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Networks and long-range mobility 
in cities: A study of more than one 
billion taxi trips in New York City
A. P. Riascos   1,3 & José L. Mateos1,2,3

We analyze the massive data set of more than one billion taxi trips in New York City, from January 2009 
to December 2015. With these records of seven years, we generate an origin-destination matrix that 
has information of a vast number of trips. The mobility and flow of taxis can be described as a directed 
weighted network that connects different zones of high demand for taxis. This network has in and out 
degrees that follow a stretched exponential and a power law with an exponential cutoff distributions, 
respectively. Using the origin-destination matrix, we obtain a rank, called "OD rank”, analogous to 
the page rank of Google, that gives the more relevant places in New York City in terms of taxi trips. We 
introduced a model that captures the local and global dynamics that agrees with the data. Considering 
the taxi trips as a proxy of human mobility in cities, it might be possible that the long-range mobility 
found for New York City would be a general feature in other large cities around the world.

The study and understanding of human mobility in cities is an important and challenging problem since more 
than half of the world population lives in urban areas1. Nowadays human mobility can be explored in detail 
thanks to the digital traces people leave on mobile/digital platforms2,3. Identifying global emerging patterns for 
human mobility is important in topics like urban planning, transport systems, the influence of the spatial distri-
bution of a city in the mobility4–7, and the encounter or contact networks that emerge8. In addition to all these 
aspects lying in the field of complexity and cities, we have the science of networks with well-established tools and 
methods to describe complex systems9–11. In many cases, networks provide an important framework to study 
transportation modes and their interactions12,13.

Several studies have revealed that human mobility follows a long-range dynamics, akin to Lévy walks, as has 
been shown before as a common strategy in many animal species and humans3,14. In the context of networks, 
Lévy flights were introduced in15 revealing that long-range displacements increase the capacity to reach efficiently 
to any site of the network by inducing the small-world property through the dynamics. This process has been 
explored in different cases as diverse as fractional diffusive transport16–19, the dynamics on multiplex networks20, 
human mobility8,21, semi-supervised learning22, among others19,23–27.

In this research, we analyze the spatial activity of taxis as a proxy for human mobility in urban areas. From 
publicly available datasets, we generate an origin-destination (OD) matrix for trips during a period of seven years 
from January 2009 to December 2015. We identify zones with a high demand of this service and in this way, the 
movement of taxis can be described as a directed weighted spatial network with nodes representing high demand 
zones and links defined by the number of trips between two zones. In addition, we have geographic coordinates 
for all the nodes and the respective distances between them; as a result, the system can be described as a spatial 
network28. With all this information, available through the analysis of trip records, we study the spatial activity of 
taxis as a dynamical process in this particular structure. Several authors have explored spatio-temporal patterns 
in the mobility of taxis in different urban areas29–31. The system of taxis in New York City has been studied with 
different methods; in particular, considering the complete routes followed by the taxis on the street network32–35.

To clarify the connection between mobility and networks, let us illustrate some ideas in connection with the 
relation between directed weighted networks and human mobility. In Fig. 1 we depict a schematic illustration of 
agents moving between N = 10 specific regions denoted as squares in a two-dimensional plane. In this reduced 
example, we have =T 1000 trips and the values Tij (for i, j = 1, 2, …N) denote the number of trips between two 
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regions. In Fig. 1(a) we represent with bars the values obtained for the number of trips that arrive or depart each 
zone; in addition, colored lines denote the number of trips Tij. In Fig. 1(b) we represent the complete structure 
described by the origin-destination matrix as a directed weighted network: the links have directions represented 
by an arrow and, with different colors in the lines, we depict the respective number of trips. Furthermore, we show 
with self-loops (i.e., a line connecting a zone with itself) the number of trips that start and end in the same zone, 
determined by the diagonal elements in the origin-destination matrix. In addition, in the study of mobility, the 
resulting structure is a spatial network and all the positions of the nodes are important, for instance, to determine 
the distance between two zones. This example shows the vast amount of information that is captured in the 
origin-destination matrix and its direct relation to a network, allowing us to use the full potential of network 
science to study mobility.

The paper is organized as follows. In the first part, we identify high demand zones and generate 
origin-destination matrices describing the global activity of taxi’s flow. Then, we calculate the transition probabil-
ities between high demand zones. We introduce a rank, called "OD rank”, analogous to the page rank of Google. 
We also implement a model that describes the spatial activity of taxis and verify the predictions of this model 
with the real data through Monte Carlo simulations. Our findings reveal a well defined mathematical structure 
for the spatial mobility in urban areas with a dynamics that combines local displacements with a particular type 
of long-range movements. The methods introduced are general and can be used as a framework for the study of 
different transportation systems in cities.

Results
Activity between zones with high demand.  We explore taxi trip records taking into account the 
administrative boundaries including the five boroughs of New York City36. As a result, for the seven years stud-
ied, we have T 1 148 052 357=  taxi trips (see the Methods section for a detailed description of the datasets 
explored). In the following, we study this volume of data by using a grid with 500 × 500 square zones with 
dimensions 100 m × 100 m. Once this grid is defined, we examine the zones contained in the administrative 
boundaries of New York City. In Fig. 2, we present a map generated with the information of origin and destina-
tions reported in the datasets. For each square zone defined before, we count the number of trips according to 
the registers of longitude and latitude of the initial and final locations of each trip for taxi registers from 2009 to 
2015. The results depicted in Fig. 2 give us a first insight into the global activity of taxis. We can identify a high 
demand of this service in Manhattan, also the high activity in the John F. Kennedy (JFK) International Airport 
and how by exploring the origins of the trips we can detect some features of the street network in New York City. 
On the other hand, we can see in Fig. 2(b) that the destinations are less localized in specific zones observing that 
in the Bronx, Brooklyn and Queens boroughs the number of taxis arrivals is more uniform in comparison with 
the origins in Fig. 2(a). This particular feature reveals how taxi transportation manages to permeate almost all 
the regions of the city.

In Fig. 2, we can identify zones in New York City with low demand for taxis or where only a reduced number 
of taxis arrives. Even considering the counts in seven years of activity, we can identify zones with dimensions 

Figure 1.  Schematic illustration of mobility as a spatially embedded directed weighted network. We show 
N = 10 square zones in the plane representing particular regions where agents can start or end a trip; we 
simulate T 1 000=  trips of agents between these locations. (a) Bar representation of the total number arrivals 
k(in) and the number of departures k(out). (b) Diagram of the system expressed as a directed network, we 
represent with colors the number of trips Tij between sites i and j. In the study of human mobility, this 
information is expressed as an origin-destination matrix N × N with elements Tij. In particular, the directions of 
the links are depicted by arrows and self-loops represent the number of trips with the same origin and 
destination.
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100 m × 100 m for which less than 103 taxi trips arrive or depart. This is a small number in comparison with the 
values of zones with a high demand for which we observe more than a million arrivals or departures. Much of 
these zones are located in Manhattan but also other zones of the city. In what follows, we study the flow of taxis 
between zones with high demand and we will describe the global spatial dynamics as a directed weighted spatial 
network. All the zones in our study are defined by a square with dimensions 100 m × 100 m and, for each year, we 
classify a region as a high activity zone if, in this specific part of the city, the number of arrivals and departures are 
at least 103. In this way, the minimum number of arrivals at a high activity zone is at least 103 trips, and the same 
rule applies to the number of taxis leaving this region. This limit is reasonable due to the high quantity of trip 
records explored per year in the complete database. In addition, by using this rule we reduce possible errors pro-
duced by the inaccuracy in the origin and destination coordinates. By applying the criteria described before to the 
taxi trips in 2015, the number of high demand zones for this year is 4 353 and the total number of trips between 
these zones is = 128 984 657T  that represents a 90.22% of the original database described in the Methods sec-
tion. We found similar values for the trips from 2009 to 2014. The results for the number of high demand zones N 
and the total number of trips T are presented in Table 1.

Now, we define origin-destination matrices describing the flow of taxis between high-demand zones. In this 
way, the global dynamics can be explored and treated as a directed weighted network; in particular, a spatial 
network for which the nodes represent zones of high demand and the links with weights can represent several 
quantities like the flow of vehicles, the geographical distance between nodes, among other values28.

Figure 2.  Origins and destinations of taxi trips in New York City. In this analysis, we divide the city in 
100 m × 100 m square regions and, for each region, we count the number of taxi trips considering the registers 
of longitude and latitude of the initial and final locations of each trip. The results are presented in (a) for the 
origins and (b) for the destinations of taxis. The colorbar indicates the number of trips in each zone; regions 
outside the boundaries of New York City are presented in black. We analyze 1 148 050 837T =  trips from taxi 
trip records between January 2009 to December 2015. In this representation of the data, using only the 
information of origins and destinations of taxis, we can see in detail the spatial complexity of New York City and 
how the street network emerges from the large number of trips analyzed.

Year
Fraction original 
database (%) N Displacements T 0 ≤ d ≤ 1.8 Km (%) d > 1.8 Km (%)

2009 91.76 4 456 153 389 115 44.69 55.31

2010 91.71 4 465 150 327 196 43.87 56.13

2011 91.70 4 558 156 962 079 42.92 57.08

2012 91.70 4 642 158 714 293 42.44 57.56

2013 91.65 4 645 154 833 137 42.69 57.31

2014 91.08 4 612 146 484 526 43.39 56.61

2015 90.22 4 353 128 984 657 43.21 56.79

Table 1.  Analysis of the spatial activity of taxi trips in New York City considering zones with a high demand for 
this service. By using the rule that at least 1 000=M  trips depart and arrive from a zone in a year, we obtain 
the number N of high demand zones. In addition, we present the total number of trips T between zones and the 
fraction of the original dataset that each number of trips represents. For the trips analyzed, we show the fraction 
of local trips with geographical distances d in the interval 0 ≤ d ≤ 1.8 Km and the fraction of long-range 
movements with d > 1.8 Km.
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For each year, we calculate an origin-destination matrix for which the elements Tij represent the number of 
taxi-trips from zone i to zone j, where i, j = 1, 2, …, N denote the square zones of high demand with dimensions 
100 m × 100 m. In addition to the elements of the origin-destination matrix, it is important the in-degree defined 
as 
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relation 





k T ,
(2)

i

N

i
(out)

1
∑=

=

 that counts the total number of trips originated from zone i. On the other hand, to explore the spatial activity is 
important to have information about the geographical distances between zones. This information is included in a 
N × N distance matrix D with elements dij with the geographical distance between i and j. In addition, the degrees 
in Eqs. 1–2 satisfy: 
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 where T is the total number of trips considered in the origin-destination matrix.
In Fig. 3, we show the origin-destination matrix and the respective matrix of distances D obtained from taxi 

trips in 2015. The resulting matrices incorporate the flow of vehicles between N = 4353 high demand zones.
Let us now analyze the statistical properties of the directed weighted network associated with mobility in New 

York City. In order to do so, we show in Fig. 4 two probability distributions: one associated to the in-degree of the 
network ki

(in) (Fig. 4(a)) and the other one associated with the out-degree of the network ki
(out) (Fig. 4(b)). We 

explore all the in and out-degrees, for seven years, from 2009 to 2015, in the interval 103 ≤ k ≤ 106. With the aim 
of finding the best fit of the aggregated data of mobility for these distributions, we used the tools and procedures 
described by Clauset et al. (2009) as given in ref. 37, that are implemented in the powerlaw package library 
described in references38–40. In order to decide the best fit and perform a proper statistical analysis, we explore 
several candidates for the distribution models: power law, power law with an exponential cutoff, exponential, 
stretched exponential and log-normal.

For the statistical distributions considered, we calculate the Kolmogorov-Smirnov (KS) distance between 
them in a pairwise fashion. This KS distance gives us a first indicator (goodness of fit) of the proximity of the data 
and the proposed distribution model. Then, we compare the different distributions via a likelihood ratio test by 
calculating the log-likelihood function of each one of the selected distributions. The sign of this ratio gives us a 
criterion to discriminate between distributions (see reference37). After this model selection, the best two fits were 
the power law with an exponential cutoff (EC), with a probability density37: 

Figure 3.  Global activity of taxis between zones of high demand for this service in New York City. We analyze 
the movement of taxis trips made in 2015 and, from the study of a grid with square zones with 100 m × 100 m, 
similar to the one presented in Fig. 2, we identify zones of high demand of taxis considering that at least 1 000 
trips have departed or arrived from a zone. We found with this criterion N = 4 353 high demand zones. In (a) 
we present the origin-destination matrix for taxi trips moving between zones, the respective colorbar codifies 
the trip counts. In (b) we present the geographical distance between origin and destination zones; the values of 
the distance are represented in the colorbar.
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 where k represents the degree, kmin is the minimum value considered in the fit and Γ(x, y) denotes the incomplete 
gamma function. Notice that both distributions have two parameters, that we will distinguish with a superindex 
EC for the power law with an exponential cutoff, and with a superindex SE for the stretched exponential; however, 
we will not indicate these superindexes in Eqs. 4–5 to simplify the notation. We use λEC and γEC for the power law 
with an exponential cutoff and λSE and βSE for the stretched exponential.

For the in-degrees in Fig. 4(a), the best fit is the stretched exponential with parameters β = .0 708in
SE  and 

4 138 10in
SE 5λ = . × − ; in a similar way, for the power law with exponential cutoff γ = .1 00000000041in

EC  and 
λ = . × −6 730 10in

EC 6. On the other hand, the same analysis for the out-degrees in Fig. 4(b) concludes that the best 
fit is the power law with an exponential cutoff with parameters 1 0000000025out

ECγ = .  and λ = . × −6 086 10out
EC 6; in 

addition, for the stretched exponential β = .0 495out
SE  and 6 834 10out

SE 5λ = . × − .
It is surprising that both exponents γin

EC and γout
EC are extremely close to the value one. Thus, both distributions 

are well described by the power law p(k) ∝ k−1 in some range of in and out degrees.

Transition probabilities.  All the information in the origin-destination matrix and in the degrees ki
(in) and 

ki
(out) allow us to analyze and understand the spatial activity of taxis as a dynamical process in a spatial directed 

weighted network. In this way, we can describe statistically the global dynamics of taxis in terms of transition 
probabilities between high demand zones of this service.

The transition probability wi j
(out)
→  between zones i and j is defined in terms of the origin-destination matrix as: 
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With the transition probabilities wi j
(out)
→ , we can explore the relationship between the information in the 

origin-destination matrix and the matrix of distances; these matrices were presented in Fig. 3. Now, to study this 
connection, we calculate →wi j

(out) by using the definition in Eq. 6; for each value, we have the corresponding geo-
graphical distance dij between i and j as an entry in the distance matrix D.

Figure 4.  Statistical analysis of the number of taxi trips that depart and arrive in high demand zones in New 
York City. We present the probability density for the values of the degrees: (a) ki

(in) and (b) ki
(out) defined in 

Eqs. 1–2 for i = 1, 2, …, N, where N is the number of high activity zones presented in Table 1 for each of the 
years explored. The results were obtained with normalized counts using logarithmically spaced bins. In both 
cases, we show with different curves, the power law with an exponential cutoff pEC(k) in Eq. 4 and the stretched 
exponential fit pSE(k) in Eq. 5.
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In Fig. 5, we depict the logarithm of the transition probability →wi j
(out) as a function of the logarithm of the rela-

tion dij/d0 where d0 = 1 Km is a reference length. In Fig. 5(a), we consider all the non-null transition probabilities 
wi j

(out)
→  and distances dij, for the annual data records of the taxi’s activity in 2015; we obtain a distribution of points 
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0
 for all the zones with high demand (i, j = 1, 2, …, N). We show the results as a 

two-dimensional histogram that quantifies the frequencies of these values in hexagonal bin counts.
Our findings in Fig. 5 reveal that the transition probabilities of taxis are approximately constant =→w 10i j

c(out)  
for distances less than a characteristic value R = 1.8 Km. In contrast, for distances greater than R, the transition 
probabilities are well described by a power law with an exponential cutoff relation: 
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presented in Fig. 5 for values 0.1 Km ≤ dij ≤ 11 Km. We divide the data considering pairs in the region dij ≤ R and 
dij > R with R = 1.8 Km. In Fig. 6(a) we show the statistical analysis of the values c wlog i j10

(out)= →  found for dij ≤ R, 
we see that the values c are distributed with a pronounced peak around c = −3.2, we use this value to describe the 

Figure 5.  Transition probabilities between zones of taxi trips in New York City. In (a) we present the results 
obtained for the year 2015 with origin-destination matrix and the respective distances presented in Fig. 3. In (b) 
we depict our findings for each year from 2009 to 2014. In all these cases, we analyze the non-null transition 
probabilities →wi j

(out) and the geographical distance dij between zones i and j. We show hexagonally binned two-
dimensional histograms for the logarithm of wi j

(out)
→  and the logarithm of dij/d0 where d0 = 1 Km is a reference 

distance. The values codified in the colorbar represent the frequencies denoted as ( )f d d w/ ,ij i j0
(out)
→  of the pairs 
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d i j10 10
(out)ij

0
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
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
→  found in each hexagonal bin. Dashed lines are used as a guide and represent the 

behavior wi j
(out)
→  constant, for d ≤ 1.8 Km, and ∝ β

→
− − −( )w d ei j ij

d R(out) 1 ij  with β = 0.15 Km−1 for d > 1.8 Km.
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probabilities of transition. In a similar way, once defined c, we calculate β in Eq. 8 for dij > R. In Fig. 6(b), we 
analyze the probability density of the values β and we identify a peak around β = 0.15 Km−1.

The piecewise approximations described by the values R = 1.8 Km, c = −3.2 and β = 0.15 Km−1 are repre-
sented with dashed lines in Fig. 5. A similar behavior has been detected in the analysis of the transportation net-
work of stations in bicycle sharing systems operating in New York City and Chicago21. In these cases, the value 
R ≈ 1 Km defines local displacements and the long-range dynamics is well described by w di j ij

(out) 2∝→
− . In this way, 

in bike-sharing systems R is reduced in comparison to our findings for taxi trips; in addition, the long-range spa-
tial activity qualitatively has similar characteristics to those observed in Fig. 5.

OD rank.  The transition matrix W(out) with elements wi j
(out)
→  defined in Eq. 6 allow us to understand human 

mobility as a dynamical process in a spatial directed weighted network. Well-known results in stochastic pro-
cesses apply for the transition matrix W(out)10. In most cases, origin-destination matrices are non-symmetric; as a 
consequence, it is convenient to analyze the transition matrix W(out) establishing an analogy with the Google 
matrix41, with a mathematical structure entirely general that applies to any graph or network in any domain42. In 
the following, we explore how by using this connection, the eigenvalues and eigenvectors of W(out) give valuable 
information to understand the movement of taxis.

The transition matrix W(out) has left and right eigenvectors. Left eigenvectors jΦ
→ with elements φj(i) satisfy: 

λΦ
→

= Φ
→

= …j NW for 1, 2, , , (9)j j j
(out)

 where λ
=

{ }j j

N

1
 are the eigenvalues of the transition matrix. Right and left eigenvectors form an orthonormal base 

and have the same eigenvalues. On the other hand, the stochastic matrix W(out) fulfills Eq. 7 and, by definition, the 
elements of Tij satisfy Tij ≥ 0; therefore, W(out) belongs to the class of Perron-Frobenius operators with a possibly 
degenerate unit eigenvalue λ = 1 and other eigenvalues obeying ∣λ∣ ≤ 1 (see43 for details).

In Fig. 7(a) we plot the eigenvalues of the transition matrix W(out) for taxi trips in New York City in 2015. We 
use the origin-destination matrix in Fig. 3(a) and the definition in Eq. 6. The results were obtained numerically 
and, due to the asymmetry of the origin-destination matrix, the eigenvalues are complex numbers. In Fig. 7(a) 
we show the real and imaginary part of each of the eigenvalues λi for i = 1, 2, …, N = 4 353. In this analysis, we 
found that only one eigenvalue satisfies λ = 1, a result that reveals that the directed network associated with the 
mobility between sites of high demand for taxis is connected. Therefore, the links in the network connect all the 
zones. This particular result can be interpreted using the terminology of random walks on networks. In this case, 
the movement of a random walker defined in terms of the transition matrix W(out) is capable to visit any node of 
the network only by moving on the links, independently of the initial configuration. As we mentioned before, the 
high connectivity observed in the origin-destination matrix is a consequence of considering high demand zones 
with a criterion that requires a high number of departures and arrivals in each zone avoiding the emergence of 
isolated parts. However, the approach developed is general and in other cases, similar spectral analysis of the 
transition matrix could be an important tool to identify disconnected parts in a transportation system.

In addition to the eigenvalues, the respective eigenvectors of the transition matrix provide valuable informa-
tion about dynamical processes on networks10,19. In particular, the left eigenvector associated with the eigenvalue 
λ = 1 defines a ranking vector P

→∞
 with elements ∞Pi  for i = 1, 2, …, N and satisfies P W P(out)→

=
→∞ ∞

, 
therefore: 

Figure 6.  Statistical analysis of the parameters c and β. We present the probability density ρ of the numerical 
values c and β found for each pair 






→( ) wlog , log

d
d i j10 10

(out)ij

0
 in the interval 0.1 Km ≤ dij ≤ 11 Km for the years 

2009, 2010, …, 2015. (a) Values c wlog i j10
(out)= →  for dij ≤ R = 1.8 Km, (b) values β obtained from Eq. 8 for 

dij > R. Vertical dashed lines represent the values c = −3.2 and β = 0.15 Km−1.
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In the study of random walks on networks, the vector P
→∞

 is the stationary probability distribution. The value 
∞Pi  gives the probability of a random walker to reach the node i after a large number of steps19. In the context of 

the Google matrix, the vector 
→∞
P  determines the importance of a node in a network establishing a PageRank of 

the Web43. In the analysis of mobility with a transition matrix W(out), the vector P
→∞

 defines a ranking of the zones 
used in the definition of the origin-destination matrix. Due to this connection, we call this ranking “OD rank”.

In Fig. 7(b), we show the results obtained numerically for the OD rank 
→∞
P  associated with the eigenvalue 

λ = 1 of the transition matrix W(out) that describes the taxi’s flow in 2015. Our findings in this figure reveal a con-
nection between the OD rank ∞Pi  of a zone i and the respective in-degree ki

(in). In a similar way to the findings for 
the PageRank algorithm for Google, the stationary probability distribution 

→∞
P  is a measure of the popularity of 

nodes that is mostly due to the in-degree dependence; in a mean-field approximation the stationary distribution 
of the PageRank algorithm is given by44: 

P q q
N

q k( ) (1 ) , (11)i
i
(in)

= + −∞
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 where 0 ≤ q ≤ 1. Searching the optimal value q* that minimizes the quadratic error S q P P q( ) ( ( ))N
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In Fig. 7(b) we illustrate the approximation given by Eq. 11, for q = 0 and q* = 0.062, obtained for the best 
fit. However, Eq. 11 is a mean field result and important deviations may appear10,44–46. The result given by Eq. 11 
makes sense in the description of taxis since the importance of a high demand zone can be defined in terms of the 
number of taxi trips k(in) that arrive at this specific location. For example, in our schematic illustration presented 
in Fig. 1(a), now we understand that the bars with the value k(in) determine the importance of the zones.

The transition probability matrix W(out) defined in Eq. 6 captures all the information about the system’s global 
activity. We think that an OD rank of the zones defined as 

→∞
P  can be a valuable measure in the analysis of differ-

ent transportation systems and a complement to other types of ranking algorithms introduced to determine 
location attractiveness incorporating geographic considerations into the PageRank algorithm47–49.

Random walk strategy.  The results obtained before for the relationship of the transition probabilities 
describing the flow of taxis between zones and the geographical distances separating these locations, suggest that 
the spatial dynamics can be approximately described by a model with constant transitions to zones in a local 

Figure 7.  Numerical analysis of the eigenvalues and OD rank of the transition matrix W(out). We analyze the 
transition probability matrix for the taxi’s flow in 2015 with origin-destination matrix presented in Fig. 3 with 
N = 4 353 high demand zones. In (a), we show the eigenvalues λ of W(out) satisfying Eq. 9. In this way, we have 
4 353 values represented in the complex plane with dots; in the inset, we depict the results for the eigenvalues in 
a region close to the origin, where we observe more eigenvalues with a non-null complex part. In (b) we plot the 
components ∞Pi  of the eigenvector 

→∞
P  with eigenvalue λ = 1; we represent the numerical values of ∞Pi  in terms 

of the respective degree ki
(in) for i = 1, 2, …, N. We also show the values ∞P q( )i  obtained with Eq. 11 for q = 0 

and the best fit q* = 0.062.
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neighborhood within a distance R, and a long-range dynamics defined by probabilities of transition proportional 
to ( )e dd R

ij
1ijβ− − − . The analysis of more than a billion trips reveals a particular emergent pattern in the spatial activ-

ity. The movement of taxis between high demand zones can be classified into two types of trips with particular 
characteristics illustrated in Fig. 8. We have local displacements for which a taxi departs from a high demand site 
and the probability of moving to another site of high activity is independent of the distance that separates them if 
they are located at a distance less than a value R. On the other hand, there may also be long-range displacements 
for which the separation between origin and destinations require distances greater than R. For this type of move-
ments, we find that the probability of having a long-range trip depends on the distance and these particular tran-
sitions have characteristics observed in truncated Lévy flights.

In this way, to describe the global activity of the taxi’s mobility we use the model: 

w R
R

R
( , )

( , )

( , )
,

(13)
i j

ij
N

i

(model)

1∑
β

β

β
=

Ω

Ω
→

= 

 where: 

βΩ =





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≤ ≤

< .β− −( ) ( )R
d R

R d e R d
( , )

1 for 0 ,

/ for (14)
ij

ij

ij
d R

ij
ij

In this model, β and R are positive real parameters. The transition probabilities defined in Eqs. 13 and 14 are 
illustrated in Fig. 8. The radius R determines a neighborhood around each zone where the trips occur with equal 
probability to move from the initial site to any of the high demand zones in this region. Therefore, the displace-
ments are independent of the geographical distance between origin and destination. That is, if there are S sites 
inside a circle of radius R, the probability of going to any of these sites is uniform. Additionally, for places beyond 
the local neighborhood, for distances greater than R, the transition probability decays as a power law with an 
exponential cutoff of the distance and is proportional to β− − −( )e dd R

ij
1ij . In this way, the parameter R defines a char-

acteristic length of the local neighborhood and β controls the probability to have long-range displacements. In 
particular, in the limit β → ∞ the dynamics becomes local. We introduced a similar model with long-range 
transitions proportional to α−dij  (α > 0) in reference8 in the context of human mobility and encounter networks. 
In this case, the resulting dynamics can be similar to a rank model50–52 and a gravity model3,53–55. It is worth men-
tioning that the inverse of the parameter β in Eq. 14 gives us a characteristic distance; this exponential cutoff takes 
into account the finite size effect associated with a finite system like New York City.

In our previous analysis in Fig. 5, we found that R ≈ 1.8 Km. This value defines what we understand as a local 
neighborhood for this transport system. On the other hand, for distances dij > R, the probability to have a trip to 
a zone is highly influenced by the geographical distance and this long-range dynamics is determined by the values 

β− − −( )e dd R
ij
1ij  with β = 0.15 Km−1.

In the following part, we explore the predictions of this model for the annual global activity of taxi displace-
ments in New York City by using the parameters R = 1.8 Km and β = 0.15 Km−1 found in the analysis of the taxi’s 
flow between high demand zones. In addition to Eqs. 13 and 14, that model the displacement between high 
demand zones, it is important to consider that these zones have different relevance in the whole dynamics, i.e., a 
trip can start from different zones with non-uniform probabilities. This fact is well described by the values of the 
out-degree ki

(out) defined in Eq. 2 that gives the number of trips with origin in the zone i. In addition, from the 
results in Fig. 4, we know that the values ki

(out) follow a hierarchical distribution with probabilities that decay as 
p(k) ∝ k−γe−λk where k represent the values of the out-degree. This result is observed in the annual datasets from 
2009-2015. In this way, we simulate the dynamics of multiple taxis that start from an initial zone chosen randomly 
with a probability proportional to the values k{ }i i

N(out)
1=  that quantify the importance of each zone in the city. Then, 

Figure 8.  A schematic illustration of the mobility of taxis between high demand zones. There are two types of 
trips from a particular location i: First, to a site j inside a circular region of radius R centered in the location i, 
the probabilities to have a trip to these zones are constant; and, second, a trip to a zone k outside the circle of 
radius R. In this case, the probability to have this long-range movement decays as a power law with an 
exponential cutoff proportional to e dd R

ik
( ) 1ikβ− − − , where dik is the geographical distance between i and k.
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a displacement is generated randomly from the origin site to a final zone by using the transition probabilities in 
Eq. 13; this algorithm is repeated to generate, through Monte Carlo simulations, the same number of displace-
ments between high demand zones, as reported in Table 1.

In Fig. 9 we present the statistical analysis of the taxi’s displacements d generated randomly and the real values 
considering the activity in New York City in 2015. In our simulation, we generate 128 984 657 random displace-
ments following the model in Eq. 13, with β = 0.15 Km−1 and R = 1.8 Km. Our findings show an agreement 
between the predictions of the model and the real dynamics. However, we observe that the predictions do not 
agree with the real data around d = 10 Km and d = 20 Km; this is a consequence of the singular dynamics 
induced by the two airports in New York City. An accurate modeling capturing the effects of these very attractive 
sites in a city requires modifications to the model explored. This fact is also visible in Fig. 5 where, for distances 
around 20 Km, we see different values of the transition probability that are not described by a model with 
long-range trips following ( )w e di j

d R
ij

(out) 1ij∝ β
→

− − − .
Finally, we repeat the same procedure to compare the predictions of the model with respect to the real data for 

taxi’s activity from 2009 to 2014. Our results for Monte Carlo simulations are presented in Fig. 10. We observe the 
same characteristics found in Fig. 9, with a good agreement between model and the data. The number of locations 
of high demand N and the number of displacements analyzed for each year are reported in detail in Table 1. The 
results in Table 1 also reveal that in average, in a year, approximately 43% of the trips are local movements for 
which the geographical distance d ≤ 1.8 Km, the rest of the trips are non-local with d > 1.8 Km.

Discussion
In this research, we explore the massive records of more than one billion taxi-trips in New York City from January 
2009 to December 2015. With this dataset of seven years, we generate an origin-destination matrix that has detail 
information of a vast number of trips. The mobility in New York City can be described as a directed weighted net-
work that connects different zones of high demand for taxis. Each zone is characterized by the number of trips that 
arrive or depart from it and corresponds to nodes in the network. The arrivals and departures are the in-degrees and 
out-degrees of the directed network, and the flow gives different weights to the links of this spatial network.

We present a statistical analysis of the travel distance of each trip and found a long-range distribution that is 
almost the same for each of the seven years studied. On the other hand, the degree distributions, for the in and 
out degrees are, respectively, well modeled by a stretched exponential and a power law with an exponential cutoff. 
By defining the transition probabilities between zones, given by the origin-destination matrix and the out-degree, 
we are able to obtain a rank, called “OD rank”, analogous to the page rank of Google. We calculate the spectrum of 
eigenvalues and the main eigenvector, which is related to the in degree. The components of this eigenvector give 
the more relevant and attractive places in New York City, in terms of taxi trips.

The dependence of the transition probabilities with the distance between zones is obtained from the dataset, 
and based on that, we introduce a model that captures the global dynamics of trips. The data and the model 
describe, for short distances, a local dynamics independent of the spatial distance, and, for large distances, a 
dynamics that decays with distance as a power law with an exponential cutoff. The data agrees quantitatively with 
Monte Carlo simulations based on our model.

Finally, considering the taxi trips as a proxy of human mobility in cities, it might be possible that the 
long-range mobility and other features found for New York City would be rather general, and thus we expect a 
similar behavior in other large cities around the world for which these ideas can be applied as well.

Methods
Dataset description.  In this section, we present a global description of the records explored to study the 
spatial dynamics in New York City. We use data for the activity of taxi trips from January 2009 to December 2015; 
these datasets are available to the public by the Taxi and Limousine Commission in the New York City open data 
website56. The data available include information for all taxi trips in New York City when the taxis are in service. 

Figure 9.  Statistical analysis of displacements of taxi trips in New York City. We depict the probability density 
p(d) of the geographical distance d between the departure zone and the final destination of taxis. We present 
statistics obtained from the analysis of the complete dataset for displacements in 2015 and data generated by using 
Monte Carlo simulations with transition probabilities β→w R( , )i j

(model)  defined by the our model in Eqs. 13 and 14 
with R = 1.8 Km and β = 0.15 Km−1. In both cases we use logarithmic spaced bin counts for distances between 
102 m ≤ d ≤ 4 × 104 m.
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Figure 10.  Probability density p(d) of the geographical distance d between the departure zone and final 
destination of taxis and the results generated through Monte Carlo simulations with transition probabilities 
between high demand zones β→w R( , )i j

(model)  with R = 1.8 Km and β = 0.15 Km−1.

Figure 11.  Statistics of displacements d of taxi trips in New York City. We depict the frequency f(d) of the 
geographical distance d between the origin and destination of taxis. The results are obtained from annual 
datasets between January 2009 to December 2015. In the inset, we present f(d) as a function of d for the analysis 
of all the distances with a scale in the frequencies that ranges from 100 to 108. The two vertical dashed lines 
represent d = 1.8 Km and d = 20 Km. Additional information about the datasets explored is presented in 
Table 2.

Year T d (Km) d (Km)max

% 
0 ≤ d < 1.8 Km

% 
1.8 Km ≤ d < 20 Km

% 
d ≥ 20 Km

2009 167 165 746 3.14 49.02 42.76 56.32 0.92

2010 163 913 012 3.19 51.87 42.05 56.96 0.99

2011 171 166 041 3.27 45.16 41.05 57.85 1.1

2012 173 087 239 3.34 44.91 40.37 58.47 1.16

2013 168 937 296 3.36 47.67 40.45 58.28 1.27

2014 160 822 602 3.38 43.78 40.92 57.72 1.36

2015 142 958 901 3.41 45.95 41.82 56.62 1.56

2009–2015 1 148 050 837 3.30 51.87 41.33 57.49 1.18

Table 2.  Taxi records and displacements in New York City. We analyze taxi trips records from January 2009 to 
December 2015. Here, T is the total number of trips, the length d  is the average distance between the initial 
and final location whereas dmax is the length of the maximum displacement observed in each dataset. On the 
other hand, in the last three columns we include the fraction of displacements (as percentages) in the intervals 
0 ≤ d < 1.8 Km, 1.8 Km ≤ d < 20 Km and for values of d larger than 20 Km. In the last row, we present the 
results obtained for the whole dataset.
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The records comprise several fields capturing pick-up and drop-off dates and times, pick-up (origin) and drop-off 
(destination) locations, itemized fares, rate types, payment types and driver-reported passenger counts56.

Now, to complement the information in Fig. 2, and identify other global characteristics in the taxi’s spatial activ-
ity, we analyze the geographical distance d between the origin and destinations in each trip calculated from the 
longitude and latitude coordinates of these locations reported in the database. Here, it is worth mentioning that 
other types of distances can be implemented; in particular, the distance of the path in the street network connecting 
origin and destinations. In fact, powerful techniques have been introduced exploring taxi trips in New York City to 
estimate the driving distance based on the origin and destination coordinates59. However, due to the different paths 
that a taxi can follow to carry out each trip, in the following we use the geographical distance d. In Fig. 11, we present 
the statistical analysis of the geographical distances d. We depict the frequencies f(d) of the displacements obtained 
from uniform bin counts with Δd = 500 m for taxi trips. Different markers show the results for the analysis in a 
year. We can see that the frequencies f(d) maintain the same characteristics from 2009 to 2015, and the statistics 
reveal three important intervals: the first for d < 1.8 Km with higher values of the frequencies, a second interval for 
1.8 Km ≤ d < 20 Km where f(d) gradually decays and finally, for distances around 20 Km, we identify a peak that 
decays rapidly with the distance; this peak is associated with large displacements from Manhattan to the JFK airport 
(as a reference, the geographical distance between Times Square and the JFK airport is 20.6 Km). In a similar way, 
we identify another relative maximum at d = 10 Km: this increase in the frequencies is associated with trips between 
Manhattan and La Guardia airport (with d = 9.8 Km between Times Square and this airport). These are examples of 
how important locations can induce long-range dynamics in the taxi’s mobility. In this case, the two airports in New 
York City influence the taxi transportation mode in the whole city. This important feature has been observed in other 
cities with airports located at the city’s periphery (a particular case is reported in31).

In Table 2, we summarize the global information found for the spatial dynamics per year. We present the 
number of taxi trips analyzed, the average distance, the largest distance traveled as well as the fraction of trips with 
distances at different intervals. From the information in this table, when we examine the complete records from 
2009 to 2015, we observe that 41.33% of the taxi trips have displacements with d less than 1.8 Km, whereas a 
57.49% of the trips involve long-range displacements in the interval 1.8 Km ≤ d < 20 Km, and only a 1.18% of the 
trips have d greater than 20 Km. The average displacement of trips is = .d 3 3 Km and the maximum value 

Figure 12.  Distances between intersections in Manhattan. (a) Manhattan’s street network, (b) Distance 
matrices for 4 409 intersections in this network. We depict the results for the length of the intermediary path 
and the geographical distance between these intersections; the distances are indicated by the colorbar. In (c) we 
present the hexagonal bin counts for the geographical distances and the respective length of the intermediary 
path. We depict a dashed line, with unit slope, that represents the case when the two distances are the same. 
Clearly, since the intermediary path is always greater or equal than the geographic distance, we only have data 
in the lower triangle of the figure. We show with a colorbar the frequencies for the values found in each bin. The 
street map, intersections, and intermediary paths were obtained and analyzed with the OSMnx package57,58.
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observed in the records is 51.87 Km. All these quantities give us a first characterization of the spatial activity of the 
taxi transportation mode.

Geographical and shortest path distances.  In the analysis of the information described before, we use 
the geographical distance d between origin and destination. This election is based on the fact that we only know 
the geographical coordinates of origins and destinations for each trip. However, another important quantity to 
consider is the length of the intermediary path that the vehicle follows on the street network. The information of 
the street network, the length, and direction of each street and all the intersections, can be obtained from differ-
ent sources like OpenStreetMap60 or generated by using specialized algorithms (see for example59). In general, 
the length of the geographical distance is less or equal than the length of the shortest path between two points in 
a city. In Fig. 12 we explore this relation for all the intersections in Manhattan’s street network. We analyze the 
information available in OpenStreetMap60 and the OSMnx Python package57,58 to generate the street network 
depicted in Fig. 12(a). From this structure, we obtain the geographical coordinates of 4 409 intersections. In 
Fig. 12(b) we calculate all the distances between these intersections, taking into account the length of the inter-
mediary path, and the respective geographical distance. The results are presented as matrices for which the entry 
l, m represents the respective distance between intersections l and m. The two matrices are similar; however, 
the matrix with intermediary paths is asymmetric since it includes the directions of the streets. In Fig. 12(c) we 
explore the relation between the two distances by plotting all the values presented in Fig. 12(b). The results reveal 
that a high fraction of the values is close to a linear relation. Similar results apply for the whole city and, in this 
way, the main features of the global activity of taxis can be analyzed by using only geographical distances between 
origin and destination. However, in other contexts, a description of the complete path followed by the vehicle is 
necessary. See refs. 35,59 for a detailed discussion and models for taxi’s mobility at the level of intermediary paths.
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