the localizations of both color channels obtained at time t according to x x d t→ → → +

→
⋅ .

Sixth, to account for residual chromatic aberrations in Fig. S4c,d, we displaced every localization of the red 
color channel by a vector, which was characterized by the vector field x y x x y y( , ) ( , )0 0β′ ′ = ⋅ − − ; we set 

= = . µx y m2 50 0 . β was varied between 0 and 0.06.
If not mentioned otherwise, 100 simulations were performed for each experimental condition.
If not mentioned otherwise, we used the following set of parameters: 10 × 10 µm2 region of interest, 75 mol-

ecules per µm2, a balanced labeling ratio between the two color channels, no stage drift, 30 nm localization error 
(standard deviation), and the blinking statistics determined for SNAP488 and SNAP647 for the two color channels. 
For the “ideal” scenario we simulated 100% labeling efficiency, no unspecifically bound labels and no unspecific 
background signals. For the “realistic” scenario we simulated 40% labeling efficiency, 5 unspecifically bound 
labels per µm2 and color channel, and 1 or 2 unspecific background signals per µm2 in the red and blue color 
channel, respectively.

Data availability
The data that support the findings of this study are available from the corresponding authors upon reasonable 
request.
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