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Seed protein content and its 
relationships with agronomic traits 
in pigeonpea is controlled by both 
main and epistatic effects QTLs
Jimmy Obala1,2, Rachit K. Saxena1, Vikas K. Singh1, Sandip M. Kale1, Vanika Garg1, 
C. V. Sameer Kumar3, K. B. Saxena4, Pangirayi Tongoona2, Julia Sibiya2 & Rajeev K. Varshney1*

The genetic architecture of seed protein content (SPC) and its relationships to agronomic traits 
in pigeonpea is poorly understood. Accordingly, five F2 populations segregating for SPC and four 
agronomic traits (seed weight (SW), seed yield (SY), growth habit (GH) and days to first flowering 
(DFF)) were phenotyped and genotyped using genotyping-by-sequencing approach. Five high-density 
population-specific genetic maps were constructed with an average inter-marker distance of 1.6 to 
3.5 cM, and subsequently, integrated into a consensus map with average marker spacing of 1.6 cM. 
Based on analysis of phenotyping data and genotyping data, 192 main effect QTLs (M-QTLs) with 
phenotypic variation explained (PVE) of 0.7 to 91.3% were detected for the five traits across the five 
populations. Major effect (PVE ≥ 10%) M-QTLs included 14 M-QTLs for SPC, 16 M-QTLs for SW, 17 
M-QTLs for SY, 19 M-QTLs for GH and 24 M-QTLs for DFF. Also, 573 epistatic QTLs (E-QTLs) were 
detected with PVE ranging from 6.3 to 99.4% across traits and populations. Colocalization of M-QTLs 
and E-QTLs explained the genetic basis of the significant (P < 0.05) correlations of SPC with SW, 
SY, DFF and GH. The nature of genetic architecture of SPC and its relationship with agronomic traits 
suggest that genomics-assisted breeding targeting genome-wide variations would be effective for the 
simultaneous improvement of SPC and other important traits.

Protein deficiency affects the health of millions of children and their mothers, but protein-rich plant foods may 
offer solutions particularly in areas of the world where intake of animal protein is low1. One such crop is pigeon-
pea (Cajanus cajan (L.) Millsp), which serves as an important source of dietary protein to over one billion people 
globally2. It is widely cultivated in the tropics and semi-arid tropics of Asia and Africa. Pigeonpea maintains 
better yields than other legume crops under environmental extremes such as heat, drought and low soil fertility 
conditions3,4. These attributes position pigeonpea as the preffered crop for the resources-poor farmers in marginal 
environments5. However, increasing seed protein content (SPC) of pigeonpea is, therefore, an important contri-
bution towards alleviating malnutrition among the poor. Improvement of SPC requires an understanding of its 
genetic architecture and how it relates to traits of agronomic importance.

Few studies have been reported on genetic control of SPC in pigeonpea with results suggesting quantitative 
inheritance6,7. However, the classical quantitative genetics approaches used in the reported studies are limited in 
power and resolution to dissect the genetic architecture of a quantitative trait like SPC. Similarly, information is 
limited on the genetic basis of the often positive or negative or no relationships of SPC with agronomic traits such 
as seed yield, seed weight, days to flowering, and growth habit in the crop7,8. Determining the genetic basis of trait 
correlations in pigeonpea is essential in designing breeding strategies that aim at improving and stabilizing SPC 
while maintaining yield and other desirable agronomic attributes. The available genomics, transcriptomics and 
proteomics resources in pigeonpea coupled with advances in high-throughput genotyping technologies provide 
opportunity to dissect the genetic architecture of several quantitative traits in the crop2,9–15. However, genetic 
architecture of SPC in pigeonpea and the basis of its relationships with other traits of importance has remained 
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untouched by the genomic revolution in the crop. A common genomics approach to understand the genetic 
architecture of quantitative traits involves whole genome scans to find quantitative trait loci (QTLs)16.

Through QTL analysis, genetic parameters such as number of loci, effect types and sizes and epistasis, which 
constitute the genetic architecture underlying quantitative phenotypic variation can be estimated17. The param-
eters, however, are commonly population specific18. As a result, QTLs identified in a given population may not 
necessarily be found in another population19. Thus, an account of the genetic architecture of a trait based on a 
single population likely describes only a small proportion of all the loci, their effects, and potential interactions 
that contribute to the intraspecific phenotypic variation for a trait17,20. Similarly, QTL analysis involving multiple 
traits allows for the decomposition of genetic bases of within trait variations as well as correlations among traits in 
terms of the signs and magnitudes of QTL effects21. To this end, the use of two or more segregating mapping pop-
ulations with two or more measured traits in a single study have become common20,22,23. Regardless of the number 
of segregating populations, QTL analysis is preceded by the development of appropriate mapping populations and 
anchoring of markers on a genetic map.

In view of the above, the present study reports on the first attempt to dissect the genetic architecture of SPC 
in pigeonpea in a manner that incorporates an investigation of the genetic basis of its correlations with other 
important agronomic traits. To achieve this, five segregating F2 populations were phenotyped for SPC and agro-
nomic traits including seed yield (SY), 100-seed weight (SW), days to first flowering (DFF) and growth habit 
(GH). These populations were genotyped using genotyping-by-sequencing (GBS) approach. Five SNPs-based 
population-specific, and a consensus genetic maps were constructed. Analysis of both main effect QTLs 
(M-QTLS) and epistatic QTLs (E-QTLs) revealed the genetic architecture of SPC variation and the basis of its 
correlations with the measured agronomic traits.

Results
Phenotypic variation in SPC and agronomic traits in five mapping populations.  The mean value 
of SPC in low protein containing parents ranged from 19.3 to 21.5% and from 22.3 to 24.6% among high protein 
containing parents (Table 1). The lowest SPC difference (0.8%) was observed between crossing parents of Pop2 
and highest (3.1%) was in crossing parents of Pop5. In the case of F2s, SPC ranged from 5.8% in Pop5 to 10.3% 
(Pop3) while mean SPC ranged from 19.44 ± 1.28% in Pop4 to 23.06 ± 1.08% (Pop5). Similar statistics for DFF, 
SW and SY have been presented (Table 1). Shapiro-Wilk test showed that distributions for SPC in Pop1, Pop3 

Trait P1 P2 |P1-P2| n Mean ± s.d. CV (%) S K F2-range W-test

Pop1 (ICP 11605 × ICP 14209)

SPC (%) 21.5 23.1 1.6 178 22.2 ± 1.2 5.6 0.2 1.1 19.1–26.5 1.0NS

DFF (days) 66.0 138.0 72.0 178 101.1 ± 12.6 12.4 −0.4 0.1 69.0–133.0 0.9***

SW (g) 12.2 8.7 3.5 178 9.1 ± 1.1 12.0 0.0 0.1 6.2–12.2 1.0NS

SY (g/plant) 22.5 17.3 5.2 178 53.4 ± 32.5 60.8 1.1 1.6 8.7–186.9 0.9***

Pop2 (ICP 8863 × ICP 11605)

SPC (%) 22.3 21.5 0.8 175 21.7 ± 1.5 6.9 −0.5 −0.2 17.5–24.8 1.0**

DFF (days) 90.0 66.0 24.0 175 83.5 ± 11.1 13.3 0.4 0.5 58.0–117.0 1.0***

SW (g) 9.9 12.2 2.3 175 11.3 ± 1.4 12.4 1.4 9.8 7.5–20.6 0.9***

SY (g/plant) 24.5 22.5 2.0 175 37.3 ± 27.6 73.9 1.5 1.7 8.0–127.5 0.8***

Pop3 (HPL 24 × ICP 11605)

SPC (%) 23.0 21.5 1.5 157 22.4 ± 1.7 7.5 0.3 0.5 17.7–28.0 1.0NS

DFF (days) 112.0 66.0 46.0 157 93.4 ± 15.2 16.3 −0.6 −0.8 66.0–123.0 0.9***

SW (g) 8.1 12.2 4.1 157 10.4 ± 1.3 12.8 −0.3 0.2 5.7–13.7 1.0NS

SY (g/plant) 152.7 22.5 130.2 157 33.6 ± 21.6 64.4 1.1 0.8 5.7–106.5 0.9***

Pop4 (ICP 8863 × ICPL 87119)

SPC (%) 22.3 19.3 3.0 137 19.4 ± 1.3 6.6 −0.4 −0.3 16.0–21.8 1.0*

DFF (days) 90.0 103.0 13.0 137 95.5 ± 8.7 9.1 −0.4 0.5 62.0–116.0 1.0NS

SW (g) 9.9 11.1 1.2 137 11.6 ± 1.1 9.1 −0.3 0.5 8.6–14.1 1.0NS

SY (g/plant) 24.5 38.9 14.4 137 50.9 ± 32.6 64.0 1.8 3.9 7.9–192 0.8***

Pop5 (ICP 5529 × ICP 11605)

SPC (%) 24.6 21.5 3.1 179 23.0 ± 1.1 4.7 0.0 0.2 20.2–26.6 1.0 ns

DFF (days) 104.0 66.0 38.0 179 81.2 ± 9.2 11.3 −0.2 −0.5 65.0–102.0 0.9***

SW (g) 8.6 12.2 3.6 179 10.3 ± 1.4 13.1 −0.6 1.2 5.3–13.4 1.0*

SY (g/plant) 23.3 22.5 0.8 179 47.8 ± 38.7 80.9 1.8 3.5 5.3–203.1 0.8***

Table 1.  Population size, mean, variance, skewness, kurtosis, minimum and maximum values, and w-test for 
seed protein content (SPC), days to first flowering (DFF), 100-seed weight (SW) and seed yield (SY) in five F2 
mapping populations of pigeonpea. NS: not significantly different from a Gaussian distribution at P = 0.05; 
*, ** and ***: significantly different from a Gaussian distribution at 0.05, 0.01 and 0.001 probability levels, 
respectively. P1: parent 1, P2: parent 2, |P1-P2|: absolute difference in trait value between two parents of a cross, S: 
skewness, K: kurtosis.
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and Pop5 were not significantly (P > 0.05) different from a Gaussian distribution while Pop2 and Pop4 differed 
significantly (P ≤ 0.05) from a normal distribution. Such non-Gaussian distributions were also noted for most of 
the other traits such as DFF in Pop1, Pop2, Pop3 and Pop4; SW (Pop2 and Pop5) and SY in all five populations.

Phenotypic correlation among traits.  Correlations among traits are presented in Table 2. Correlations 
were negative between SPC and DFF in all mapping populations but significant (P ≤ 0.05) in only two populations 
(Pop1 and Pop3). Similarly, correlations between SPC and SY were negative and significant in all populations 
except in Pop4. In contrast, significant positive correlations were noted between SPC and GH in three of the five 
populations. While correlations between SPC and SW were positive in all populations except Pop3, although only 
significant in two populations (Pop1 and Pop2). Correlations between agronomic traits were generally negative 
and significant for DFF × GH and SY × GH, positive and nonsignificant for SW × GH and DFF × SY, and nega-
tive and nonsignificant for SY × SW.

Sequence data and SNP discovery.  In total, 403.66 million reads (40.77 Gb), 343.26 million reads 
(34.76 Gb), 339.25 million reads (33.89 Gb), 284.77 million reads (28.76 Gb) and 298.56 million reads (30.15 Gb) 
of clean GBS reads were generated using HiSeq. 2500 platform from parents and 178 F2s (Pop1), 175 F2s (Pop2), 
157 F2s (Pop3), 137 F2s (Pop4) and 179 F2s (Pop5), respectively (Table 3; Suplementary Table S1). It is important 
to mention that sequence data generated and SNPs identified in Pop5 have been taken from Saxena et al.12. The 
reads from individual progenies ranged from 0.79 to 5.82 million reads in Pop1, 0.49 to 9.52 million reads in 
Pop2, 0.73 to 6.84 million reads in Pop3, 0.84 to 8.19 million reads in Pop4, and 0.41 to 5.26 million reads in Pop5. 
Also, a total of 1.13 (ICP 11605) and 2.60 (ICP 14209) million reads of Pop1 parents, 3.00 (ICP 8863) and 7.59 
(ICP 11605) million reads of Pop2 parents, 2.96 (HPL 24) and 3.31 (ICP 11605) million reads of Pop3 parents, 
2.56 (ICP 8863) million reads of Pop4 parent, and 5.37 (ICP 5529) and 1.61 (ICP 11605) million reads of Pop5 
parents, were generated. The final number of good quality SNPs produced were 15,728 in Pop1, 7,494 in Pop2, 
12,030 in Pop3, 11,526 in Pop4 and 12,654 in Pop512 (Table 4).

Population specific genetic maps.  From a total of 15,728, 7,494, 12,030, 11,526 and 12,662 SNPs iden-
tified, 3,607, 1,419 2,901, 3,941, and 2,935 SNPs in Pop1, Pop2, Pop3, Pop4 and Pop5 (genetic map information 
for Pop5 has been taken from Saxena et al.12), respectively, which segregated in 1:2:1 F2 genotypic ratio at a χ2 
cutoff P ≥ 10−9 were retained for genetic mapping (Table 4). Owing to high distortion from the expected F2 seg-
regation ratio, SNPs segregating in a 1:2:1 ratio at P > 0.05 were used as anchor markers for initial genetic map 

Traits SPC DFF GH SW SPC DFF GH SW

Pop1 (ICP11605 × ICP 14209) Pop2 (ICP 8863 × ICP 11605)

DFF
−0.1676 −0.1058

(0.0254) (0.1635)

GH
0.2004 −0.6891 0.1841 −0.5564

(0.0073) (0.0000) (0.0147) (0.0000)

SW
0.2249 0.0412 0.1396 0.3013 −0.0626 0.0532

(0.0025) (0.5847) (0.0631) (0.0001) (0.4102) (0.4842)

SY
−0.1810 0.1543 −0.2381 −0.1074 −0.2303 0.0890 −0.2520 −0.0293

(0.0156) (0.0398) (0.0014) (0.1536) (0.0022) (0.2413) (0.0008) (0.7001)

Pop3 (HPL 24 × ICP 11605) Pop4 (ICP 8863 × ICPL 87119)

DFF
−0.3046 −0.0009

(0.0001) (0.9920)

GH
0.3380 −0.7446 — —

(0.0000) (0.0000) — —

SW
0.1337 0.0023 0.1492 0.0444 −0.1784 —

(0.0951) (0.9770) (0.0621) (0.6074) (0.0377) —

SY
−0.2811 0.1419 −0.2874 0.0172 −0.0643 −0.1456 — 0.1803

(0.0004) (0.0763) (0.0003) (0.8304) (0.4568) (0.0909) — (0.0357)

Pop5 (ICP 5529 × ICP 11606) Combined across populations

DFF
−0.0047 −0.2111

(0.9542) (0.0000)

GH
0.1565 −0.5905 0.2102 −0.5574

(0.0518) (0.0000) (0.0000) (0.0000)

SW
−0.0245 −0.1860 0.1138 −0.1305 −0.1813 0.1198

(0.7620) (0.0205) (0.1586) (0.0002) (0.0000) (0.0020)

SY
−0.2392 0.2463 −0.2804 0.1551 −0.1955 0.1586 −0.2608 −0.0196

(0.0027) (0.0020) (0.0004) (0.0540) (0.0000) (0.0000) (0.0000) (0.5795)

Table 2.  Correlation coefficient among traits in five F2 mapping populations of pigeonpea. P values are in 
parentheses.
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construction. As a result, a total of 82, 90, 94, 29 and 140 SNPs in Pop1, Pop2, Pop3, Pop4 and Pop5, respectively 
could be mapped in the base or anchor genetic maps. A further 580, 273, 513, 967 and 647 SNPs, which segre-
gated in 1:2:1 ratio at P < 0.05 ≥ 10−9 could be added to the base map resulting in 662, 363, 607, 996 and 787 SNPs 
mapped, with map lengths of 1419.1 cM, 1327.6 cM, 1546.8 cM, 1599.8 cM and 1454.0 cM in Pop1, Pop2, Pop3, 
Pop4 and Pop5, respectively. The average marker spacing in cM among the five genetic maps were 2.1 (Pop1), 
3.5 (Pop2), 2.3 (Pop3), 1.6 (Pop4) and 1.8 (Pop5). The number of gaps larger than 10.0 cM ranged from 13 in 
Pop1 to 33 (Pop2). The largest gaps on the genetic maps ranged from 22.3 cM in Pop1 to 40 cM in Pop2 (Table 4, 
Supplementary Figs. S1–S5).

Consensus genetic map.  All markers used in the construction of the consensus map in the present study 
were SNPs. As a result, there was no discrepancy in marker names among the individual maps. Segregation 
data for 3,400 markers from five mapping populations were used to integrate the multiple genetic maps into a 
consensus map (Table 5). Among the markers, 2,386 were distinctive to particular mapping populations, 617 
were common between two, 227 among three and 170 among four mapping populations. The common markers 
were used as anchor points for integration of the individual genetic maps. Most of the linkage groups for the 
population-specific genetic maps were integrated into the consensus genetic map. All common markers together 
led to the production of a consensus genetic map comprising 984 loci on 11 CcLGs covering a map distance of 
1,609.5 cM with an average inter-marker distance of 1.6 cM (Supplementary Fig. S7).

Collinearity between component and consensus genetic maps.  All genetic maps were, to a large 
extent, collinear with the consensus map (Table 6; Figs. 1 and 2; Supplementary Fig. S6). However, component 
CcLGs from Pop1 (CcLG02, CcLG07, CcLG08 and CcLG11), Pop2 (CcLG07), Pop3 (CcLG08 and CcLG11) and 

Data features/
generation

Pop1
(n = 178)

Pop2
(n = 175)

Pop3
(n = 157)

Pop4
(n = 137)

Pop5†

(n = 179)

Number of reads (millions)

Total 403.66 343.26 339.25 284.77 298.56

P1 1.13 3.0 2.96 2.56 5.37

P2 2.6 7.6 3.31 — 1.61

F2 - range 0.79–5.82 0.49–9.52 0.73–6.84 0.84–8.19 0.41–5.26

F2 - average 2.25 1.9 2.09 2.06 1.67

Data size (Gb)

Total 40.77 34.76 33.89 28.76 30.15

P1 0.114 0.303 0.299 0.258 0.543

P2 0.263 0.766 0.335 — 0.163

F2 - range 0.079–0.587 0.049–0.962 0.074–0.691 0.084–0.827 0.041–0.531

F2 - average 0.267 0.192 0.212 0.208 0.168

Table 3.  Number of reads and data size in gigabytes (Gb) generated in five F2 mapping populations of 
pigeonpea. P1, parent 1; P2, parent 2; Pop1, ICP 11605 (P1) × ICP 14209 (P2); Pop2, ICP 8863 (P1) × ICP 11605 
(P2); Pop3, HPL 24 (P1) × ICP 11605 (P2); Pop4, ICP 8863 (P1) × ICPL 87119 (P2); Pop5, ICP 5529 (P1) × ICP 
11605 (P2); n, F2 population size; †Information obtained from Saxena et al.12.

Features

Individual genetic maps

Pop1 Pop2 Pop3 Pop4 Pop5†

No. of total SNPs 15728 7494 12030 11526 12654

No. of SNPs showing severe segregation distortion (P < 1.0 × 10–9) 12121 6075 9129 7585 9727

No. of markers segregating at 1:2:1 at P ≥ 1.0 × 10−9 3607 1419 2901 3941 2935

No. of markers in anchor maps 82 90 94 29 140

Length of anchor maps 561.9 696.2 578.2 374.5 584.2

No. of total mapped loci 662 363 607 996 787

   - Mapped non-distorted loci 160 132 178 182 262

   - Mapped distorted loci 502 248 517 814 525

Total map length (cM) 1419.1 1327.6 1546.8 1599.8 1454.0

Average marker spacing (cM) 2.1 3.5 2.3 1.6 1.8

Number of gaps > 10.0 cM 13 33 29 15 21

Largest gap (cM) 22.3 40.0 26.0 29.0 25.4

Table 4.  Features of individual genetic maps from five F2 mapping populations of pigeonpea Pop1: ICP 
11605 × ICP 14209, Pop2: ICP 8863 × ICP 11605, Pop3: HPL 24 × ICP 11605, Pop4: ICP8863 × ICPL 87119, 
Pop5: ICP 5529 × ICP 11605, †Information obtained from Saxena et al.12.
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Pop5 (CcLG05, CcLG07and CcLG09) showed a reversal of marker order between component genetic map and 
consensus map as revealed by the negative correlation coefficients (“r”; Table 6). Similarly, CcLGs from Pop4 
that contributed any markers to the consensus map displayed poor collinearity with the consensus map. Finally, 
genome-wide, there were 13 gaps larger than 10 cM (one each on CcLG02 and CcLG11, two each on CcLG05, 
CcLG09 and CcLG10, and three each on CcLG03 and CcLG07). Such gaps have been thought to result from 
recombination hotspots or regions that are identical-by-descent and thus lack of polymorphisms24.

Main effect QTLs for SPC and agronomic traits and their colocalization.  Phenotyping data 
together with SNP genotyping data were used for QTL analysis in all five F2 populations using CIM and ICIM. 
Based on the phenotypic variance explained (PVE), identified M-QTLs were classified as major (≥10% PVE) and 
minor (<10% PVE). For each F2 population, details on M-QTLs identified have been explained below.

Seed protein content.  A total of 48 M-QTLs were detected for SPC across the five mapping populations 
(Table 7, Supplementary Table S2). Six of the M-QTLs were detected by both CIM and ICIM with two in Pop2 
(CcLG03 and CcLG11) and Pop4 (CcLG02 and CcLG06), and one M-QTL each in Pop3 (CcLG02) and Pop5 
(CcLG02). There were 13 major and 35 minor M-QTLs across the five populations. The PVE by each of the 
major M-QTLs ranged from 10.0% (Pop1, Pop3) to 23.5% (Pop3) while that of the minor M-QTLs ranged from 
0.7% (Pop2) to 9.5% (Pop3). There were three major M-QTLs each in Pop1 and Pop5 and two each in Pop2 and 
Pop3. Eight of the major M-QTLs (three each in Pop1 and Pop5, and one each in Pop2 and Pop4) and 18 of the 
minor M-QTLs (two in Pop1, six each in Pop3 and Pop5, and four in Pop4) showed negative additive effects. The 
remaining five major M-QTLs (one in Pop2, two each in Pop3 and Pop4) and 17 minor M-QTLs (one in Pop1, 
four in Pop2, five each in Pop3 and Pop4, and two in Pop5) showed positive additive effects.

Population Size Total

Number of markers common to ‘n’ 
mapping pop Total common

n = 0 n = 1 n = 2 n = 3 Number %

Pop1 178 647 413 141 50 43 234 36.2

Pop2 175 363 170 107 44 42 193 53.2

Pop3 157 607 356 150 58 43 251 41.4

Pop4 137 996 915 62 17 2 81 8.1

Pop5 179 787 532 157 58 40 255 32.4

Total 826 3,400 2,386 617 227 170 1,014 29.8

Table 5.  Number of common markers among five F2 mapping populations of pigeonpea. Pop1: ICP 
11605 × ICP 14209, Pop2: ICP 8863 × ICP 11605, Pop3: HPL 24 × ICP 11605, Pop4: ICP8863 × ICPL 87119, 
Pop5: ICP 5529 × ICP 11605. n, number of markers.

Consensus map

Number of markers contributed from component genetic maps and their correlation with 
consensus map

Pop1 Pop2 Pop3 Pop4 Pop5

LG† N
ML 
(cM)

AID 
(cM) N “r” n “r” n “r” n “r” n “r”

CcLG01 52 136.8 2.6 — — 11 0.97*** 13 0.81*** 1 — 20 0.91***

CcLG02 219 224.3 1.0 9 −0.80** 12 0.97*** 13 0.99*** 172 0.23** 30 0.95***

CcLG03 46 162.0 3.5 25 0.95*** 15 0.97*** 13 0.97*** — — 22 0.95**

CcLG04 29 49.6 1.7 11 0.89*** 4 0.99*** 3 1.00* — — 18 0.57*

CcLG05 24 140.1 5.8 7 1.00*** 4 0.99** 10 1.00*** — — 13 −0.87***

CcLG06 76 139.6 1.8 36 0.34* 23 0.98*** 27 0.95*** — — 48 0.94***

CcLG07 26 133.1 5.1 10 −0.84** 8 −0.95*** 5 1.00*** 5 0.14NS 8 −0.73*

CcLG08 34 119.3 3.5 16 −0.98*** — — 13 −0.97*** 24 0.98***

CcLG09 19 96.0 5.1 12 0.42NS 6 0.99*** 9 0.91*** — — 8 −0.95***

CcLG10 95 205.1 2.2 11 0.99*** 3 1.00*** 16 0.93*** 2 — 8 0.99***

CcLG11 364 203.8 0.6 55 −0.66*** 47 0.90*** 82 −0.37*** 173 0.00NS 102 0.107NS

Total 984 1609.5 1.6 192 133 204 352 301

Table 6.  Summary of a pigeonpea consensus genetic map constructed from five component genetic maps. NS: 
not significantly different from zero at 0.05 probability level; *, ** and ***: significantly different from zero at 
0.05, 0.01 and 0.001 probability levels, respectively. Pop1: ICP 11605 × ICP 14209, Pop2: ICP 8863 × ICP 11605, 
Pop3: HPL 24 × ICP 11605, Pop4: ICP 8863 × ICPL 87119, Pop5: ICP 5529 × ICP 11605, LG: linkage group, n: 
number of markers, ML: map length, AID: average inter-marker distance, “r”: correlation coefficient.
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100-seed weight.  Thirty M-QTLs were detected for SW across the five mapping populations (Table 7, 
Supplementary Table S2). Five of the M-QTLs were detected by both CIM and ICIM with one each in Pop2 
(CcLG01), Pop4 (CcLG03), and Pop5 (CcLG01), and two in Pop3 (CcLG01 and CcLG08. There were 16 major 
and 14 minor M-QTLs across the five populations. The PVE by each of the major M-QTLs ranged from 10.1% 
(Pop4) to 46.6% (Pop3) while that of the minor M-QTLs ranged from 3.6% (Pop1) to 9.4% (Pop4). There were 
three major M-QTLs in Pop1, one each in Pop2 and Pop5, four in Pop3 and seven in Pop4. Six of the major 
M-QTLs (four in Pop3 and two in Pop4), and six of the minor M-QTLs (four in Pop1, and one each in Pop3 and 
Pop5) showed negative additive effects. The remaining 10 major M-QTLs (three in Pop2, one each in Pop1 and 
Pop5, and five in Pop4) and eight minor M-QTLs (one in Pop1, two each in Pop2 and Pop4, and three in Pop5) 
showed positive additive effects.

Seed yield.  A total of 40 M-QTLs were detected for SY across the five mapping populations (Table 7, 
Supplementary Table S2). Seven of the M-QTLs were detected by both CIM and ICIM with one in Pop1 on 

Figure 1.  Scatter plots showing the extent of correlations among population-specific and consensus genetic 
maps of pigeonpea.
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CcLG03, two in Pop4 (CcLG03, CcLG011), three in Pop3 (CcLG02, CcLG04, CcLG11) and one in Pop4 
(CcLG11). There were 17 major and 23 minor M-QTLs across the five populations. The PVE by each of the major 
M-QTLs ranged from 10.2% (Pop1) to 53.0% (Pop4) while that of the minor M-QTLs ranged from 1.7% (Pop2) 
to 9.8% (Pop4). There were two major M-QTLs each in Pop1 and Pop2, five in Pop3, seven in Pop4 and one in 
Pop5. Six of the major M-QTLs (one each in Pop1, Pop2, Pop3 and Pop5, and two in Pop4) and 15 of the minor 
M-QTLs (three each in Pop1, Pop3 and Pop4, four in Pop2, and two in Pop5) showed negative additive effects. 
The remaining 11 major M-QTLs (one each in Pop1 and Pop2, four in Pop3 and five in Pop4) and eight minor 
M-QTLs (one in Pop1, two each in Pop2 and Pop5, and three in Pop3 showed positive additive effects.

Growth habit.  Twenty eight M-QTLs were detected for GH across the four populations in which there was 
segregation for the trait (Table 7, Supplementary Table S2). Six of the M-QTLs were detected by both CIM and 
ICIM all on CcLG03 with two in Pop1, and one each in Pop2, Pop3 and Pop5. There were 19 major and nine minor 
M-QTLs across the populations. The PVE by each of the major M-QTLs ranged from 10.9% (Pop1) to 91.3% 
(Pop1) while that of the minor M-QTLs ranged from 3.4% (Pop5) to 6.5% (Pop3). There were three major M-QTLs 
in Pop1, four in Pop2, three in Pop3, and nine in Pop5. Four of the major M-QTLs (three in Pop3 and one in Pop5) 
and five of the minor M-QTLs (one each in Pop1, Pop2 and Pop5, and two in Pop3) showed negative additive 
effects to indeterminate GH. The remaining 15 major M-QTLs (three in Pop1, four in Pop2 and eight in Pop5) 
and four minor M-QTLs (three in Pop3 and one in Pop5) showed positive additive effects to indeterminate GH.

Days to first flowering.  In total, 47 M-QTLs were detected for DFF across the five populations (Table 7, 
Supplementary Table S2). Eleven of the M-QTLs were detected by both CIM and ICIM with one in Pop1 on 
CcLG03, two in Pop2 (CcLG03, CcLG11), five in Pop4 (CcLG01, CcLG06, CcLG08, CcLG11) and two in Pop5 
(CcLG03). There were 24 major and 23 minor M-QTLs across the populations. The PVE by each of the major 
M-QTLs ranged from 10.9% (Pop4) to 47.6% (Pop5) while that of the minor M-QTLs ranged from 2.1% (Pop4) 
to 9.8% (Pop4). There were two major M-QTLs in Pop1, four in Pop2, five in Pop3, and 11 in Pop4. Seventeen of 
the major M-QTLs (two each in Pop1 and Pop5, three in Pop2, one in Pop3, and nine in Pop4), and eight of the 
minor M-QTLs (two in Pop1, one each in Pop2, Pop3 and Pop5; and three in Pop4) showed negative additive 
effects to delayed DFF. The remaining seven major M-QTLs (one in Pop1, four in Pop3 and two in Pop5) and 

Figure 2.  A chart depicting marker-based correspondences of consensus with individual genetic maps, a case 
of CcLG03. Only common markers are included to visually assess the collinearity of marker orders and marker 
positions. Linkage groups are aligned together using comparative mapping programme CMap version 1.01. This 
figure and for all the other linkage groups are presented as Supplementary Fig. S6.
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15 minor M-QTLs (two each in Pop1 and Pop2, three in Pop3, seven in Pop4 and one in Pop5) showed positive 
additive effects to delayed DFF.

QTL colocalization and correlations among traits.  One M-QTL region in Pop1 for which SPC and 
DFF shared one of the flanking SNPs (S3_18226407) on CcLG03 showed negative and positive additive effects on 
SPC and DFF, respectively (Supplementary Table S2; Fig. S1), indicating it contributed to the observed negative 
correlation between the two traits (Table 2). Another M-QTL region region flanked by SNPs S3_14813065 and 
S3_14778845 also in Pop1 on CcLG03 had positive and negative additive effects on GH and DFF, respectively, and 
likely contributed to the observed negative correlation between the two traits.

Similarly, M-QTL flanked by SNPs S3_22234078 and S3_19578263 on CcLG03 in Pop2 showed pleiotropic 
effect on SPC, SY, GH and DFF (Supplementary Table S2, Supplementary Fig. S2). The M-QTL region displayed 
positive additive effects on SPC and GH, but negative additive effects on DFF and SY, possibly explaining the 
high positive correlation between SPC and GH, and negative correlation of SPC with DFF and SY, respectively. 
In the same Pop2, SPC shared an M-QTL with SW on CcLG01 in a region fanked by SNPs S1_15372966 and 
S1_9033631 with positive additive effect on both traits thus possibly contributing to the positive correlation 
between the two traits (Table 2). Another region in the same Pop2 on CcLG11 flanked by SNPs S11_21940736 
and S11_18137395 conditioned SPC and SY having positive and negative additive effects, respectively, and likely 
resulted to the negative correlation between the two traits (Table 2).

In Pop3, three M-QTL regions flanked by SNPs S3_28538775 and S3_22913898, S3_18154848 and 
S3_17193829, and S3_18154875 and S3_14813065 all on CcLG03 affected SPC, GH and DFF with additive effects 
being negative for SPC and GH, and positive in two and negative in one of the M-QTLs for DFF (Supplementary 
Tables S2, Supplementary Fig. S3) possibly contributing to the positive correlation between SPC and GH, and 
negative correlation between SPC and DFF, and between GH and DFF (Table 2). Another M-QTL region in Pop3 
on CcLG04 flanked by SNPs S4_3592410 and S4_2761907 had negative and positive additive effects on SY and 
GH, respectively, and likely contributed to the negative correlations between the two traits. A third M-QTL region 
in the same Pop3 flanked by SNPs S2_2989918 and S2_2144739 on CcLG02 conditioned both SPC and SY having 
positive and negative additive effects, respectively, and likely contributed to the negative though none significant 
correlation between the traits.

Similarly, a QTL region flanked by SNPs S1_1145802 and S1_11242012 on CcLG01 in Pop4 conditioned both 
SY and DFF with positive and negative additive effects, respectively (Supplementary Table S2, Fig. S4), and likely 
contributed to the negative though non-significant correlation between the traits (Table 2). Additionally, a QTL 

Population QTL features

SPC SW SY DFF GH

CIM ICIM CIM ICIM CIM ICIM CIM ICIM CIM ICIM

Pop1

No. QTLs† 5 (3) 1 (0) 4 (2) 4 (1) 6 (1) 1 (1) 6 (2) 1 (1) 3 (1) 3 (1)

LOD 2.6–3.8 2.7 2.6–4.3 2.9–6.8 2.6–3.0 4.5 2.5–9.5 11.1 3.2–13.9 3.2–17.3

PVE (%) 7.8–16.6 8.6 3.6–12.3 6.4–15.0 5.2–15.4 10.2 5.7–20.3 25.4 10.9–91.3 6.1–41.3

Total No. QTLs‡ 6 8 6 6 4

Pop2

No. QTLs 4 (1) 4 (1) 2 (0) 2 (1) 4 (2) 6 (2) 6 (4) 3 (1) 5 (4) 2 (1)

LOD 2.6–3.8 2.7–2.9 3.4–4.6 2.7–9.9 3.0–5.3 3.5–8.0 2.9–9.9 2.6–11.7 2.7–16.1 12.4–15.0

PVE (%) 0.7–12.8 6.9–12.3 6.1–7.5 8.4–29.1 1.7–11.8 5.9–16.0 4.0–36.3 4.5–26.6 4.0–64.7 23.9–25.4

Total No. QTLs 6 3 8 6 5

Pop3

No. QTLs 6 (1) 8 (1) 5 (3) 2 (2) 8 (4) 6 (1) 3 (3) 6 (2) 5 (1) 4 (2)

LOD 3.0–4.6 2.5–4.2 2.5–13.6 7.7–13.7 2.5–5.4 2.5–6.5 4.4–16.0 2.6–20.0 3.0–25.3 3.0–31.4

PVE (%) 3.8–23.5 5.1–10.0 5.4–46.6 16.3–5.7 4.8–40.2 4.5–20.3 13.2–40.3 3.4–31.9 5.3–13.3 4.0–54.4

Total No. QTLs 13 5 12 9 8

Pop4

No. QTLs 10 (2) 4 (2) 6 (5) 4 (2) 5 (4) 6 (3) 19 (9) 7 (5) — —

LOD 2.5–4.2 2.7–7.5 2.6–4.8 2.5–4.4 3.0–4.0 2.6–3.7 2.6–4.5 2.9–6.8 — —

PVE (%) 1.7–16.3 8.2–18.9 8.7–26.7 4.9–13.1 6.7–53.0 5.8–10.7 2.1–43.8 6.3–15.2 — —

Total No. QTLs 12 9 10 21

Pop5

No. QTLs 7 (2) 5 (2) 2 (1) 4 (1) 1 (0) 4 (1) 4 (3) 3 (1) 8 (5) 5 (4)

LOD 2.6–5.1 3.5–7.2 3.4–14.7 2.7–15.0 2.9 3.2–4.2 4.0–7.8 2.9–6.6 2.8–22.1 2.7–29.1

PVE (%) 3.3–17.5 7.7–16.5 8.3–10.4 6.3–31.5 8.2 6.6–14.8 4.6–47.6 6.1–12.6 3.4–47.0 3.9–61.6

Total No. QTLs 11 5 5 5 11

Table 7.  Summary of main effect QTLs detected by composite interval mapping (CIM) and inclusive composite 
interval mapping (ICIM) for seed protein content (SPC), 100-seed weight (SW), seed yield (SY), days to first 
flowering (DFF) and growth habit (GH) in five F2 mapping populations of pigeonpea. Pop1: ICP 11605 × ICP 
14209, Pop2: ICP 8863 × ICP 11605, Pop3: HPL 24 × ICP 11605, Pop4: ICP 8863 × ICPL 87119, Pop5: ICP 
5529 × ICP 11605, PVE: phenotypic variation explained by a QTL. Number in parenthesis represents numbers 
of major M-QTLs (PVE% ≥ 10.0%). †Number of QTLs detected by either CIM or ICIM. ‡Number of unique 
QTLs detected by either or both CIM and ICIM. PVE: phenotypic variation explained by a QTL. LOD: 
Logarithm of odds.
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on CcLG02, flanked by SNPs S2_11771536 and S2_10960200 conditioned SW and DFF with positive and negative 
additive effects, respectively, and likely contributed to the negative correlation between the two traits. A major 
M-QTL on CcLG10 flanked by SNPs S10_15140940 and S10_632618 influenced both SW and SY with positive 
additive effects on both traits, indicating it contributed to the positive correlation between the traits. There were 
two tight linkages (0.1 cM distance), one between M-QTLs for SPC and DFF, and another between SPC and SY 
both on CcLG11.

Neither CIM nor ICIM detected any overlap or tight linkage of M-QTLs in Pop5 between any of the measured 
traits (Supplementary Table S2, Fig. S5) although significant correlations were detected between SPC and SY, GH 
and DFF, SW and DFF, SY and DFF, and SY and GH (Table 2).

Consensus genetic and main effect QTLs across populations.  Forty-one, 26, 27, 28 and 31 out of a 
total of 48, 30 40, 28 and 47 M-QTLs for SPC, SW, SY, GH and DFF, respectively, from the five mapping popula-
tions could be projected onto the consensus genetic map. Twenty-four (60%) of the projected SPC M-QTLs could 
be placed into six consensus QTL regions (Supplementary Fig. S7). The consensus SPC QTLs contained M-QTLs 
from two populations (Consensus-PROT-QTL 1, Consensus-PROT-QTL 2 and Consensus-PROT-QTL 5), three 
populations (Consensus-PROT-QTL 3) and four populations (Consensus-PROT-QTL 4 and Consensus-PROT-QTL 
6). Out of the 26 M-QTLs for SW projected onto the consensus genetic map, only 13 could be collapsed into 
four consensus QTL regions, namely Consensus-SW-QTL 1 with QTLs from two populations on CcLG01 and 
Consensus-SW-QTL 2 with QTLs from three populations on CcLG01, Consensus-SW-QTL 3 on CcLG06 with 
QTLs from 2 populations and Consensus-SW-QTL 4 on CcLG08 with QTLs from 3 populations. For SY, only 
four out of 27 M-QTLs projected onto the consensus genetic map could be put into two consensus regions. 
Consensus-SY-QTL 1 and Consensus-SY-QTL 2 on CcLG03 and CcLG11 consisted of M-QTLs from two popula-
tions  each. For DFF 26 M-QTLs could be put in to four consensus QTL regions with QTLs from two populations 
in Consensus-DFF- QTL 1 on CcLG02, four populations (Consensus-DFF-QTL 2) on CcLG03 and three popula-
tions (Consensus-DFF-QTL 3 and Consensus-DFF-QTL 4) on CcLG11. In the case of GH, 20 M-QTLs from four 
populations could be put in to one consensus QTL region (Consensus-GH-QTL 1) on CcLG03.

Ten QTL clusters could be recognised (Supplementary Fig. S7). QTL-Cluster 1 on CcLG01 and QTL-Cluster 6 
on CcLG04 each harboured one minor M-QTL for each of SPC and SW. QTL-Cluster 2 on CcLG02, QTL-Cluster 
9 on CcLG11 and QTL-Cluster 10 on CcLG11 each haboured M-QTLs for all measured traits. Two M-QTLs 
each for SPC, SW and SY in QTL-Cluster 3 and QTL-Cluster 5 both on CcLG02 contained M-QTLs for SPC, 
SY and DFF. QTL-Cluster 4 on CcLG03 harboured M-QTLs for SPC, SY, GH and DFF, while QTL-Cluster 7 on 
CcLG06 contained M-QTLs for SW and SY only. QTL-Cluster 8 on CcLG09 contained M-QTLs for SPC and 
GH only. There were two M-QTLs for SPC, one each for SW, GH and DFF, and three for SY in QTL-Cluster 2. Of 
the M-QTLs in QTL-Cluster 2, there were two for each of SPC, SW and SY, and one for DFF with PVE ≥ 10.0%. 
In the case of QTL-Cluster 3, two M-QTLs for SPC and one for SY were major, while in QTL-Cluster 4 two, 
15, 12 and one M-QTLs for SPC, GH, DFF, and SY, respectively, showed large effects (>10.0%). In contrast, 
QTL-Cluster 5 harboured only one major M-QTL for SY colocalising with minor M-QTLs (<10.0%) for other 
traits. QTL-clusters 6, 7 and 8 harboured only minor M-QTLs, while QTL-Cluster 9 contained two major M-QTLs 
for each of SPC and SY, three for each of DFF and SW, and one for GH. QTL-Cluster 10 was made up of one major 
M-QTL for each of SPC, GH, SW and SY, and two for DFF.

Epistatic QTLs.  To gain more insight into the complexity of the genetic control of SPC and its relationship 
with other traits, epistatic QTLs (E-QTLs) were mapped in each of the five F2 populations using QTL Icimapping 
software v4.0 (http://www.isbreeding.net/software/?type=detail&id=14) (Table 8; Supplementary Table S3). 
Pop2 had the highest number of E-QTLs (173) while Pop4 had the lowest number (52) across traits. Among 
traits, SPC had the lowest number of E-QTLs ranging from two in Pop3 to 11 in Pop1 while GH had the highest 
number ranging from 40 in Pop1 to 56 in Pop2 (Table 8). The E-QTLs were detected on all CcLGs in each popula-
tion. Overall, E-QTLs made large contributions to the phenotypic variations of the measured traits ranging from 
6.3% for DFF in Pop1 to 99.4% for GH in Pop2 (Table 8). In the case of SPC as the core trait in this study, E-QTLs 
accounted for 12.8 to 31.2% (Pop1), 55.0 to 69.8% (Pop2), 19.3 to 21.2% (Pop3), 9.8 to 30.5% (Pop4) and 9.5 to 
21.2% (Pop5) of the within-population SPC variations (Table 8; Supplementary Table S3). For the agronomic 
traits, there were five to 26 E-QTLs with PVE of 6.3 to 38.4% for DFF, 40 to 56 E-QTLs (PVE = 10.4 to 99.4%) for 
GH, eight to 63 (PVE = 11.5 to 41.8%) for SW, 12 to 39 (PVE = 10.6 to 38.5%) for SY. No common within-trait 
E-QTL pairs were detected in all of the five populations, however, eight SNPs were each found to flank at least 
one member of an E-QTL pair for GH and SW in two to three populations, while four SNPs each flanking at 
least one member of E-QTL pair for SY were detected in two populations. E-QTLs for SPC and DFF were highly 
population-specific without any commonly shared markers among populations.

E-QTLs shared among traits within and across populations.  The number of E-QTL pairs shared 
between SPC and the agronomic traits were variable depending on the population (Fig. 3). In Pop1, SPC shared 
E-QTLs with SW, SY and GH. In Pop2, SPC shared E-QTLs with SW, SY, DFF and GH, while in Pop3, SPC 
shared E-QTL markers with SW and GH. In Pop4, SPC shared two E-QTLs with SY, and one E-QTL with DFF. 
In Pop5, two E-QTLs for SPC were shared with SW, and one with SY. The five populations also had some E-QTL 
pairs in common but with varying effects on measured traits. For example, SNP S5_4199522 on CcLG05 flanked 
several members of E-QTL pairs affecting SY in Pop3 and Pop5, GH in Pop2, Pop3 and Pop5, DFF in Pop5, and 
SW and SPC in Pop2. The E-QTL pairs with at least one member flanked by this SNP explained 15.1% (GH 
in Pop2) to 64.8% (SPC in Pop2) of the observed phenotypic variation. Another SNP, S7_14683829, flanked a 
member of E-QTL pairs to influence GH in Pop1, Pop2, Pop3 and Pop5, SW in Pop3, SPC and SY. Similarly, a 
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number of E-QTLs having SNP S7_14683829 as one of the flanking markers on CcLG07 influenced GH in Pop1 
and Pop2, SW in Pop3 and all five measured traits in Pop5. Interestingly, an Indel marker (s3-20698771) derived 
from CcTFL1 on CcLG03 which co-segregates with the Dt1 locus12 flanked three epistatically acting QTLs to 
influence GH with PVEs of 73.8, 74.3 and 69.4% in Pop5. A 2-phosphoglycerate kinase (2PGK) gene-derived 
non-synonymous SNP (nsSNP, s4-49646325) together with SNP S4_1710877 flanked a QTL on CcLG04 which 
interacted with other QTLs on CcLG07, CcLG08 and CcLG11 to influence GH (17.3 and 18.2%) and SW (19.5 
and 19.5%) in Pop5. The Indel marker and the nsSNP also separately flanked a member of a pair of two other 
E-QTLs to influence GH with a PVE as high as 73.8% in the same population.

Discussion
To detect the QTLs conditioning SPC and its relationship with agronomic traits, we used parental lines with 
only moderate contrast in SPC (0.8 to 3.5%) between any pair parents of a cross. Wide segregation among the F2 
progenies of a cross beyond what is expected from parental values was observed in the F2 populations, indicating 
transgressive segregation, a phenomenon commonly observed for SPC in other legumes such as soybean26,27 and 

Population E-QTL features SPC SW SY DFF GH

Pop1

Number of E-QTLs 11 (11) 8 (8) 29 (29) 5 (5) 40 (1)

LOD 5.1–6.6 5.0–5.6 5.1–8.2 5.0–5.5 9.4–79.6

PVE (%) 12.8–31.2 14.6–25.3 12.9–38.5 10.4–33.4 10.9–91 0.3

Pop2

Number of E-QTLs 9 (9) 63 (63) 19 (19) 26 (26) 56 (56)

LOD 5.2–7.5 6.6–17.1 5.0–7.3 5.0–8.9 5.0–1132.5

PVE (%) 55.0–69.8 29.8–41.8 10.6–36.4 14.8–44.3 10.4–99.4

Pop3

Number of E-QTLs 2 (2) 53 (53) 30 (30) 10 (6) 50 (50)

LOD 5.2–5.3 5.0–9.9 5.0–8.5 5.0–6.2 5.1–41.8

PVE (%) 19.3–21.2 14.6–39.8 14.6–37.1 6.3–14.6 14.1–96.0

Pop4

Number of E-QTLs 8 (7) 20 (20) 12 (12) 12 (12) —

LOD 5.0–6.3 5.1–7.0 5.1–7.2 5.1–6.2 —

PVE (%) 9.8–30.5 14.2–25.6 12.0–23.8 12.0–30.1 —

Pop5

Number of E-QTLs 4 (3) 20 (20) 39 (39) 5 (5) 42 (42)

LOD 5.2–6.9 5.1–7.3 5.0–8.7 5.1–7.0 5.1–16.6

PVE (%) 9.5–21.2 11.5–30.0 15.9–35.1 14.7–23.6 10.6–74.8

Table 8.  Summary of epistatic QTLs detected for seed protein content (SPC), 100-seed weight (SW), seed yield 
(SY), days to first flowering (DFF) and growth habit (GH) in five F2 mapping populations of pigeonpea. Pop1: 
ICP 11605 × ICP 14209, Pop2: ICP 8863 × ICP 11605, Pop3: HPL 24 × ICP 11605, Pop4: ICP 8863 × ICPL 
87119, Pop5: ICP 5529 × ICP 11605. E-QTLs: epistatic QTLs, PVE: phenotypic variation explained. Number in 
parenthesis represents numbers of major E-QTLs (PVE% ≥ 10.0%), PVE: phenotypic variation explained by a 
QTL, LOD: Logarithm of odds.

Figure 3.  Epistatic QTLs conditioning seed protein content and agronomic traits in five F2 mapping 
populations of pigeonpea as revealed by QTL IciMapping Software v4.0 (http://www.isbreeding.net/
software/?t™ype=detail&id=14).
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pea28,29. Strong quantitative variations with transgression for days to flowering, SY and SW were also observed in 
the present study, consistent with reports of earlier studies in segregating populations of pigeonpea10.

Given that a 5-cM SNP spacing is considered sufficiently dense for optimized QTL detection power30, the SNP 
marker spacing in each of the five populations in the present study provides adequate power to detect a QTL. 
Marker segregation distortion was observed in all the five populations with similar proportion of markers show-
ing deviation from expectation. Segregation distortion could have resulted from various factors such as residual 
heterozygosity, gametic or zygotic selections and genotyping errors31. It is a common phenomenon observed 
in both intra- and inter-specific crosses and has been reported in several crops including pigeonpea9,12,13 and 
chickpea32. Although distorted markers have generally been discarded in earlier studies, evidence indicates that 
distorted markers can be potentially helpful in the detection of QTLs33. It has also been noted that discarding dis-
torted markers could possibly remove substantial amounts of information and reduce genome coverage34. Thus, 
in the present study distorted markers segregating in 1:2:1 Mendelian ratio with χ2 cutoff P ≥ 10−9 were retained 
for genetic map construction. By integrating the five component genetic maps into a consensus genetic map, 
conserved marker orders were observed among the five genetic maps that could be attributed to use of relatively 
similar population size (137 to 179), same type of mapping populations (all F2s) and same type of marker system 
(GBS-derived SNPs)9. The constructed genetic maps were then used for QTL analysis to map genomic regions 
associated with SPC and four agronomic traits.

In pigeonpea, QTLs have been mapped for plant type and earliness including days to flowering and growth 
habit10,12,35 and disease resistance13. However, such studies have lacked for SPC and it is only till recently that 
we developed gene-derived sequence-based markers using whole genome resequencing of pigeonpea parental 
lines25. Genomic regions associated with SPC and correlated traits offer opportunity to develop varieties with 
enhanced SPC and stable yield using genomics-assisted breeding approaches. In this context, analyses of QTLs 
for SPC and agronomic characters (SW, SY, DFF and GH) were conducted based on five populations. To ensure 
reliability of detected QTLs the present investigation used two methods, CIM and ICIM. ICIM also facilitated the 
detection of E-QTLs. Although both methods detected comparable number of M-QTLs across traits in the stud-
ied populations, CIM detected slightly more M-QTLs than ICIM, which agrees with results of an earlier study36. 
Three or more M-QTLs were detected by both programs while ICIM detected two or more E-QTLs for each trait 
in each of the studied populations. The involvement of several M- and E-QTLs for each of the measured traits 
explained observed variations in the traits and indicate quantitative inheritance. Colocalized M-QTLs as well as 
E-QTLs explained trait correlations in each of the populations studied.

The detection of two to three major and several modifier/minor effect M-QTLs for SPC spread on nearly 
all linkage groups of pigeonpea in each of the five studied populations is in agreement with results obtained in 
soybean26,27. The M-QTLs for SPC were highly population-specific although three CcLGs contained at least one 
major M-QTL in two to three of the five populations. The three CcLGs (CcLG02, CcLG03 and CcLG11) also con-
tained M-QTLs with the highest PVE than M-QTLs on the other CcLGs suggesting their relative importance in 
harbouring genomic regions governing SPC in the pigeonpea. The localisation of the major M-QTLs on CcLG02 
in three of the five populations in the present study could be supported by the detection on the same chromosome 
of some genes known for their functional role in seed storage protein accumulation such as NADH-GOGAT25, 
or for their location in the vicinity of QTL regions associated with variability of SPC in plants37. By projecting 
the population specific M-QTLs to the consensus genetic map, six consensus genomic regions, each comprising 
M-QTLs for SPC from two to four populations were generated. Such consensus regions may be targeted for fur-
ther investigation in future studies. Across the five mapping populations, SPC increasing alleles were contributed 
by both the low and high trait parents. The majority of the trait increasing alleles from the low trait parent were 
minor except in Pop2 and Pop4 for which the respective low SPC parent contributed one major M-QTL each. 
Whereas it has been concluded that SPC in pigeonpea is conditioned by recessive oligo-genes38, it is apparent 
from our results that the trait is polygenic with a combination of gene actions conditioning its variation in the 
crop. This observation is in agreement with earlier conclusions that SPC is conditioned by both additive and 
non-additive genes in pigeonpea39. Predominance of non-additive types of gene action in the present study is also 
in agreement with earlier observations in pigeonpea40 and other legumes41–43.

The detection of at least two genomic regions for DFF in each population is in agreement with reports of previ-
ous studies in pigeonpea44, but contrasts with the results of Kumawat et al.10 who reported only one major M-QTL 
for the trait. The detection of the majority of M-QTLs for DFF on CcLG03 in four of the five mapping populations 
is consistent with an earlier detection of a well-known flowering time gene CcTFL1 on the same CcLG0312,45. 
Most of the M-QTLs for DFF and GH tended to colocalize to the same genomic regions, flanked by the same SNP 
loci, which is in agreement with observations that genes conditioning flowering time have pleiotropic effect on 
GH35,45,46. The pleiotropic M-QTLs largely acted recessively in conditioning GH, consistent with observations in 
other crops47, but the same loci acted either additively, dominantly, partially dominantly or overdominantly on 
DFF which agrees with earlier reports on genetics of early flowering39,48–50.

The detection of at least two and up to seven major and several minor M-QTLs to condition SW in the crop 
indicates quantitative inheritance for the trait, consistent with findings in other legume crops28,51–54. A genomic 
region on CcLG01 consistently showed highest PVE in three of the five mapping populations suggesting a com-
mon major genomic loci segregating in a wide range of genetic backgrounds, similar to reports in soybean51. 
With the exception of one major M-QTL on CcLG01, all other M-QTLs for SW showed population specificity. 
The diversity of QTL gene action observed for SW in this study mirrors earlier reports where recessiveness, dom-
inance and overdominance have been reported to condition SW in plants55–57.

QTLs for SY (on plant basis) have been mapped in other crops58,59, but the present study is the first in pigeon-
pea. The detection of highly population-specific minor and major effect M-QTLs for SY on nearly all CcLGs 
points to a complex genetic architecture of the trait. Detection of large effect population-specific M-QTLs on 
CcLG10 in three of the five populations, and minor and major M-QTLs on CcLG01, CcLG02, CcLG03 and 
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CcLG11 in three to four populations suggests the relative importance of the chromosomes in hosting genomic 
regions associated with the trait.

The pervasiveness of population-specific M-QTLs for SPC, SY, SW and to a lesser extent for DFF could be 
attributed to effects of population size or marker coverage20. However, this is unlikely because population-specific 
M-QTLs of relatively minor effects ranging from 0.7% to 8.6% across traits were mapped in the five populations. 
Rather, it is possible that a QTL detected in a certain cross may not be detected in another cross because the par-
ents of the second cross carry identical alleles at the same locus17,20.

E-QTLs were detected that explained additional phenotypic variation for SPC and the other traits. Effects of 
E-QTLs have been reported in other legume crops such as soybean for SPC26,27,60 and SW60,61. Similarly, E-QTLs 
for SW, SY, flowering time and GH have been reported in common bean62. The large number of E-QTLs for SPC 
and for the agronomic traits identified in present study indicates that QTLs with minor effects or no effect interact 
with each other to influence expression of the traits. Such scenarios have been reported in other crop plants60,62. 
Uniquely, Pop2 displayed the highest contribution of E-QTL effects on phenotypic variation of all measured traits 
in the present study. It is likely that the relatively low marker density in Pop2 contributed to the high PVE of the 
E-QTLs in this population. Across populations, the number of E-QTLs detected also varied by trait. The pattern 
of contributions of M-QTLs vs E-QTLs to phenotypic variation for the studied traits seemed to be highly genetic 
background-dependent as has been frequently reported in other crops62–65.

In an earlier study, we reported a number of putative candidate gene-based nsSNP for SPC, some of which 
significantly cosegregated with the trait in an F2 validation population, ICP 5529 × ICP 1160525. Similarly, Saxena 
et al.12 developed a CcFTL1 gene-based Indel marker whose cosegregation with the determinate GH locus Dt1 
was validated in the same F2 population. The same F2 ICP 5529 × ICP 11605 population is one of the popula-
tions used in the present study. Interestingly, a number of the gene-derived markers also flanked M-QTLs and/
or E-QTLs with significant effect on the agronomic traits. For example, the detection of a major M-QTL for 
GH (qGH-icim-4.1; PVE = 13.1%) on CcLG04 with one of the flanking markers being a 2PGK gene-derived 
nsSNP likely indicates the role of the gene on GH in the crop. A further evidence for the influence of the 2PGK 
gene on GH is that qGH-icim-4.1 epistatically interacted with another major M-QTL for GH (qGH-icim-3.2; 
PVE = 61.6%) on CcLG03 resulting in an E-QTL with a much higher PVE of 73.8% than that of the individual 
M-QTLs. One of the flanking markers to qGH-icim-3.2 is the CcTFL1 gene-derived Indel marker12. The involve-
ment of the 2PGK gene-derived nsSNP in another epistatically acting QTL to influence SW also agrees with 
colocalization of 2PGK gene with a QTL for SW in pea28. One more gene of interest from our results is Sucrose 
synthase (Sus6) from which a derived nsSNP flanked an epistatically acting QTL on CcLG01 to influence SW with 
the resultant E-QTL having a major effect (11.5%). Sucrose synthase has for long been known to play a major role 
in SW in several crop plants as mentioned in Turner et al.66. The role of Sus6 as one of the possible determinants 
of SW in our study is further indicated by location of the derived nsSNP in the vicinity of Consensus-SW-QTL 
1 comprising a major SW M-QTL from Pop2 and a minor SW M-QTL from Pop3 on CcLG01 of the consensus 
genetic map. The same nsSNP was only 3.1 cM away from a major M-QTL on CcLG01 in Pop5.

In this study, two lines of evidence revealed the associations between SPC and the other plant traits, and that 
the nature of the associations is genetic background-dependent. First, the phenotypic correlation analysis showed 
that SPC associates positively with GH and SW and negatively with DFF and SY. The pattern of correlation of SPC 
with SW is consistent with results of earlier studies which showed that the two traits associate either positively or 
negatively and sometimes non-significantly depending on genetic material used6. In the case of SPC with DFF, 
negative though small and none significant relationships have been reported in pigeonpea8,67. The negative and 
relatively weak correlation between SPC and SY in the present study is consistent and within the range previously 
reported in pigeonpea8,67,68, and soybean69,70. No relationship between SPC and GH has been reported in pigeon-
pea before. However, the indeterminate and determinate GH in soybean have been reported to be associated with 
high and low SPC, respectively71. Significant correlation of SPC with morphological and growth-related traits 
have also been reported in pea28.

Second, colocalization of M-QTLs and shared E-QTLs for SPC with that of the other traits were found that 
possibly explains trait correlations. For instance, the colocalization of M-QTLs for SPC with M-QTLs for DFF 
with opposite allelic effects could explain the negative correlations between SPC and DFF in Pop1, Pop2, Pop3 
and Pop4 though the correlations were non-significant in Pop2 and Pop4. Similarly, the colocalization of M-QTLs 
for SPC and M-QTLs for GH with allelic effects in the same direction in Pop1, Pop2 and Pop3 explains positive 
correlation between the two traits. Likewise, correlation of SPC with SW in Pop2 could be explained by the over-
lapping M-QTLs on CcLG02 with allelic effects in the same direction. While the negative correlation of SPC with 
SY could be attributed to opposing effect of colocalized M-QTLs for the two traits such as in Pop2.

However, not all correlations of SPC with agronomic traits could be explained by colocalization of M-QTLs, 
for instance, GH and SY showed relatively strong correlation with SPC in Pop4 but no M-QTL overlaps were 
present. Therefore, presence of E-QTLs shared between SPC and the agronomic traits were searched that could 
explain correlations that are not explained by the M-QTLs. The phenomenon where one E-QTL affects expression 
of more than one trait have been termed ‘epistatic pleiotropy’72. In this regard, the majority of epistatic pleiot-
ropy involving SPC and other traits in the present study are the type in which the effects of a given pleiotropic 
locus are dependent upon the alleles present at the other loci73. For example, in Pop1 a QTL on CcLG01 flanked 
by markers S1_4757043 and S1_1575466, affected (i) SPC when it interacted with other QTLs on CcLG07 and 
CcLG08, (ii) SW when it interacted with QTLs on CcLG02 and CcLG06, and (iii) SY when it interacted with a 
QTL on CcLG03.

Similarly, a single epistatically pleiotropic QTL (EP-QTL) on CcLG01 (S1_887236 and S1_3399209) in Pop3 
influenced the expression of SPC, SW and GH when it interacted with other QTLs on CcLG02 and CcLG03 and 
possibly contributed to the significant covariation between SPC and SW, and SPC and GH. Such EP-QTLs involv-
ing SPC were widespread among populations, and in some cases provided the only explanation to phenotypic 
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correlation between SPC and the other traits. For instance, the significant correlation between SPC and SY in 
Pop4 in the absence of overlaps in their M-QTLs could be explained by EP-QTL on CcLG07 flanked by markers 
S7_14683829 and S7_14588865. The same EP-QTL also influenced expression of SW and DFF although the two 
traits show weak and non-significant correlation with SPC. In Pop5, three EP-QTLs were detected, two of which 
influenced SPC and SY, and one influenced SPC and SW even though no significant relationships of SPC with 
SW and SY were found. Tuberosa et al.74 noted that the occurrence of QTL colocalization for multiple traits that 
possibly share a common morpho-physiological basis, or that are reasonably associated on a cause-effect basis, 
should lower the chance of declaring false positives in the regions where QTLs overlap.

In conclusion, two to three major M-QTLs in the presence of several modifier/minor effect QTLs, and with 
additive and non-additive QTL gene action types including epistasis, control the expression of SPC in the pres-
ent study. Overlaps of main effect and E-QTLs explain the correlations between SPC and agronomic traits. 
Projection of M-QTLs for SPC and agronomic traits onto the consensus map revealed common genomic regions 
governing SPC and its relationship with agronomic traits across different genetic backgrounds. Among the 
genomic regions, QTL Cluster 5 (CcLG03), QTL Cluster 10 (CcLG11) and QTL Cluster 9 (CcLG11), in order of 
increasing importance, harboured M-QTLs for two or more traits and therefore may be targeted for the simul-
taneous improvement of the associated characters. More trait-specific regions such as Consensus-PROT-QTL 
1 and Consensus-PROT-QTL 2 (CcLG02), Consensus-PROT-QTL 4 (CcLG04), Consensus-PROT-QTL 6 
(CcLG11), Consensus-SW-QTL 1 and Consensus-SW-QTL 2 (CcLG01), Consensus-DFF-QTL 1 (CcLG03) and 
Consensus-GH-QTL 1 (CcLG03) as well as the more population-specific SY M-QTLs with large PVEs on CcLG03 
(Pop1 and Pop2), CcLG04 (Pop3), CcLG05 (Pop4), CcLG10 (Pop3 and Pop4) and CcLG11 (Pop2) could also 
be targeted for the improvement of the traits. The genomic regions identified in the present study would pave 
the path for early generation screening of large segregating populations or screening of germplasm resources 
and haplotype based breeding for identification of plants/genotypes carrying favourable alleles/haplotypes and 
minimizing the negative correlation effect of other traits on SPC. By this way high yielding lines with higher SPC 
could be developed with less resources and time. However, the large contribution of epistasis to the variation and 
correlation among the traits and the presence of a large number of population-specific M-QTLs for each of the 
traits, suggests that breeding approaches that target genome wide variations such as genomic selection75 would be 
an alternative in achieving larger genetic gains for both SPC and yield in a shorter period. Further, the validation 
of the results in additional germplasm and under diverse environmental conditions may be necessary to deter-
mine the stability of the QTLs identified as well as facilitate detection of other loci.

Methods
Crossing parents and seed protein content.  Six pigeonpea genotypes that included ICP 11605, ICP 
8863, ICP 14209, HPL 24, ICP 5529 and ICPL 87119 were used in the present study. ICP 8863 was selected from 
landrace ICP 7626 (P-15-3-3) and it is widely cultivated in India. It is high yielding with 100-seed weight of ~9.5 g 
and matures in 150–160 days. It is resistant to fusarium wilt (FW) but susceptible to sterility mosaic (SM) virus76. 
ICP 8863 has moderate SPC of ~22.0%. ICP 11605 (ICPL 151) was selected from the cross ICP 6997 × Prabhat. It 
is a determinate cultivar, yielding ~1.03 t/ha with 100-seed weight of 10 g and matures in 120–130 days77 and has a 
low SPC of ~20.9%. ICP 14209 is a landrace variety with moderate SPC (23.0%). ICPL 87119 was developed from 
the cross ICP 1-6-W3–Wl × C 11 and it is widely adapted and cultivated in India. It matures in 160–180 days, is 
high yielding and has resistance to FW and SM78. It is low in SPC (~19.3%). HPL 24 is an advanced breeding line 
derived from the cross of cultivar C. cajan cv Baigani × C. scarabaeoides previously reported to have ~30% SPC6. 
It is indeterminate and of medium maturity duration. ICP 5529 with pedigree P-4864-1, originated from India. It 
is indeterminate with medium maturity duration and with SPC indicated to be 27%.

Mapping populations, field experiments and phenotyping.  In order to develop the mapping pop-
ulations (F2), five crosses were made: ICP 11605 × ICP 14209, ICP 8863 × ICP 11605, HPL 24 × ICP 11605, ICP 
8863 × ICPL 87119 and ICP 5529 × ICP 11605. For brevity, the populations are hereafter referred to as Pop1, 
Pop2, Pop3, Pop4 and Pop5, respectively. One F1 plant was selfed to generate F2 seeds in each of the five popula-
tions. For trait evaluation, the parents and 350 to 400 F2 seeds were sown under field conditions to ensure an ade-
quate number of plants. Sowing was done in 4 m long rows spaced 75 cm apart and 30 cm plant to plant distance 
within a row. Plot sizes were two rows for each of the two parents and 25 to 28 rows in the F2. All cultural practices 
were carried out. At maturity individual pods from individual plants were carefully hand-harvested leaving out 
plants at the beginning and at the end of each row and those at the field borders to avoid border effects. Sun dry-
ing was done for one week before threshing and another one week after threshing to ensure uniform reduction 
in seed moisture content. Seed protein content was measured as described in Obala et al.25,67. Besides SPC, data 
were also recorded for SW in grams, SY in grams per plant, DFF, and GH scored as determinate or indeterminate.

DNA isolation and genotyping.  Total genomic DNA (gDNA) from 188 F2 plants and the parents from 
each of the five mapping populations were isolated and genotyped-by-sequencing as described in Saxena et al.12,13. 
Briefly, the sequence reads obtained from the Illumina HiSeq. 2500 platform were used for SNP identification and 
genotyping using GBS analysis pipeline implemented in TASSEL v4.020 (TASSEL-GBS)79. Firstly, the reads were 
sorted, separated according to the sample barcodes and trimmed to first 64 bases starting from the enzyme cut 
site. Reads containing ‘N’ within the first 64 bases and reads with >50% of low-quality base pairs (Phred <5%) 
were discarded. The filtered, high-quality reads from each sample were aligned to the pigeonpea draft genome 
sequence (C. cajan v1.0)2 using Bowtie 2 sequence alignment software. The alignment file was processed through 
TASSEL-GBS pipeline for SNP calling and genotyping. The quality of SNPs called in each F2 individual was 
compared with the SNPs identified in parental lines. The parental line SNPs were obtained from whole-genome 
resequencing (WGRS) data80. SNPs having confident parental calls were considered for further analysis. SNPs and 
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F2 individuals having more than 30% and 70% missing data, respectively, were filtered out. The quality SNP data 
was used for construction of genetic maps and QTL analysis.

Construction of population-specific genetic maps.  Four of the five population-specific genetic maps 
were constructed in the present study while the remaining one population-specific map was constructed under a 
separate project12. The construction of all five population-specific genetic maps followed the same procedure as 
described in Saxena et al.12,13.

Construction of consensus genetic map.  Genotyping data from the five F2 genetic maps were used to 
develop a consensus genetic map using JoinMap v4.1 following the procedure described by Bohra et al.9. To assess 
the level of correspondence in the order of markers between consensus and component genetic maps, correlation 
coefficients (r) were calculated from marker positions in consensus and individual genetic maps and their signif-
icance were tested. To further visualize the extent of correlation between consensus and component maps, scatter 
plots were generated between each of the consensus linkage group and corresponding component linkage group 
from all the populations. A comparative mapping programme CMap v1.0181 was used to align all developed 
genetic maps together to visually assess the congruency of marker orders.

QTL mapping.  Composite interval mapping (CIM) implemented in Windows QTL Cartographer v2.582 and 
inclusive composite interval mapping (ICIM) implemented in QTL Icimapping v4.083 were used to detect main 
effect QTLs (M-QTLs) while epistatic QTLs (E-QTLs) were detected using ICIM. The advantage of both CIM 
and ICIM is that they are regression-based and are therefore robust against non-Gaussian trait distribution84. For 
CIM, the Standard Model 6, walk speed of 1.0 cM, and forward-backward stepwise regression for setting number 
of marker cofactors for background control were used to identify M-QTLs. To leave out signals within 10.0 cM 
distance on either side of the flanking markers or QTL test site, a window size of 10 cM was used. Thresholds for 
declaring QTLs were determined by 1000 permutations at significance of 0.05.

In using ICIM to detect M-QTLs, marker selection was performed just once using stepwise regression and 
considering all marker information simultaneously85. Phenotypic values were then adjusted by all markers 
retained in the regression equation, except the two markers flanking the current mapping interval. Permutation 
tests were conducted using SPC in the five F2 mapping populations to determine the criteria for model selection 
in the first step of ICIM. For all five F2 populations, the probability of a marker moving into the model corre-
sponding to the overall type I error α = 0.05 was approximately 10−5. The probability of a marker moving out 
of the model was set at twice the probability of a marker moving into the model. The LOD threshold to declare 
the existence of a QTL was calculated by permutation tests as well. However, because of the always conservative 
nature of thresholds retained from permutation tests86, a default LOD threshold of 2.5 was used to report QTLs 
and determine common (consensus) QTLs across populations.

Furthermore, where M-QTL identified by CIM was also detected by ICIM, the region was considered as one 
QTL. Similarly, where an M-QTL for a given trait identified by either CIM or ICIM colocalize with M-QTL(s) 
of other traits detected by either of the two methods, the region was treated as a region of co-localisation. Type 
of gene action for each M-QTL was derived from the dominance coefficient (h) defined as the ratio between the 
observed QTL dominance effect (d) and absolute value of QTL additive effects (|a|)87. We used the absolute value 
of additive effects because the sign of a QTL effect only shows which parent contributed the favorable allele but 
not the true direction of the specific additive effect87. The h was then arbitrarily categorized as under-dominant 
or recessive (h < 0), additive (h = 0–0.20), partially dominant (h = 0.21–0.80), dominant (h = 0.81–1.20) and 
over-dominant (h > 1.20)88.

For E-QTL mapping, all possible pairs of scanning positions were tested by ICIM, since digenic interactions 
may be detected regardless of whether the two interacting QTLs have significant additive effects or not85. The 
probability of a marker moving into the model was set at 10−6 while the probability of a marker moving out of the 
model was set at twice the probability of a marker moving into the model85. The default QTL-Icimapping LOD 
threshold of 5.0 was used to declare the existence of E-QTLs.

Common or consensus QTLs across five F2 populations.  Due to differences in the individual genetic 
maps, it was difficult to directly find common QTLs across the five populations on the basis of the QTL or marker 
position in each genetic map. Therefore, QTLs obtained in each of the five individual populations were projected 
onto the consensus map by using either QTL peak- or flanking-marker positions indicated in the individual 
population genetic map using a procedure adopted from Schweizer and Stein89 as follows. If only peak-marker 
positions from the individual map were available, the QTL region was assumed by default to extend 5 cM left and 
right of the peak-marker position, resulting in a confidence interval of 10 cM. If only one flanking marker could 
be projected onto the consensus map, a QTL interval of 10 cM extension left or right from the left or right flanking 
marker, respectively, was assumed by default. If neither peak nor flanking markers were included in the consensus 
map, nearby tightly linked markers (maximum of 5 cM from the peak or flanking markers) were searched on the 
consensus map. If no replacement markers could be identified within this distance, the QTL was excluded from 
the analysis. Based on these projections, two types of common QTLs were defined. Firstly, a ‘Consensus QTL’ was 
defined as any region of the consensus genetic map with overlapping M-QTL intervals for a particular trait from 
more than one population. Secondly, a region of consensus genetic map at which M-QTL interval for one trait 
overlaps with that of one or more of the other traits was considered a ‘QTL Cluster’

QTL nomenclature.  For individual populations, a specific identifier was assigned to each QTL, whereby 
“q” stands for QTL, followed by a set of upper case letters indicating the trait, followed by linkage group (CcLG) 
name, then a hyphen, method of QTL detection, and lastly, the QTL number on that CcLG in ascending order. 
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For example, the designation “qPROT-cim-3.1” stands for “QTL for SPC” detected using CIM on LG “CcLG03” 
and it is the first QTL for SPC on that CcLG. For QTLs projected onto the consensus genetic map, a prefix is 
added to the QTL name indicating the source population. For example “Pop1qPROT-cim-3.1” indicates a QTL 
for SPC from Pop1.
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