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A three-dimensional momentum-
space calculation of three-body 
bound state in a relativistic Faddeev 
scheme
M. R. Hadizadeh 1,2*, M. Radin 3 & K. Mohseni3

In this paper, we study the relativistic effects in a three-body bound state. For this purpose, the 
relativistic form of the Faddeev equations is solved in momentum space as a function of the Jacobi 
momentum vectors without using a partial wave decomposition. The inputs for the three-dimensional 
Faddeev integral equation are the off-shell boost two-body t–matrices, which are calculated directly 
from the boost two-body interactions by solving the Lippmann-Schwinger equation. The matrix 
elements of the boost interactions are obtained from the nonrelativistic interactions by solving a 
nonlinear integral equation using an iterative scheme. The relativistic effects on three-body binding 
energy are calculated for the Malfliet-Tjon potential. Our calculations show that the relativistic effects 
lead to a roughly 2% reduction in the three-body binding energy. The contribution of different Faddeev 
components in the normalization of the relativistic three-body wave function is studied in detail. The 
accuracy of our numerical solutions is tested by calculation of the expectation value of the three-body 
mass operator, which shows an excellent agreement with the relativistic energy eigenvalue.

The study of relativistic effects in quantum mechanical few-body systems has been the subject of many studies of 
the bound1–10 and scattering11–16 states. All these studies are mainly performed using a partial wave decomposi-
tion, that leads to coupled equations for the bound or scattering amplitudes which are expanded in the angular 
momentum basis. The discrete partial wave summation of the resulting amplitudes is dependent on the energy 
scale of the problem, and at intermediate and high energy scales of few GeV, the convergence can be reached 
very slowly. To avoid this problem, several studies have been performed in a three-dimensional (3D) approach 
to formulate the bound and scattering amplitudes as a function of the Jacobi momentum vectors by replacing 
the discrete angular momentum quantum numbers with continuous angle variables. While the number of mesh 
points for angular integrations in a 3D formalism remains constant for all energy scales, it simultaneously con-
siders the contribution of all partial wave components. Consequently, the number of equations in a 3D scheme 
is independent of the energy scale of the problem17–48. Thus, the 3D approach would be a powerful tool to study 
the scattering problems in few GeV energy scales when the partial wave formulation is much more complicated 
for the evaluation of permutation operators, and the numerical convergence is difficult to reach. On this basis, 
the 3D approach has been implemented in relativistic calculations of three-body (3B) scattering problems26,28,49,50 
and recently applied to the 3B bound states44,51. It is shown that the difference between the relativistic and the 
nonrelativistic dynamics is in (i.) the momentum dependence of the kinetic energy or free propagator, (ii.) in the 
relation of potential operators to the two-body (2B) t–matrices, (iii.) and in the form of the momentum basis. The 
last one leads to a non-identical Jacobian of the momentum variable change and also a permutation coefficient in 
the relativistic case. At the two-body level, the relativistic 2B interactions designed in such a way that the deuteron 
properties and 2B observables are preserved. The inputs for relativistic three- and four-body bound and scattering 
calculations are relativistic 2B t–matrices. There are few options to calculate the relativistic 2B t–matrices includ-
ing the following ones:
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•	 One option is to solve the relativistic Lippmann-Schwinger equation with relativistic 2B interactions. The 
input relativistic interactions can be obtained directly from the nonrelativistic one by solving a quadratic 
equation. A number of computational methods have been developed to solve the nonlinear equation, includ-
ing the spectral expansion method2,7 and an iterative approach52. In the spectral expansion method, a com-
pleteness relation of the 2B bound and scattering states is inserted into the right side of the quadratic equation 
and then the result is projected into the momentum space. The powerful iterative scheme proposed by Kam-
ada and Glöckle has been successfully implemented in two- and three-body bound and scattering state cal-
culations using a partial wave decomposition. In this paper, we extend the implementation of this iterative 
scheme to the 3B bound state calculations in a 3D scheme by calculating the relativistic 2B t–matrices directly 
from the relativistic 2B interactions.

•	 The alternative option is the calculation of relativistic 2B t–matrices directly from the nonrelativistic one. 
A two-step process is used to achieve this. In the first step, the relativistic right-half-shell 2B t–matrices are 
calculated analytically from the nonrelativistic right-half-shell 2B t–matrices. Then the fully off-shell 2B t–
matrices are calculated by solving the first resolvent equation with the transformation of Coester-Piper-Ser-
duke13,53. In this method, there is no need for the matrix elements of the relativistic 2B interactions and it has 
been successfully implemented in the 3B bound and scattering calculations in a 3D approach26,28,44,49–51.

The paper is organized as follows. In Sec. 2, a brief review to the formalism of the relativistic Faddeev equa-
tions in a three-dimensional approach is provided. Additionally, the formulation of the boost 2B interactions and 
t–matrices, which are essential ingredients for our calculations, are presented. In Sec. 3 our numerical results 
for boost 2B interactions and t–matrices are given, and the contribution of different relativistic corrections to 
the 3B binding energy is studied. As a test for our numerical calculations, the expectation value of the 3B mass 
operator is calculated and compared with the relativistic binding energy. In Sec. 4 we present our conclusions and 
perspectives.

Relativistic Faddeev Equation for Three-Body Bound State
The 3B mass operator of three identical particles with mass m and momentum ki, interacting with pairwise inter-
actions, in the relativistic quantum mechanics is defined as
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k≡  embedded in the 3B Hilbert space can be obtained in terms of the relativ-
istic 2B interaction Vr by following nonlinear relation
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where k = ki + kj is total momentum of the subsystem (ij), p m p( ) 2 2 2ω = +ˆ ˆ , and p is the relative momentum 
in the 2B subsystem (ij). The k-dependence arises from this fact that in a 3B system, the 2B subsystems are not at 
rest. Obviously, for k = 0 the boost interaction reduces to the relativistic interaction, i.e. Vk = Vr. Since we work in 
the center of mass frame of the 3B system, k can be considered as the momentum of the spectator particle. The 
Schrödinger equation for the bound state of three identical particles interacting with pairwise forces is described 
by Faddeev equation

G t P , (4)0ψ ψ=

where G0 = (Mt − M0)−1 is free propagator, Mt = Et + 3m is the 3B mass eigenvalue. The permutation operator is 
defined as P = PijPjk + PikPjk, and t is 2B transition operator. In order to solve the Faddeev Eq. (4) in momentum 
space, one needs the 3B basis states, which are composed of two relativistic Jacobi momentum vectors pk , 
defined in details in ref. 44. The 3B Jacobi momentum variables are defined by boosting the single-particle 
momenta to the three-body rest frame and then boosting two-body subsystem momenta to the subsystem rest 
frame. The free-body mass operator M0, given in Eq. (2), is diagonal in these basis states
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where Ω = +k m k( ) ( )2 2 1
2 . As shown in ref. 44 the representation of Faddeev Eq. (4) in the relativistic basis states 

pk  leads to the following three-dimensional integral equation
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where ε = Mt − Ω(k) is 2B subsystem energy, T p p( , ; )k
sym ε′  is symmetrized boost 2B t-matrix defined as 

T T Tp p p p p p( , ; ) ( , ; ) ( , ; )k
sym

k kε ε ε′ ′ ′= + − , and the Jacobian function N(k, k′) is defined as

N k k k k k k k k( , ) ( , ) ( , ), (7)1 1N N′ ′ ′ ′= − − − −− −

where N is the square root of the Jacobian which arises from going from individual momenta k and k′ of the 
subsystem to the relative momentum p and the total 2B momentum k + k′44,
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In the nonrelativistic limit where the momenta are much smaller than the masses, the Jacobin function N 
reduces to one, and consequently, the relativistic Jacobi momenta reduce to the nonrelativistic ones. The relativ-
istic shifted momentum arguments are defined as
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where the permutation coefficients C(k, k′) are defined as26
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In the nonrelativistic limit, when the momenta are much smaller than the masses, the permutation coefficient 
C(k, k′) is equal to one. Consequently, the relativistic shifted momenta π∼ and π reduce to the corresponding non-
relativistic ones. As we mentioned earlier, in this paper we calculate the fully-off-shell boost 2B t–matrices Tk(p, 
p′; ε) by solving the following relativistic Lippmann-Schwinger equation
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To solve the three-dimensional integral Eq. (6), we choose a coordinate system where k is parallel to Z-axis, p 
is in the X − Z plane, and the integration vector k′ is free in the space. In a spherical coordinate system the radial 
distance, the cosine of polar angle, and azimuthal angle for momentum vectors k, p, and k′ are given by 

φ= =k x( , 0, 0)k k , φ≡ =p x x( , , 0)p p , and φ φ′ ≡ ′ ≡ ′′ ′k x x( , , )k k , correspondingly. Using this coordinate sys-
tem, Eq. (6) can be written explicitly as
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where the momentum and angle variables are defined as
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The integral Eq. (12) is an eigenvalue equation in the form λψ = K(Mt)⋅ψ with the eigenvalue λ = 1. Since the 
kernel of the integral equation K(Mt) is energy dependent, the solution of the eigenvalue Eq. (12) can be started by 
an initial guess for the energy Et and the search in the binding energy is stopped when |1 − λ| < 10−6.

The input for the Lippmann-Schwinger integral Eq. (11) is the 2B boost potential Vk(p, p′) which has been 
traditionally calculated by the representation of Eq. (3) in momentum space by inserting the completeness rela-
tion of bound and scattering eigenstates of the center of mass Hamiltonian ( p V( ) rω +ˆ )7. However, with the recent 
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successful application of the iterative scheme proposed by Kamada and Glöckle52 in the calculation of the relativ-
istic interaction from the nonrelativistic one in a 3D scheme54, in this paper we utilize the same method for the 
calculation of the boost potential. By following52, one can obtain the boost interaction from the nonrelativistic 
interaction by the following quadratic equation

^ ^ω ω= + +V
m

p V V p V1
4

( ( ) ( ) ), (14)nr k k k k k
2

where ω ω= +p p k( ) ( ( ) )k
2 2 1

2ˆ ˆ ˆ . Obviously, for k = 0 the Eq. (14) can be reduced to the connection between the 
relativistic and nonrelativistic interactions as
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Equations (15) and (14) have same operator forms, where Vr and ˆω p( ) are replaced by Vk and p( )kω ˆ . So the 
procedure of calculation of boost potential Vk from the nonrelativistic potential Vnr in Eq. (14) is similar to the 
calculation of the relativistic potential Vr from the nonrelativistic potential Vnr in Eq. (15). So we can obtain the 
boost potential matrix elements by taking the nonrelativistic potential and by solving the following 
three-dimensional integral equation
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The integral Eq. (16) is solved using an iterative scheme and the details of the calculations are similar to the 
ones discussed in ref. 54. We would like to mention that using an averaging scheme on two successive iterations 
leads to a faster convergence in the calculation of the boost interaction.

Numerical Results
In the first step we solve the three-dimensional integral Eq. (16) to calculate the matrix elements of the boost 
interaction Vk(p, p′, x′) from the nonrelativistic interaction Vnr(p, p′, x′) by an iterative scheme. The iteration starts 
with an initial guess 

ω ω
′ ′ =
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(0)  and then continued to reach a convergence in the matrix 

elements of the boost potential with a relative error of 10−6 at each set of points (p, p′, x′). In Table 1 we show an 
example of the convergence of the matrix elements of the boost potential Vk(p, p′, x′) as a function of the iteration 
number calculated for three different values of the Jacobi momentum k = 1,5,10 fm−1 for the Malfliet-Tjon-V 
(MT-V) bare potential in the fixed points (p = 1.05 fm−1, p′ = 2.60 fm−1, x′ = 0.50). As one can see for larger val-
ues of the Jacobi momentum k the convergence is reached faster. The data of Table 1 are also illustrated in Fig. 1. 
In Fig. 2 the matrix elements of the nonrelativistic and the boost interactions and also the difference between 
them are shown.

By having the matrix elements of the boost interactions Vk(p, p′, x′) we solve the Lippmann-Schwinger integral 
Eq. (11) to calculate the off-shell boost t–matrices T p p x( , , ; )k ε′ ′  and then symmetrize it on the angle variable to 
get T p p x( , , ; )k

sym ε′ ′ . In Fig. 3 we show the angular dependencies of the symmetrized 2B boost t–matrices for 

Iteration #

Vnr(p, p′, x′)

1.1579249 · 10−2

Vk(p, p′, x′)

k = 1 fm−1 k = 5 fm−1 k = 10 fm−1

0 −2.2688550 −2.0244444 −1.5822847

1 −2.5977481 −2.2796733 −1.7267466

2 −2.4833116 −2.1967138 −1.6871314

3 −2.4880714 −2.1984435 −1.6861455

4 −2.4886996 −2.1988384 −1.6861841

5 −2.4887497 −2.1988784 −1.6861961

6 −2.4887515 −2.1988795 −1.6861962

7 −2.4887519 −2.1988792 −1.6861957

8 −2.4887523 −2.1988792 −1.6861954

9 −2.4887525 −2.1988793 −1.6861954

10 −2.4887526 −2.1988793 —

11 −2.4887527 — —

12 −2.4887527 — —

Table 1.  The convergence of the matrix elements of the boost potential Vk(p, p′, x′) (in units of MeV fm3) as a 
function of the iteration number calculated using the MT-V bare potential in the fixed points (p = 1.05 fm−1, 
p′ = 2.60 fm−1, x′ = 0.50) and for three different values of the Jacobi momentum k = 1, 5, 10 fm−1. The value of 
the MT-V bare potential Vnr(p, p′, x′) is also given.
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energies ε = −10, −50, −200 MeV obtained for k = 1 fm−1 and compared with the corresponding nonrelativistic 
t–matrices. As we expect for higher energies the difference between the boost and the nonrelativistic t–matrices 
is more visible.

For the calculation of relativistic effects in the 3B binding energy, we solve the three-dimensional integral 
Eq. (12). To this aim, for discretization of continuous momentum and angle variables, we use Gauss-Legendre 
quadrature. For angle variables, a linear mapping, and for Jacobi momenta, a hyperbolic-linear mapping is used. 
The momentum cutoffs used for Jacobi momenta p and k are 60 fm−1 and 20 fm−1, correspondingly. In Table 2, 
we present our numerical results for the relativistic 3B binding energy as a function of the number of mesh points 
for the Jacobi momenta p and k. For discretization of polar and azimuthal angles, we use 40 mesh points. The 
symmetry property of the Faddeev component on the angle x, i.e. ψ(p, k, x) = ψ(p, k, −x), is employed to save 
memory and computational time in solving Eq. (12). As one can see, the relativistic 3B binding energy for the 
MT-V potential converges to −7.5852 MeV.

In Table 3, we present the contribution of different relativistic corrections to the 3B binding energy. While the 
Faddeev calculations lead to the nonrelativistic 3B binding energy of −7.7380 MeV, the contribution of different 
relativistic corrections in the 3B binding energy is as

•	 the Jacobian function N decreases the 3B binding energy with about 0.06 MeV,
•	 the permutation coefficient C increases the 3B binding energy with about 0.05 MeV,
•	 the relativistic 3B free propagator G0 increases the 3B binding energy with about 0.18 MeV,
•	 the relativistic 2B t–matrices decreases the 3B binding energy with about 0.28 MeV.

So, two of the relativistic corrections, N and 2B t–matrices, decrease the 3B binding energies, and the other two 
terms, C and G0, increase the 3B binding energy. When we apply all the corrections together, we obtain a relativis-
tic 3B energy of −7.5852 MeV, which indicates a reduction of about −0.15 MeV or a percentage difference of 2%.

As we discussed earlier, an alternative approach for the calculation of the boost 2B t–matrices is solving a first 
resolvent equation, where the boost 2B t–matrices can be obtained directly from the nonrelativistic 2B t–matrices. 
In this approach, there is no need for the matrix elements of relativistic or boost potentials defined in Eqs. (14) 
and (15). The implementation of this method to 3B bound state calculations leads to a reduction of about 3.3% in 
the 3B binding energy for the MT-V potential44. As one can see, the calculation of the boost 2B t–matrices using 
two different methods, i.e. solving the first resolvent equation discussed in ref. 44 and the solution of the relativistic 
Lippmann-Schwinger equation given in Eq. (11), leads to a slightly different correction in the 3B binding energy. 
Solving the relativistic Lippmann-Schwinger equation using the boost potential of Eq. (16), as discussed in this 
paper, leads to a smaller reduction in the 3B binding energy, whereas the solution of the first resolvent equation 
leads to a more reduction, about 1.3% larger. A comparison with the results of Glöckle et al. in ref. 2 for an s–wave 
projection of MT-V potential indicates a reduction of about 2.7%, whereas the relativistic corrections for different 
models of 2B interactions by Kamada et al. in ref. 7 shows a wide range of decrease between 2 to 6%.

By solving the three-dimensional integral Eq. (12) and obtaining the 3B binding energy and the Faddeev 
component ψ(p, k, x) one can calculate the 3B wave function Ψ(p, k, x) by adding up the Faddeev components in 
three different 3B clusters. The details of the calculation are addressed in ref. 44 and here we briefly represent the 
explicit form of the 3B wave function as

∑ ψΨ =
=

p k x p k x( , , ) ( , , ),
(17)i

i
1

3

where the Faddeev components ψ1, ψ2, ψ3, corresponding to the 3B clusters (23, 1), (31, 2), (12, 3), are given by

Figure 1.  The convergence of the matrix elements of the boost potential Vk(p, p′, x′) as a function of the 
iteration number calculated for the MT-V bare potential in the fixed points (p = 1.05 fm−1, p′ = 2.60 fm−1, 
x′ = 0.50) with k = 1, 5, 10 fm−1. The left endpoint of each plot is the value of the nonrelativistic MT-V potential 
Vnr(p, p′, x′) = 1.1579249 ⋅ 10−2 MeVfm3.
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The Jacobian function N is defined in Eq. (8) and the shifted momentum arguments p2, k2, p3, k3 and the angle 
variables x2, x3 are defined as

Figure 2.  The matrix elements of the nonrelativistic (a,d), the boost (b,e) 2B potentials and their differences 
(c,f) calculated with the MT-V potential. They are shown as a function of the 2B relative momenta p and p′ for 
the angle ′ =x 2

2
 (upper panel) and as a function of the 2B relative momenta p = p′ and the angle between 

them x′ (lower panel). The boost potential is obtained with k = 1 fm−1.

Figure 3.  The angular dependency of the symmetrized boost 2B t–matrix εT p p x( , , , )k
sym

0 0  calculated for k = 1 
fm−1 and energies ε = −10, −50, −200 MeV, with p m0 ε= ⋅ | | . The diamond symbols indicate the 
corresponding nonrelativistic t–matrices. The input boost potential is obtained from the MT-V potential.
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p

k p

p
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2

1 2
2

3
2

1 2
1

1 2
2

3
2

2 2

1 3
2

2
2

1 3
3

1 3
2

2
2

Np Nk E r
B3

20 20 −7.8056
30 30 −7.6448
40 40 −7.5958
50 50 −7.5956
60 60 −7.5883
70 70 −7.5863
80 80 −7.5856
90 90 −7.5853
100 100 −7.5853
110 110 −7.5852
120 120 −7.5852
130 130 −7.5852

Table 2.  The convergence of the relativistic 3B binding energy (in units of MeV) as a function of the number of 
mesh points for Jacobi momenta p and k. The number of mesh points for polar and azimuthal angles is 40. The 
results are obtained for the MT-V potential.

Relativistic correction E3B
value in 
MeV

100 %
Eapp

B Enr
B

Enr
B

3 3

3



 ⋅






−

— Enr
B3 −7.7380 —

N (the Jacobian function defined in Eq. 7) Eapp
B3 −7.6748 −0.8167

C (the permutation coefficients C defined in Eq. 10) Eapp
B3 −7.7900 +0.6720

G rel
0  (the relativistic 3B free propagator) Eapp

B3 −7.9183 +2.3301

Tk (the boost 2B t−matrix given in Eq. 11) Eapp
B3 −7.4540 −3.6702

Full relativistic (N + C + G rel
0  + Tk) Er

B3 −7.5852 −1.9747

Table 3.  The contributions of different relativistic corrections to the 3B binding energy calculated for the MT-V 
potential.
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The 3B wave function is normalized as

dp p dk k dx p k x8 ( , , ) 1,
(21)i j

i j
, 1

3
2

0

2

0

2

1

1 2∫ ∫ ∫∑ ψ ψ πΨ Ψ = 〈 | 〉 = Ψ =
=

∞ ∞

−

+

and the normalization of the Faddeev components is chosen as

ψ
ψ

ψ
| 〉 =

| 〉

∑ 〈 |Ψ〉
= .

=

i, 1, 2, 3
(22)

i
i

j j1
3

To study the contribution of different Faddeev components in the normalization of the 3B wave function, we 
show the inner product of the Faddeev components, i.e. 〈ψi|ψj〉, in Table 4. The calculated Faddeev components 
defined in Eq. (22) satisfy the normalization of the 3B wave function given in Eq. (21) with an error of the order 
of 10−12. While three Faddeev components defined in Eq. (18) have completely different momentum dependence, 
they are all normalized to almost the same value, i.e. 〈ψi|ψi〉 = 0.12658. Moreover, the inner products of the non-
identical Faddeev components leads to the same value of 〈ψi|ψj〉 = 0.10338. Our numerical analysis confirms the 
normalization condition of the 3B wave function 〈Ψ|Ψ〉 = 3〈ψ|ψ〉 + 3〈ψ|P|ψ〉 = 1 with an accuracy of at least five 
significant digits.

As a test for the numerical accuracy of our calculations, we calculate the expectation value of the 3B mass 
operator 〈Ψ|M|Ψ〉 and compare it with the 3B binding energy obtained from the solution of the integral Eq. (12). 
By considering the definition of the 3B mass operator M in Eq. (1), the expectation value of 〈M〉 can be obtained 
as

M M V ,
(23)i j

k
ij

0 ∑〈Ψ| |Ψ〉 = 〈Ψ| |Ψ〉 + 〈Ψ| |Ψ〉
<

where the expectation values of the free-body mass operator and the boost potential are given by

M dp p dk k k p k dx p k x8 ( ( ) ( ) ) ( , , ), (24)0
2

0

2

0

2 2 2

1

1 2⟨ ⟩ ∫ ∫ ∫π ωΨ| |Ψ = Ω + + Ψ
∞ ∞

−

V V

dp p dk k dp p dx dx

p k x v p p x x p k x

3

3 8

( , , ) ( , , , ) ( , , ), (25)

i j
k
ij

k

k

2

0

2

0

2

0

2

1

1

1

1

∫ ∫ ∫ ∫ ∫

∑

π

〈Ψ| |Ψ〉 ≡ 〈Ψ| |Ψ〉

= ⋅ ′ ′ ′

× Ψ ′ ′ Ψ ′ ′

<
∞ ∞ ∞

− −

where vk(p, p′, x, x′) is the result of the azimuthal angle integration on the matrix elements of the boost potential 
defined as

∫ φ φ′ ′ = ′ = ′ + − − ′ .
π

v p p x x d V p p y xx x x( , , , ) ( , , 1 1 cos ) (26)k k
0

2 2 2

In Table 5, we present our numerical results for the expectation value of the 3B mass operator compared with 
the relativistic 3B binding energy. We also show our results for the expectation value of the nonrelativistic 3B 
Hamiltonian and the nonrelativistic 3B binding energy. As one can see the expectation value of free-body mass 
operator is 〈M0〉 = 3m + 28.3876 MeV, while the expectation value of the boost potential is 〈Vk〉 = −35.9716 MeV 
which leads to the expectation value of the 3B mass operator of 〈M〉 = 3m − 7.5840 MeV. The difference between 
the relativistic 3B binding energy, obtained from three-dimensional Faddeev integral Eq. (12), and the expecta-
tion value of the 3B mass operator, obtained from Eq. (23), is about 0.0012 MeV. Our numerical results for the 
nonrelativistic solution of the three-dimensional Faddeev integral equation leads to the binding energy of 
E 7 7380 MeVnr

B3 = − .  and the nonrelativistic expectation value of 〈H〉 = −7.7384 MeV with a difference of 0.0004 
MeV. As one can see for both relativistic and nonrelativistic calculations, the calculated 3B binding energy is in 
excellent agreement with the expectation value of the 3B Hamiltonian.

In Table 6 we present the contribution of different Faddeev components in the expectation value of the 3B mass 
operator 〈ψi|M|ψj〉 − 3m. To this aim the expectation values of the free-body mass operator 〈ψi|M0|ψj〉 − 3m and 
the boost interaction 〈ψi|Vk|ψj〉 are calculated for different Faddeev components. As one can see ψ ψ∑ 〈 | | 〉= Mi j i j, 1

3
0

− = .m3 28 3876 MeV, ψ ψ∑ 〈 | | 〉 = − .= V 35 9716 MeVi j i k j, 1
3 , and M m3 7 5840 MeVi j i j, 1

3 ψ ψ∑ 〈 | | 〉 − = − .= .

j = 1 j = 2 j = 3

i = 1 0.12657 0.10338 0.10338

i = 2 0.10338 0.12658 0.10338

i = 3 0.10338 0.10338 0.12658

Table 4.  The inner product of the Faddeev components 〈Ψi|Ψj〉 and their contribution in the normalization of 
the 3B wave function |Ψ〉 defined in Eq. (21).
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Summary
The inputs for the kernel of Faddeev and Yakubovsky integral equations, to study the relativistic corrections in 
three- and four-body bound and scattering states, are the boost 2B t–matrices. A number of theoretical meth-
ods are developed to calculate the relativistic and boost 2B t–matrices. The direct solution of the relativistic 
Lippmann-Schwinger equation using relativistic interactions is one of the methods which has been successfully 
implemented in traditional partial wave decomposition calculations. One of the novel techniques for the calcula-
tion of the relativistic and boost interactions from the nonrelativistic interactions is solving a quadratic equation 
using an iterative scheme proposed by Kamada and Glöckle. In this paper, we apply the direct calculation of the 
boost interaction from the nonrelativistic interaction by solving a quadratic equation in a three-dimensional 
approach. To speed up the convergence in the solution of the quadratic equation, we use an averaging scheme. 
Then, by solving the Lippmann-Schwinger integral equation with the input boost 2B interaction, the boost 2B 
t–matrices are obtained as a function of the 2B relative momentum vectors, mainly the magnitude of the initial 
and final relative momenta and the angle between them. The 2B boost interactions have been then embedded into 
the kernel of three-dimensional Faddeev integral equations to study the relativistic corrections in the 3B binding 
energy. For a comprehensive study of the relativistic effects, one must consider four different relativistic correc-
tions: the relativistic free propagator, the relativistic 2B t–matrices, the Jacobian, and the permutation coefficient. 
The contribution of each relativistic correction is studied in detail. We show that the relativistic corrections lead 
to a reduction of about 2% in the 3B binding energy. As a test for the numerical accuracy of our calculations, we 
calculate the expectation value of the 3B mass operator, which is in excellent agreement with the relativistic 3B 
binding energy. It is shown that in the nonrelativistic limit, where the momenta are much smaller than the masses, 
the nonrelativistic results are being reproduced from the relativistic ones.

Data availability
The data that support the findings of this study are available from the corresponding author, M.R.H., upon 
reasonable request.
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