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Propagation of signals between neurons and brain regions provides information about the functional 
properties of neural networks, and thus information transfer. Advances in optical imaging and statistical 
analyses of acquired optical signals have yielded various metrics for inferring neural connectivity, and 
hence for mapping signal intercorrelation. However, a single coefficient is traditionally derived to 
classify the connection strength between two cells, ignoring the fact that neural systems are inherently 
time-variant systems. To overcome these limitations, we utilized a time-varying Pearson’s correlation 
coefficient, spike-sorting, wavelet transform, and wavelet coherence of calcium transients from DIV 
12–15 hippocampal neurons from GCaMP6s mice after applying various concentrations of glutamate. 
Results provide a comprehensive overview of resulting firing patterns, network connectivity, signal 
directionality, and network properties. Together, these metrics provide a more comprehensive and 
robust method of analyzing transient neural signals, and enable future investigations for tracking the 
effects of different stimuli on network properties.

In the past decade, substantial efforts aimed to assess functional associations between brain regions and exter-
nal stimuli. The advent of genetically encoded calcium indicators (GECIs) has provided an all-optical approach 
for this assessment that has been widely adopted for neuroscience research1–9. In addition, sophisticated optical 
imaging and optogenetic photostimulation systems have been developed and used to generate vast amounts of 
data, all of which provide some form of assessment of optical activity associated with neural functioning10–23. 
With the advent of these technologies comes the increased volume of generated data and the increased complex-
ity of analysis. Thus, determining how neuronal networks propagate signals and the degree of neuronal inter-
connectivity based on their firing patterns remains a tedious task. Many groups have developed algorithms that 
aim to determine this interconnectivity based on the firing patterns in neural networks24–28, many based on the 
Hebbian model that synchronous neural firing coincides strongly with neural connectivity. These algorithms 
typically fall into two categories: model-based approaches and model-free approaches. Model-based approaches 
take into consideration the kinetics of the GECIs in a biophysical model for their algorithms29,30. Alternatively, 
model-free approaches base their analyses on the signals acquired by the cell bodies, and perform statistical anal-
yses independent of any physical model31–36. As such, these approaches tend to be more easily implementable, and 
require less computational power.

Traditionally, algorithms developed for monitoring neuronal connectivity are validated using computational 
models of network dynamics28,37. These models use known synaptic weights to construct artificial networks of 
cellular dynamics, and if the network topology is known, provide a ground-truth assessment of the validity of 
the network analyses. However, ground-truth is typically unknown in most neural cell culture models, and espe-
cially in intact brain tissue. Thus, forming a basis for validating the transfer of information between neurons 
has remained a bottleneck in network assessment. The complexity of functional neuronal networks far out-
weighs even the most robust models, and experimental ground-truths need to be used as a method for verifying 

1Beckman Institute for Advanced Science and Technology, Urbana, USA. 2Department of Bioengineering, Urbana, 
USA. 3Department of Electrical and Computer Engineering, Urbana, USA. 4Neuroscience Program, Urbana, USA. 
5Carle Illinois College of Medicine, University of Illinois at Urbana-Champaign, Champaign, USA. *email: boppart@
illinois.edu

OPEN

https://doi.org/10.1038/s41598-020-59227-5
http://orcid.org/0000-0002-3596-5799
http://orcid.org/0000-0002-9386-5630
mailto:boppart@illinois.edu
mailto:boppart@illinois.edu


2Scientific Reports |         (2020) 10:2540  | https://doi.org/10.1038/s41598-020-59227-5

www.nature.com/scientificreportswww.nature.com/scientificreports/

algorithms. Most algorithms also lack the ability to infer directionality of signal propagation without dramatically 
increasing the sampling rate25. Some connectivity metrics, such as the Grainger Causality, have been heavily 
debated over concerns of their accuracy, and whether the information obtained from these analyses is adequately 
interpreted28,38–40.

In this study, we propose not only a new algorithm to assess network connectivity (Fig. 1), but also a frame-
work by which validation of network responses can be obtained. The algorithm itself takes a model-free approach, 
integrating classical techniques for assessment of network topology. The algorithm uses a temporal Pearson’s 
correlation coefficient, as well as wavelet coherence, to determine the degree to which neurons are intercon-
nected based on the time-frequency information obtained from these signals. The Pearson’s coefficient is a widely 
adopted and well-known measure of correlation, and is also very easy to calculate. It has also been demonstrated 
to be very effective at inferring correlation than many other more advanced techniques28. Therefore, the metric is 
easily interpretable, making it a strong candidate for preliminary analysis of network correlation. Wavelet coher-
ence, though less commonly utilized, provides added dimensionality to the signal content, quantifies correlation 
strength, and through the phase information obtained from the transform, can also be used to quantify delays 
between signals, and consequently, directionality41. This proves to be a superior metric that overcomes each of the 
aforementioned limitations, and increases the breadth of useful information available to the researcher.

Furthermore, this algorithm segments the calcium transients extracted from the cell bodies of interests into 
discrete time-windows to assess temporal changes in connectivity throughout the course of the experiments. 
Further windowing is performed along these discrete windows to obtain a localized assessment of neuronal con-
nectivity as well, rather than basing analyses only on a correlation coefficient extracted throughout the entire 
time frame. Recent work in neural signal processing has demonstrated the utility of dynamic connectivity meas-
urements for characterization of mental disorders using fMRI42. Results from experiments performed on cells 
exposed to glutamate to elicit neuronal activity demonstrated the capability of the algorithm to determine and 
pinpoint changes in connectivity during chemical activation. We demonstrate this algorithm as a method for 
detecting changes in network activity over time by temporally assessing network dynamics after the application 
of glutamate, specifically analyzing its effects on cellular function and network stability in culture.

Figure 1.  Flow-chart of the network analysis algorithm and the parameters extracted from the imaging data. 
The video sequence (AVI format) is first loaded into the Matlab workspace and segmented temporally into 
tenths to reduce memory usage. The isolated signal from each individual neuron in the video sequence is then 
processed for fluorescence normalization, and then processed to acquire time-domain connectivity parameters, 
network firing properties, and coherence analyses for time-frequency metrics.
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Results
Time-varying connectivity coefficients reveal dynamic nature of connectivity.  In this work, we 
implemented a time-varying Pearson’s correlation coefficient to analyze the calcium transients acquired from 
cultured, hippocampal neurons. Hippocampal neurons were isolated from transgenic mice expressing GCaMP6s, 
and cultured for 12–15 days before imaging (Supplementary Figure S1). Glutamate at various concentrations was 
used to elicit a response from the culture, due to its excitatory effects in neurons. The time-varying coefficients 
illustrate dynamic changes of neural communication strength based on neural firing. The dynamic nature after 
application of glutamate is illustrated in Fig. 2. Representative calcium transients, corresponding connectivity 
matrices, and time-varying connectivity coefficients illustrate the effect of chemical and control conditions. A 
representative plot of the coefficient changes over time illustrates the fluctuations that are present in neural sys-
tems. In contrast to general connectivity matrices which provide a single coefficient based on the entire tem-
poral trace, dynamic neural connectivity demonstrates fluctuations in connectivity. More uniform temporal 
connectivity is shown in Fig. 2L, after excitation with 25 µM glutamate. Interestingly, this trace also highlights 
the instance when this uniformity occurred—roughly 270 seconds after the start of imaging. The control culture 
(Fig. 2I,J) continues to demonstrate fluctuations after initial introduction of culture media, suggesting that global 
excitation with glutamate promotes synchronous firing of neurons, and consequently increased connectivity due 
to this simultaneous firing. These results are repeatable (Supplementary Figure S2) in all experimental condi-
tions, demonstrating uniform connectivity increases for all applications of glutamate. For the 10 µM, 25 µM, and 
100 µM concentrations, there is a large increase in global connectivity that is absent in the control cultures, fur-
ther confirming this phenomenon in all experimental conditions. The control conditions also show significantly 
larger mean percent difference than all other glutamate-induced conditions over time, especially after 20 minutes 
(Fig. 3C), validating that this result is consistent across different cultures. Initially there appears to be little differ-
ence in fluctuations, but over time, this variation increases in comparison to the glutamate-induced conditions. 
This is attributed strongly to saturation of the connectivity values for glutamate-induced cases, as exemplified in 
Fig. 2L. This, in addition to a lack of reduction in the connectivity values for the glutamate-induced cases, results 
in decreased fluctuations in connectivity relative to the controls.

These results indicate that the neural connectivity inherently varies over time, and that chemical induc-
tion with glutamate reduces this variability. This supports other research that demonstrates inherent fluctua-
tions involved in underlying neural mechanisms, such as mobility in healthy and diseased states43, and that this 
time-varying approach could identify different states of connectivity using the temporal knowledge of connectiv-
ity and knowledge of the stimulus42. The literature demonstrates that by using fMRI, there are notable differences 

Figure 2.  Monitored, time-varying, multicellular firing activity and connectivity. (A–D) Cellular firing maps, 
(E–H) connectivity plots, and (I–L) plots of the time-varying connectivity for all pairs of cells before and after 
application of glutamate or cell-culture media. Time-series calcium traces are plotted for each cell in an FOV 
(A,C) before and (B,D) after application of (A,B) cell culture media and (C,D) 25 µM glutamate. The red dashed 
box in (D) is highlighting the region of increased cellular firing frequency, which coincides with the increased 
global connectivity (L, arrow). The red and purple dashed boxes in (I,J) are representative of high connectivity 
(above 0.8) and low connectivity (below 0.5), respectively.
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in temporal connectivity dynamics based on whatever external stimulus is applied. Interestingly, dynamic net-
work connectivity is becoming increasingly popular in fMRI studies, but its application for connectomic studies 
in microscopy systems has been limited. We propose that within these fluctuations, there are other mechanisms 
that can be used to discriminate functional states for myriads of electrochemical perturbations in neural systems. 
Furthermore, perturbations by optogenetic stimuli and tailoring of incident light pulses could also be probed 
with time-varying methods to see how this modulates connectivity, temporally. This combination of tools would 

Figure 3.  Measured connectivity change based on varying concentrations of glutamate after (A) 10 minutes, and (B) 
20 minutes. (C) Temporal change for all experimental conditions within each imaging window. Sample size (n = #) is 
the number of cell pairs for each experimental condition—all from different cultures. ***represents p < 0.005.
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provide a powerful method by which an underlying, dynamic process could be discovered and monitored, and 
consequently, a stronger understanding of neuronal connectomes could be achieved.

Glutamate induces changes in network connectivity.  Observing that there were clear fluctuations 
in cellular connectivity that were disrupted by glutamate uptake, we wanted to determine whether there would 
be notable, aggregate differences in connectivity resulting from different concentrations. To monitor aggre-
gate differences in connectivity following administration of glutamate, the percent-change of connectivity 
values from baseline to 10 or 20 minutes was calculated using the generalized, “final” connectivity coefficient 
(Fig. 1). For tracking more dynamic temporal changes, the mean percent-change at one-minute intervals was 
calculated and plotted before, 10 minutes after, and 20 minutes after glutamate administration. Figure 3 shows 
the percent-change progression of these connectivity values as a result of each concentration of glutamate after 
10 minutes and 20 minutes post-administration. Significant differences in connectivity exist between the control 
and the 25 µM and 100 µM conditions. This same difference is seen between 10 µM and the two higher concen-
trations, after 10 minutes. This same trend continues after 20 minutes, but with significant differences also noted 
between the control and the 10 µM condition, and no significant difference between both higher concentrations 
at any time point. Figure 3A shows that for the control and 10 µM conditions, there is very little percent-change 
in connectivity compared to baseline at 10 and 20 minutes. In contrast, for both the 25 µM and 100 µM condi-
tions, overall connectivity changed dramatically. After 20 minutes (Fig. 3B), the control and 10 µM conditions also 
showed statistically significant differences. For the 10 µM condition, the connectivity approached the calculated 
baseline connectivity values, which did not occur for each of the other experimental conditions.

It is believed that there may be a biphasic effect, where concentrations near 10 µM may perturb (increase) 
neural connectivity for brief periods of time, and then return to regular connectivity values shortly thereafter. 
Indeed, although glutamate is pivotal for establishing neural connectivity through long-term potentiation (LTP), 
higher concentrations elicit a neurotoxic response, which ultimately results in cell death44,45. Neurons have many 
mechanisms to regulate glutamate and other neurotransmitter release by storage and release46 but only to a cer-
tain level. Previous literature has shown significant toxicity effects above 10 µM44, which becomes especially pro-
found beyond 100 µM, and over time, this toxicity increases. The same study44 showed an exponential increase in 
acute and chronic cytotoxicity after the administration of 200 µM glutamate at DIV 14. Measurements in lactate 
dehydrogenase (LDH) were used to assess toxicity measurements. The authors suggest that different cytotoxic 
pathways are reached at different times after exposure to toxic levels of glutamate, which we believe is occurring 
in the presented work. In contrast, however, other studies demonstrate that these higher concentrations, in vitro, 
promote recovery of electrical activity47. From these studies, we infer that, on average, concentrations around 
25 µM may be the threshold for neurotoxicity in cultured neurons, and that over time, lower concentrations are 
regulated through inherent neural mechanisms, such as glial transmission or otherwise48. In contrast, lower or 
higher concentrations would result in either dramatic changes in connectivity (higher dosages), or no changes to 
the inherent variability in connectivity (low to no dosage), respectively. These mechanisms need to be investigated 
further to study this effect, and see if there is indeed an underlying mechanism that causes excito-toxicity at these 
high concentrations, while promoting healthy neural function at lower concentrations.

Additionally, variations in connectivity over time were studied over the course of each recording. Low varia-
tions in weights are seen during the initial ten-minute recording (Fig. 2I), indicative of their consistency during 
this time. Regions of strong connectivity are outlined by the red dashed box, and those of weaker connectivity 
by the purple dashed box to demonstrate the fluctuations present in the data. Following chemical stimulation by 
glutamate, significant modulations in the variability of weights that correspond to increased fluctuations in cellu-
lar firing patterns were observed initially, followed by stabilization of activity during post-chemical stimulation, 
and then new corresponding weights. The control cultures show larger variations in connectivity over time after 
10 and 20 minutes, in comparison to the other cultures. The 10 µM conditions show very similar trends, but are 
much less pronounced than the control. In both cases, the variation in network connectivity increases over time. 
In contrast, variability drops for the 25 µM and 100 µM conditions, and fluctuations increase again afterwards—
demonstrated by the dramatic increase in global connectivity. The 10 µM condition shows gradual fluctuations, 
but is comparable to the control culture initially. In all cases, over the course of 20 minutes, there is less variability 
than in the control sample, demonstrating a decrease in fluctuations in neural connectivity after applying gluta-
mate. The 25 µM and 100 µM conditions show a sudden decrease in fluctuations, which begins to rise again after 
20 minutes. These oscillations can also be more readily visualized in Supplementary Figure S2, which shows a 
temporal plot that illustrates the variation in connectivity weights over time.

Wavelet analyses show increased coherence in glutamate-treated cultures, highlights frequency  
content.  Given the inherently time-variant nature of neural firing and connectivity, we believed there should 
be a more comprehensive method for analyzing the dynamic nature in neural systems. The wavelet transform 
has become increasingly adopted for monitoring dynamic systems, and wavelet coherence has more recently 
been adopted as an assessment of determining causality and correlation of signals, while discriminating between 
frequencies that may or may not contribute to these similarities49. To our surprise, this method has not been 
widely utilized in calcium imaging for establishing coherence between two signals of interest, so we adopted it in 
this work to investigate what patterns could be acquired from these signals. By taking a wavelet transform of the 
acquired signals, the spectral content was extracted and quantified over time. After the application of 25 µM glu-
tamate (Supplementary Figure S3, B–C), there was a gradual convergence of the neural firing frequency toward 
0.3 Hz, where higher intensities (those regions in red on the plot) are more indicative of increased signal strength 
at that frequency band. Whereas in the unperturbed and control samples (Figure S3, E–F), there is a broad spec-
trum of signals, and the bandwidth converges dramatically after the application of glutamate. This, functionally 
results in the ability to determine a causal relationship between the glutamate stimulus and this convergence, 
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illustrating a powerful benefit of wavelet analysis for analyzing neural signals. Prior to this stimulus, and in the 
control cultures, a much broader spectrum of signal frequencies was present, due to the variable nature of the 
firing patterns of the neurons. The increased firing frequency and increased uniformity in signals resulted in 
both an increase in apparent global network connectivity and more rapid synchronous firing as a result of the 
application of glutamate.

Wavelet coherence, on the other hand, provides similar information to the time-varying connectivity coeffi-
cients. Figure 4 emphasizes both the coherence and phase information acquired from the signals between two 
cells. This information is easily quantified and provides information not just about the strength of connectivity 
based on signals, but also the directionality using the phase information. The coherence and connectivity metrics 
match very well, supporting that both metrics give complementary information. The wavelet coherence, however, 
also provides the benefit of showing the phase lag between two signals. Thus, in addition to signal connection 
strength, the directionality of signal propagation can also be obtained. This provides an additional benefit that 
is otherwise not present even with the time-varying Pearson’s correlation approach, quantifying phase delays 
between signals. Similar to the time-varying correlation coefficient, it is readily apparent after the application of 
glutamate that there is a universal increase in network connectivity, as well as a universal increase in coherence 
across all frequencies. This change is not seen as dramatically in the control condition. There was also a different 
shift in the phase information relative to the control sample. This translates to a difference in signal propagation in 
the network, which would otherwise not be revealed with traditional methods. The wavelet coherence approach 
provides similar information about connection strength as the Pearson’s correlation coefficient (Supplementary 
Figure S4, A) by illustrating a regression of all the time-varying, time-averaged connectivity data with the 
time-averaged coherence data, to show a linear relationship between them (R = 0.7367). These results, therefore, 
demonstrate that the wavelet approach to analyze temporal data is simple, comprehensive, and robust, providing 
strong levels of detail with regards to the temporal dynamics of neural signals. Consequently, the added frequency 
and phase information add to the breadth of information that can readily be obtained for analyzing the dynamic 
nature of neural systems, as discussed in the time-varying connectivity section. Also demonstrated is the strong 
association between this firing frequency and network connectivity (Supplementary Figure S4, B). Previous stud-
ies have demonstrated that increases in functional connectivity are strongly associated with increasing firing 
frequencies50, attributed to the temporal proximity of neighboring spikes at higher frequencies. As such, these 
variables are highly intertwined, making it difficult to discriminate connectivity independent of firing rate. The 
results highlighted here further validate the presence of this relationship, while an ability to discriminate these 
factors remains elusive. Highly controlled experiments of optogenetic inhibition along the synapses between 
neurons may be sufficient to discriminate between these variables, however, the inherent link between these vari-
ables cannot otherwise be easily discriminated computationally. Together, these metrics provide a comprehensive 
analysis for dynamic network activity using optical imaging, opening the door to powerful applications for neu-
rochemical reactions, connectomics, drug discovery, and a large number of other applications. Neural systems are 
inherently time-variant based on external stimuli, so using this time-varying approach for monitoring network 
properties serves as a useful computational tool for neuroscience research.

Figure 4.  Representative plots of coherence matrices, phase matrices, and wavelet-coherence transforms that 
were utilized in this study. There are similarities in the relative intensities and patterns that correlate with the 
data shown in Fig. 2.
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Network firing properties illustrate changes to all conditions, independent of connectivity 
changes.  The firing patterns of individual neurons in the cultured networks were also investigated in aggre-
gate. This required the identification of more prominent calcium traces, and determining the temporal differences 
between spikes. In this study, significant calcium spikes were segregated by applying a threshold two standard 
deviations above the mean fluorescence of the calcium traces. Peaks within 0.5 seconds of one another were not 
counted as separate spikes, and subsequent spikes had to be separated by at least 0.5 seconds to be considered 
separate spikes. After thresholding by time and amplitude, the temporal difference between subsequent calcium 
events was calculated, and this was then used as the inter-event interval. These intervals were then used to moni-
tor the firing patterns of individual neurons. The inter-event intervals calculated in this study followed a Poisson 
distribution, with decreased means after all chemical stimuli conditions (Fig. 5). Each condition demonstrated 
the same histogram shape, with the primary difference being the mean inter-event intervals. In each case, there 
was a decrease in the mean inter-event interval, although there was no overall change to the distribution. The 
firing rate decrease was most prominent for the 100 µM condition, which was expected considering the excitatory 
nature of glutamate. However, all conditions demonstrated this increase in firing rate, and consequently a result-
ing change to the functional nature of the cultures.

Functional connectivity poorly correlated with intercellular distance.  As previous literature has 
demonstrated strong functional relationships within individual brain regions, and negative correlations between 
connectivity and distance51, we investigated whether there would also be a similar relationship between cellular 
distance on the micron scale and functional connectivity in cultured networks. The Euclidian distance between 
cells in these experiments was determined to estimate the relationship between intercellular distance and connec-
tivity. It was expected that on the cellular scale, there would be a decrease in neural connectivity with an increase 
in inter-cellular distance. The results demonstrate that although there is an overall negative trend in network 
connectivity with increased distance, quantified using the Pearson’s correlation coefficient, the effect was not as 
pronounced as was initially expected. Supplementary Figure S5, E shows that for all experimental conditions in 
these studies, the regression coefficient showed a value of −0.2847, indicative of a negative trend, but not a strong 
linear relationship. This relationship is maintained for each individual experimental condition (Supplementary 
Figure S5, A–D). This was strongest in the control and cells exposed to 100 µM glutamate, but still indicative 
of only a weak rather than a strong trend. This is further illustrated in Supplementary Figures S5, A–D, which 
highlight histograms of the Pearson’s coefficient between intercellular connectivity and distance, acquired for 
each culture. This is in contrast to Supplementary Figure S6, where the data is normalized by Z-scoring, and all 
the culture data is compiled in a given set of conditions together, further verifying the weak relationship between 
connectivity and distance. It is likely that there is not a strong relationship between connectivity and distance at 
these dimensional scales within the relatively small optical field-of-view (FOV), and that it would likely require 
larger intercellular distances to see notable effects. It is also known that myelination promotes more rapid prop-
agation of neural signals across greater distances, and consequently functional connectivity would remain high 
despite the increased distance.

Discussion
In summary, we have developed an algorithm and experimental method for identifying network connectivity 
in cultured neuronal networks. This algorithm overcomes the limitations imposed by other methods by using 
metrics for quantifying neural connections, directionality of signal propagation, and acquisition of firing param-
eters to understand bulk properties of the network. Experiments were performed that measured functional 
activity from neural cultures that expressed GCaMP6s—a GECI, under control conditions, and after chemical 
stimulation with glutamate. We were able to identify significant differences in network connectivity as well as in 
percent-change between control cultures and those exposed to the external chemical stimuli. Differences were 
also noted between cultures exposed to different levels of chemical stimuli, with significant differences between 
baseline measurements and those after chemical stimulation. Baseline measurements were used for quantifying 
the inherent firing and connectivity properties of the cultured networks, which provided a means for then quan-
tifying causal changes and inherent variations, and how these properties subsequently changed after experimental 
stimuli. This algorithm and experimental technique, hence, serve as a useful tool for inferring network activity 
in cultured networks, demonstrating that we do not need to rely solely on network simulations to inform us of 
network connectivity. This algorithm further serves, among other algorithms, as an effective means for identify-
ing network topology, and potentially as a method for understanding how neurons function to develop various 
behaviors.

Most interestingly, with optical imaging, the implications of time-varying analysis of network connectivity 
and a combined time-frequency approach could unveil many otherwise unexplored phenomena. Beyond the 
ability to infer directionality of signal propagation is the strength of identifying instances of significant con-
nectivity changes, and identification of the frequency content imposed by specific stimuli. In the context of this 
work, a convergence of glutamate-evoked responses to roughly 0.3 Hz signifies that the receptors specific to glu-
tamate cause neurons to fire at this frequency. Physiologically, these slow oscillations tend to be associated with 
delta waves, which are involved in non-rapid eye movement (NREM) and rapid-eye movement (REM) sleep52. 
Studies have shown that in the hippocampus, changes at these frequencies tend to be associated with disruptions 
to sleep53, which can be reduced by induction into deeper stages of sleep. Further studies suggest that glutamate 
and GABA concentrations correlate strongly with wakefulness, and increases in glutamate tend to be evoked by 
disruptions to sleep patterns54 and from deprivation. These studies each utilized EEG as the analytic method, and 
used for doing so, and used a time-frequency spectrogram to monitor frequency content at different sleep stages. 
This could also easily be done with optical microscopy setups to provide spatio-temporal information related to 
this type of stimulus, providing even stronger evidence of this.
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The implications of using a joint-approach have also been demonstrated, as each of the outlined metrics iden-
tified complementary and supplementary information that may not necessarily be readily accessible through 
any individual metric. The inter-event intervals, for example, demonstrated an overall decrease in inter-event 
intervals for all experimental conditions, including the control. Although the effect was more pronounced at the 
higher concentration of glutamate, there was still a decrease in the control conditions. This can be attributed to 
the sensitivity of neurons to any change in their external environment. Although care was taken to pre-incubate 

Figure 5.  Histograms of inter-event intervals for each concentration condition before and after application 
of the chemical stimulus. (A) The inter-event interval histograms for each individual experimental condition, 
including all conditions clustered together. (B) Mean inter-event intervals for each individual experimental 
condition, before and after glutamate administration.
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all chemical reagents in a CO2 incubator, sudden changes in pH and osmotic conditions could immediately 
shock the cells, requiring time for the cells to equilibrate in a new environment due to their increased excita-
bility under these conditions55–58. Although this did not significantly affect connectivity in comparison to the 
glutamate-treated samples, it did affect the firing rate of all cells. This did not necessarily result in simultaneous 
rapid firing, however, as the correlation coefficients did not change dramatically in all cases. So although there 
were some notable differences that were identified by one metric, these differences were not necessarily identified 
by the other metrics. This demonstrates the strength of measuring each of these parameters, as there were global 
changes to the culture that did not necessarily affect global connectivity after the addition of more cell culture 
media. Each of these metrics demonstrates the ability of the algorithm to not only monitor network properties 
and provide detailed information about the network, but also reveal connectivity at a single-cell level under dif-
ferent conditions.

The translation of these techniques to optical microscopy could further this knowledge, and also provide 
insights that have otherwise gone unexplored with traditional connectivity metrics, but on a smaller scale. The 
inherent limitation with microscopy is the limited FOV, which makes it difficult to retrieve information transfer 
between more distributed neural circuits across more distant brain regions. Combining traditional microscopy 
and the proposed computational methods to meso-scale microscopy20, however, would help overcome this lim-
itation. Multimodal microscopy could also be used to investigate metabolic changes imposed by this sort of 
stimulus59,60, and how it relates to the calcium information brought by GCaMP imaging. Coupling this with elec-
trophysiology would also provide further verification of the type of signals being accessed, and how this relates 
to the underlying signaling pathways unveiled through optical imaging. Microscopic imaging of neural systems, 
hence, would benefit significantly from the breadth of information provided by the proposed algorithm, facilitat-
ing the discovery of complex neural phenomena.

With the combination of optogenetics and optical imaging, this algorithm could be used to guide and inter-
rogate neural tissue in a more directed and informative way. We propose that this algorithm can accomplish this 
inherently through the use of wavelet coherence analysis by acquiring statistics about phase differences and phase 
stability of these signals between cells over time. Single cell excitation and the subsequent measurement of phase 
delays between multiple active neurons, coupled with this algorithm, would identify these direct connections in a 
way that other connectivity approaches cannot. If there were a consistent phase delay between two signals during 
a certain behavior or stimulus, this approach would directly measure this across different signal frequencies, and 
be used to infer causality. Smaller phase differences would generally be attributable to more direct signal prop-
agation. By identifying the predominant frequencies within these signals, as was investigated in this study, and 
by obtaining the phase delay at these frequencies, this data would be readily utilized by the wavelet coherence 
approach. This information could then be used to drive weighted optical excitation of neural tissue, where the 
more direct connections are identified and perturbed for efficient elicitation of activity, while other active but 
less prominent connections are minimally excited or omitted from excitation. Adoption of these transient con-
nectivity measures would thus facilitate investigation of connectomic studies to obtain information otherwise 
inaccessible with other approaches. Beyond the context of these studies, the algorithm and approach could also be 
beneficial for comprehensively understanding the effects of drugs on neural cultures, tissues, and other samples. 
Their effects on firing frequency, functional connectivity, firing rate, directionality, and other factors outlined in 
this work can be tracked over time. This could also be utilized for monitoring the effects of different disease mod-
els on neural communication and function, and the effects of different treatments on regulating these effects. This 
comprehensive analytical framework is a useful tool that can be widely implemented in optical microscopy and 
potentially across larger spatial scales. Further advancements of time-varying analyses to inherently time-variant 
neural mechanisms would no doubt foster knowledge about the temporal nature of these complex systems, and 
coupled with advances optical imaging, provide extensive information about the molecular underpinnings of 
neural function.

Methods
Algorithm.  The algorithm framework is illustrated in Fig. 1, which starts by loading the calcium imaging 
videos into the Matlab workspace for analysis. Upon loading the sequence, cells of interest were segmented by 
manual region of interest (ROI) selection from the temporal projection of the mean of the sequence, specifically 
targeting the soma (Supplementary Figure S1). The fluorescent activity from the identified cells was then 
extracted. The raw fluorescence transients were used to calculate change in fluorescence, or F

F0

∆  transients. A 
5-pixel location from each neuron soma was selected, followed by a region with no observable fluorescence. This 
fluorescence-free region represented the background noise, which was superimposed on all signals. These 5-pixel 
areas were averaged at each instance of time, and these averages were used as the representative signal from each 
cell, and the background. The 5-pixel background was then subtracted from the fluorescence from each individ-
ual cell. Baseline fluorescence was identified as the average, minimum fluorescence from individual cell bodies, 
denoted as F0 in this work. The term F∆  is defined as the change in fluorescence after an interval in time, after 
subtracting F0.

Upon extraction of these transients, a temporal correlation coefficient for the identified time window was 
calculated to identify linear relationships between identified cells. Similarly, the power spectrum was calculated 
for the ∆ F

F0
 transient of each cell, and a correlation coefficient was obtained between cells to compare the spectral 

similarities across the calcium transients for these cells. However, this provided only a holistic view of the tran-
sients, and ignored the minutiae of fluorescence activity between neighboring cells. To more definitively acquire 
this information, the image sequence was divided into six smaller time-windows (ten second width), and a corre-
lation coefficient was calculated within each smaller window. Thereafter, these coefficients were averaged for each 
cell, and used as a correlation coefficient for each larger, one-minute time window. Finally, the derivative of each 
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trace was used as an assessment of functional connectivity as well. Some action potential inference algorithms use 
a derivative method for inferring when action potentials occur61–63, due to the increased signal prominence that 
comes about as a result of this. This work uses the derivative of calcium transients to identify regions of significant 
activity, and consequently, as a metric for electrical activity. The derivative for each trace was obtained by first 
applying a smoothening filter to the data using an unweighted, 2nd order least-squares averaging model with 2.5% 
span (“smooth” operator in Matlab, using “rloess” method). Thereafter, the derivative was taken across the 
smoothened filter data, and the correlation coefficient between cells was calculated for the filtered data. These four 
coefficients were then averaged, and used as the connectivity coefficients, or weights, associated between cells. 
These were averaged to incorporate similarities from each metric of interest to contribute to the final, functional 
synaptic weight between cells. The magnitude varies due to differences in each of these metrics, so each was 
equally weighted in the final metric to ensure there was not one that was more influential over the others. Each 
individual metric allows for comparing the similarities of different aspects of the signals of interest between cells, 
and consequently their connectivity. In this work, coefficients between 0 and 0.3 are empirically treated as having 
weak correlation between two variables, 0.3 to 0.5 as low correlations, 0.5 to 0.7 as moderate, 0.7 to 0.9 as strong, 
and coefficients above 0.9 as very strong correlations64. Furthermore, connectivity between cells in this work is 
assumed to arise from changes in connectivity across synaptic-dendritic interfaces, rather than changes in con-
ductivity along axons or dendrites. This is due to the increased excitability of neurons in response to external 
glutamate, rather than due to changes at the synaptic cleft65.

Furthermore, the proposed algorithm performs this process over the course of larger, 1-minute intervals. As 
per the experimental design, each culture was imaged for a period of ten minutes. To assess network connectivity 
and connectivity variance over time, the correlation coefficient was calculated for each 1-minute interval of the 
video sequence, and compared over time. To compare average network activity between experiments, the coeffi-
cients were averaged across all ten, 1-minute intervals. Finer coefficients were calculated at ten-second intervals 
for the purposes of tracking temporal connectivity dynamics, whereas the larger one-minute intervals were used 
for the overall coefficient to have a significant number of data points to represent overall connectivity. Variations 
in connectivity were also assessed by calculating the percent-change of each one-minute interval in a ten-minute 
video, and averaging these percent-changes across this ten-minute time-frame. This algorithm provides a method 
for assessing the weights between cells based on their functional activity under various experimental conditions.

Signals were further analyzed to acquire the timing of individual cellular events over time. After calculating 
the ∆ F

F0
 for each cell and applying a 3 Hz, low-pass, third-order Butterworth filter for noise reduction, significant 

calcium events were identified by thresholding. The threshold was determined by calculating the mean (µ) and 
standard deviation (σ) for a given calcium transient, and setting the threshold to µ + σ. The “findpeaks” function 
in Matlab was then used for peak detection using this threshold. Peaks were also isolated if their widths were at 
least 0.5 seconds (due to the average duration of calcium events being nearly 0.5 seconds), and if neighboring 
peaks were separated by no less than 0.5 seconds. These metrics ensured that only significant peaks above the 
mean fluorescence were used to separate peaks from noise, and to further ensure this by not counting two local 
peaks from the same event. The temporal location of each of these peaks was then stored in memory. The time 
between any two significant events for a single calcium transient, called the inter-event intervals, were also calcu-
lated. Previous work has shown that the firing patterns of neurons, in many cases, follow a Poisson process66,67, 
establishing the inter-event interval metric as a specific property of a neuronal network under different 
conditions.

Finally, wavelet analyses were employed to measure the dynamic nature of cellular communication, and estab-
lish the degree to which cells may be inter-correlated over time. The wavelet transform is a standalone method 
for measuring the frequency content of signals continuously over time41. As such, any perturbations to signals as 
a result of some external stimulus can be tracked and quantified. This has been performed in this study for indi-
vidual cells, and for the mean signal properties. Complementary to the time-varying connectivity approach, the 
wavelet-coherence approach provides a near-continuous metric to show temporal fluctuations in the degree of 
coherence between two signals49. In contrast to other metrics, it also provides directionality of information flow 
using the phase difference between two signals throughout the spectrum of sampled frequencies49. If the signal 
came from one cell at the prominent signal frequency, this would be identified. The ability to have this informa-
tion over time also allows for the mean and variance of these signals to be quantified, establishing the degree to 
which two cells may be inter-correlated over time. The wavelet approach, thus, encompasses the benefits of many 
other metrics, and provides a powerful avenue for assessing network properties and dynamics. In this work, the 
coherence and phase matrices are generated and compared for pairs of cells over time. Additionally, the wavelet 
transform was implemented to track the prominent frequencies at various points in time.

Sample preparation.  All animal experiments were conducted in accordance with the relevant guidelines 
and regulations in a protocol approved by the Institutional Animal Care and Use Committee (IACUC) at the 
University of Illinois at Urbana-Champaign. Transgenic mice (GCaMP6s, Jackson Labs) were sacrificed at days 
2 or 3 postnatal (P2-P3) to harvest hippocampal tissue. Tissue was stored in Hibernate-A (HA) and used the 
following day for culture. All procedures were carried out under sterile conditions in a biosafety cabinet (BSC). 
Imaging dishes were prepared the day of culture by coating with 60 µL of poly-D-lysine (PDL), and incubating at 
room temperature for a minimum of two hours. After this, dishes were washed with sterile DI water and left to 
dry for at least one hour. The hippocampal tissue was washed twice with 10 mL of HA, and subsequently agitated 
with a HA-Calcium/papain mixture for 25 minutes. The tissue was then mechanically dissociated by aspirating 
twice with a 20 G needle and repeated once more with a 22 G needle. The dissociated cells were isolated using a 
20 μm filter, and then centrifuged at 2000 rpm for 6 minutes. The supernatant was removed with a vacuum, and 
the cells were suspended in 500 μL of DMEM. Upon suspension, the cells were counted using a hemacytometer, 
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and plated onto the coverslips to a final density of 200,000 cells per dish. These cells were then placed in a cell 
culture incubator (5% CO2, 5% humidity) for an hour. Finally, 500 μL of pre-incubated DMEM and 1 mL of 
NBActiv4 were added to the culture. Cultures were grown to DIV (days in vitro) 12–15, and media was changed 
with NBActiv4 every 3–4 days.

Experimental setup and workflow.  In this study, glutamic acid (glutamate) was used as a chemical stim-
ulus to evoke cellular responses and induce a change in network connectivity. Glutamate is known to promote 
increases in neural firing68, and is an excitatory neurotransmitter associated with an increase in synaptic connec-
tivity associated with depression69,70, memory encoding71, beta-amyloid associated functional connectivity72, and 
overall functional connections68,73. Hence, it was assumed that its introduction would result in increased network 
connectivity. To test the reliability of the algorithm for detecting network changes, hippocampal neuron cultures 
were placed in an incubation chamber (DH-35iL, Warner Instruments), which was adjusted to 33 °C–35 °C, and 
placed under a microscope (Axio Observer D1, Zeiss) with a 20x objective. A broadband white light source 
(X-Cite, Lumen Dynamics) was used for illumination. The GCaMP6s signal was isolated using a stock dichroic 
mirror (495 nm) and GFP filter (525 ± 25 nm) to allow for excitation and emission. The cultures were imaged 
using a monochrome CCD camera (AxioCam 503, Zeiss) at 22.7 Hz, controlled with commercial software (Zen 
PRO, Zeiss). After the initial imaging session, various concentrations of glutamate (10 µM, 25 µM, and 100 µM) 
were perfused into the incubator chamber using a pre-incubated, 1 cc syringe, while the cells were imaged. 
Control samples were perfused with 250 μL of NBActiv4 cell culture medium. A schematic of the experimental 
procedure is shown in Supplementary Figure S1.

Analysis.  The algorithm was run across experimental data using custom Matlab code. The correlation 
coefficients between experiments were compared using a separate script for statistical analysis. A two-tailed 
Welch’s t-test was used to determine what statistical differences existed pre- and post-excitation with glutamate. 
Coefficients were also compared between the control samples for statistically significant differences. Correlation 
coefficients were Z-scored to normalize the data appropriately when compared between experimental conditions 
and cultures.

Data availability
The data and code that support these results are available from the corresponding author upon reasonable request 
and through collaborative investigations.
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