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Determinants of Brain Rhythm 
Burst Statistics
Arthur S. Powanwe1,3 & André Longtin1,2,3

Brain rhythms recorded in vivo, such as gamma oscillations, are notoriously variable both in amplitude 
and frequency. They are characterized by transient epochs of higher amplitude known as bursts. It 
has been suggested that, despite their short-life and random occurrence, bursts in gamma and other 
rhythms can efficiently contribute to working memory or communication tasks. Abnormalities in bursts 
have also been associated with e.g. motor and psychiatric disorders. It is thus crucial to understand how 
single cell and connectivity parameters influence burst statistics and the corresponding brain states. 
To address this problem, we consider a generic stochastic recurrent network of Pyramidal Interneuron 
Network Gamma (PING) type. Using the stochastic averaging method, we derive dynamics for the 
phase and envelope of the amplitude process, and find that they depend on only two meta-parameters 
that combine all the model parameters. This allows us to identify an optimal parameter regime of 
healthy variability with similar statistics to those seen in vivo; in this regime, oscillations and bursts 
are supported by synaptic noise. The probability density for the rhythm’s envelope as well as the mean 
burst duration are then derived using first passage time analysis. Our analysis enables us to link burst 
attributes, such as duration and frequency content, to system parameters. Our general approach can be 
extended to different frequency bands, network topologies and extra populations. It provides the much 
needed insight into the biophysical determinants of rhythm burst statistics, and into what needs to be 
changed to correct rhythms with pathological statistics.

Fast oscillations in brain activity in the 30–100 Hz range, known as gamma rhythms, are observed across many 
brain regions and species, both in vitro and in vivo1–4. They occur either autonomously or are induced by external 
stimulation5–9. They have received much attention because of their proposed roles in several major neuronal 
processes like perception, cognition, binding, working memory or inter-areal communication10–15. To perform 
such tasks, it is generally believed that the gamma rhythm should be a coherent oscillation with relatively constant 
amplitude and frequency, in particular in theories where the oscillation acts as a clock signal16,17 with regular 
neuronal firing18,19.

However, several studies, focussing especially on gamma-range oscillations in monkey primary visual cortex, 
have reported that the rhythms are broadband rather than coherent, and exhibit transient epochs of elevated syn-
chrony aptly termed “gamma bursts”. The underlying neuronal spiking activity is also quite irregular. These bursts 
of large oscillation amplitude alternate with epochs of almost no synchrony where the oscillation amplitude is 
low. The frequency shows a lot of variability, a consequence of the significant noisiness of the phase of the rhythm. 
Moreover, the occurrence times and durations of gamma bursts are random, making such rhythms closer to a 
broadband filtered noise than to a well-structured, almost periodic signal20–22.

Despite their stochasticity, such bursty rhythms have been shown to correlate better with the performance 
of certain tasks than more regular oscillations. Indeed, a recent study examined local field potentials (LFP) and 
spiking activity from the prefrontal cortex of monkeys performing a working memory task, and reported that 
working memory manifests itself through gamma bursts rather than sustained activity23. Another study measured 
neuronal activity in the entorhinal-hippocampal circuit while mice performed a reward-based spatial working 
memory task, and showed that gamma bursts contribute to the successful execution of the task24. A plausible role 
for such gamma bursts has recently been formulated computationally in the context of inter-areal synchroniza-
tion and communication25,26.

There is currently no theory that links the properties of a network to those of the bursty rhythm. Here we pro-
vide such a general theory for a recurrent excitatory-inhibitory network. We show how the burst statistics relate 
to single cell and network parameters, and consequently to different regimes of oscillation. Apart from shedding 
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light on how the bursts arise and can be used for neural computations, this theory provides the much-needed 
insight into how a system can be modified to rectify undesirable burst statistics associated with pathology. A 
useful framework to address the dynamics of such broadband oscillations is the amplitude-phase decomposi-
tion. The amplitude in this framework reflects the level of network synchronization, where weak values of the 
amplitude reflect little or no synchronization, whereas strong values reflect higher network synchronization. The 
phase, which depends on the amplitude to a good approximation, contains all the information about the temporal 
structure of the oscillation.

Amplitude-phase decompositions have been used in a number of computational studies to address phase 
synchronization27, inter-areal phase communication (generally known as communication through coherence 
or CTC)26,28 and more generally different types of cross-frequency-coupling (CFC) between brain circuits29. At 
the theoretical level, the search for such decompositions has been pursued over the last decades, particularly 
for oscillations of varying degree of coherence both at the single neuron and population levels30–34. Such studies 
belong to the broader effort to describe stochastic oscillations, sometimes called “quasi-cycles” in many areas 
of science including nonlinear chemical oscillators and population biology (see e.g.35,36). For the case of broad-
band gamma oscillations, recent studies37–39 have extracted from firing-rate-level descriptions of the network the 
generic dynamics for the slowly-evolving envelope of the rapidly-varying amplitude of the rhythm. This envelope 
can be seen as approximately connecting the peaks of the fast rhythm. They also extracted dynamics for the 
rapidly-varying phase of the rhythm. A burst is then seen as an epoch during which the envelope exceeds some 
threshold. This provided insight into properties of the fluctuations of the gamma rhythm, although it did not 
allow the role of the noise strength to be investigated.

Here, we first directly relate the dynamics of the envelope and phase of the rhythm to all the biophysical 
parameters, including synaptic noise strength. From there, we develop a first passage time analysis of the envelope 
to quantify the mean duration of bursts as a function of the parameters. This enables us to uncover an “optimal” 
dynamical regime of healthy amplitude and frequency variability with similar statistics to those seen in certain in 
vivo data. Below, we use the term “amplitude” to signify the magnitude of the fast variables, as distinguished from 
its slowly evolving “envelope”.

For concreteness, we focus on a known simple excitatory-inhibitory recurrent network of spiking neurons 
with self-couplings exhibiting gamma oscillations, and investigate its ability to produce bursting behavior. We 
find two master parameters that govern burst statistics, giving much needed insight into burst generation and the 
correction of “faulty” burst statistics. Our simple model can also explain bursts observed in other frequency bands 
(such as beta), and thus constitutes a general framework for studying bursty brain rhythms.

We first motivate the choice of microscopic model and its associated formulation in terms of a noisy popu-
lation firing rate model. We then derive (with details in the Methods) the noisy dynamics of the amplitude and 
phase of the rhythm, identify dynamical regimes of interest for gamma bursts, and perform first passage time 
(Fokker-Planck) analysis to characterize burst statistics. Comparisons of envelope-phase dynamics to full net-
work simulations validate our approach. We then discuss how different combinations of biophysical parameters 
can underlie healthy and pathological rhythm variability.

Results
Our starting point is the work of Xing et al.20. They showed that for the specific case of bursty gamma rhythms, 
LFP’s from macaque visual cortex are well modeled by a simplified version of the classic Wilson-Cowan (WC) rate 
model for reciprocally connected excitatory (E) and inhibitory (I) populations. The classic WC model (1972)40, 
which accounts for oscillations in such EI networks, includes neurons with a graded response beyond threshold. 
Our goal is to characterize, both theoretically and numerically, the effect of system parameters including noise on 
bursting. However, the noise incorporated into the WC model in Xing et al.20 is not properly scaled with system 
size (i.e. with the number of neurons) as in recent theoretical work. Furthermore, the firing rate-versus-input 
characteristic for their neurons was a step function. This strong nonlinearity amounts to a less realistic two-state 
(active-inactive) description of single neuron function, and impedes analytical work. We therefore wish to use an 
improved version of their WC model, closer to the classic one and that allows us to formulate a theory in the first 
place. This requires a smooth nonlinearity with properly scaled noise. Applications of our approach to other LFP 
data including from humans are currently being pursued and will appear elsewhere. We therefore begin here by 
discussing why we focus on quasi-cycles, then show network simulations with two-state neurons to set the stage 
for the WC model we will use. This is because the network with two-state neurons has been shown to be well 
approximated by the WC model with smooth nonlinearities and system-size dependent noise (Wallace et al.41). 
Then we proceed with analyzing the bursty rhythm properties of that model.

Network Model for stochastic gamma-band activity.  Two principal types of computational mod-
els have been proposed to explain the variability, and in particular the bursts responsible for the fast temporal 
decorrelation of gamma rhythms seen in vivo. The first proposes that broadband gamma rhythms result from 
synchronous chaos, a form of randomness that does not rely on noise but rather on the nonlinear properties 
of the network and the external stimulus. This requires multiple PING or ING (Interneuron Network Gamma) 
circuits in the presence of strong long-range excitatory connections42,43. The second type involves a single PING 
or ING circuit with a stable equilibrium, i.e. without noise all firing rates are constant; the operating regime must 
therefore be near the onset of oscillatory synchrony. The variability then results from the noise in the circuit20,26,44. 
We consider a simple model of this latter type, namely the network of stochastic spiking neurons in41, where noise 
is due to the probabilistic transitions between quiescent and active states of single neurons. This noise vanishes 
when the network has an infinite number of cells. Intrinsic to the network, this noise reflects the probabilistic 
nature of spiking, with probability proportional to neural input, which mimics the biophysical reality of sponta-
neous and input-driven neural activity.
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This simple network reproduces features such as bursts of population synchrony and irregular single neuron 
firing as seen in vivo and in more realistic networks. In addition, mean-field analysis45 shows that such a network 
is a stochastic version of the well-known Wilson-Cowan firing rate model40. Average quantities like activities or 
LFPs can be described by analytical equations (see Methods), which is not generally possible for complex net-
work models. This stochastic Wilson-Cowan model, like more complex biophysical network models26, exhibits 
two oscillatory regimes. The Transient synchrony regime is one where noise is required to see oscillations, i.e. 
the noise induces them. In this regime, oscillations appear during transient epochs of network synchronization 
called “bursts” with varying lifetimes (Fig. 1). In contrast, the High synchrony regime does not exhibit bursts for 
small noise; highly coherent oscillations occur in the absence of noise. The level of network synchronization is 
always high, and epochs of desynchronization are very rare. Moreover, the model can generate oscillations in 
several frequency bands (beta, gamma, and high gamma) and exhibits other non-oscillatory dynamics like the 
asynchronous regime. Direct simulations of the model use the exact Gillespie algorithm46. With parameters in the 
transient synchrony regime, it is possible to extract the activities of the excitatory and inhibitory populations and 
their corresponding LFPs (see Fig. 1, lower panel).

Local Field Potentials (LFPs) can be described by stochastic linear equations.  Recorded activities 
in vivo are usually filtered according to the frequency band of interest before analysis. Filtered activities are then 
considered as a measure of LFPs47,48. A similar method can be applied to network activities extracted directly 

Figure 1.  Stochastic oscillatory rhythm generated by a recurrent stochastic Wilson-Cowan (E-I) network 
(see Methods) working in the transient synchrony regime. Top: Raster plot. Middle: Excitatory E(t) (blue) 
and inhibitory I(t) (red) activities. Bottom: Excitatory (blue) and inhibitory (red) LFPs. They show epochs of 
high amplitude corresponding to synchronized activity followed by epochs of low amplitude corresponding 
to desynchronized or less synchronized activity. Excitatory and inhibitory activities and their corresponding 
LFPs display a slight phase difference. The raster plot and activities were simulated using the exact Gillespie 
algorithm41,95). The LFPs were obtained by first removing the signal means from the respective excitatory and 
inhibitory activities, followed by filtering using a Butterworth second-order filter with a lower cutoff frequency 
of 20 Hz and upper cutoff frequency of 100 Hz. The parameters are as in Table 1 excepted Wee = 25.3.

Parameter Desription value

αE decay rate of an excitatory cell 0.1

αI decay rate of an inhibitory cell 0.2

βE maximal firing rate of an excitatory cell 1

βI maximal firing rate of an inhibitory cell 2

hE External input to the excitatory population −3.8

hI External input to the inhibitory population −8

Wee Recurrent excitatory synaptic coefficient 27.4

Wii Recurrent inhibitory synaptic coefficient 1.3

Wei Synaptic connection from inhibitory to excitatory cells 26.3

Wie Synaptic connection from excitatory to inhibitory cells 32

NE Number of excitatory cells 800

NI Number of inhibitory cells 200

Table 1.  Model parameters, definition and value. Parameters values used throughout this paper, unless 
specified in the caption of certain figures.
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from numerical simulations Fig. 1(Bottom). The filtering used here first removes the mean from any time-varying 
activity to keep the part induced by noise; broadband gamma activity in vivo has in fact been likened to filtered 
noise20–22. The zero-mean activity is then filtered using a bandpass filter with lower and higher cutoff frequencies 
in the gamma band limits Fig. 1 (Bottom).

A similar result can be achieved analytically by deriving the dynamics of the stochastic parts of the activities. 
From mean field analysis41,49,50, the dynamics of excitatory and inhibitory activities can be obtained in terms of 
the stochastic Wilson-Cowan equations, in which there is one (nonlinear) equation for each of the excitatory (E) 
and inhibitory (I) populations (Methods). The behavior of the E population is coupled to that of the I population 
and vice-versa. The linear stability analysis of the noise-free analogs of these equations (i.e. of the Wilson-Cowan 
equations) shows that many parameters lead to a stable fixed equilibrium (as we will see below). Oscillatory 
regimes correspond to the parameter ranges where the corresponding eigenvalues of the system are complex 
conjugates. If the real part of the eigenvalues is negative, the deterministic equations have damped oscillations; 
the corresponding stochastic Wilson-Cowan network operates then in the Transient synchrony regime (also 
know as the quasi-cycle regime) where oscillations, albeit irregular ones, are sustained by noise. This regime 
is very popular and has already been suggested to underlie frequency-specific, hierarchical corticocortical51,52 
and thalamocortical53 interactions, although with a reduced level of complexity. The analytical treatment in the 
present study might very well serve as a starting point to understand these large-scale interactions at a more fun-
damental level. If instead the real part of the eigenvalue is positive, the nonlinear deterministic equations exhibit 
coherent oscillations with almost constant amplitude and frequency; the stochastic network is then in the High 
synchrony regime where the noise has a relatively smaller effect. Mathematically, the transition from the transient 
to the high synchrony regime upon changing parameters corresponds to a Hopf bifurcation.

A Linear Noise Approximation (LNA) further yields a linear approximation to the stochastic nonlinear 
dynamics for the LFPs41,45,49,50:

σ η= + +
~

~ ~dV t
dt

A V t A V t t( ) ( ) ( ) ( ) (1)
E

E I E E11 12
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The quantities ∼VE and ∼VI represent the excitatory and inhibitory LFPs respectively, and their time evolutions 
again depend on one another. The coefficients Ai,j (i, j = 1, 2) and the noise strengths σE and σI all depend on the 
single cell and connectivity parameters of the original nonlinear system (Methods). The inputs ηE and ηI are two 
independent zero-mean Gaussian white noises. The LFPs, which are filtered, zero-mean versions of the activities, 
can also be seen here as filtered versions of two white noises driving the recurrent E-I network20, where the filter 
parameters are the Ai,j’s.

The amplitudes of the LFPs directly simulated from the two coupled linear stochastic equations fluctuate 
stochastically38. The same is true for the frequency which also exhibits variability in the gamma band; not surpris-
ingly, the E and I phases are stochastic. A closer inspection reveals that the epochs of nearly constant phase cor-
respond to epochs of high LFP amplitudes (gamma bursts)38. Such noisy filtered signals exhibit the stochasticity 
and the bursting structure of recorded LFPs in vivo20–22. Moreover, analytical studies of these signals (Methods) 
reveal properties such as the approximately constant ratio of LFPs from E and I cells, and approximately constant 
phase differences38.

The same properties are present in LFPs extracted directly from simulations of the full microscopic nonlinear 
network. Figure 2 presents properties of the envelopes and phases of the LFPs for this full nonlinear network, 
for its linear approximation using only two equations (Eqs. 1 and 2), and corresponding theoretical predictions. 
This serves as a guide for the modeling hypotheses we make below to derive envelope-phase dynamics. It is clear 
that the envelope and phase properties for the full nonlinear network are in good agreement with those obtained 
from simulations of the linear stochastic dynamics (Fig. 2(a,b)). Frequencies present in the LFP have a mean in 
the gamma band (Fig. 2(c,d)); their distribution agrees well with that of the rhythms extracted from simulations 
of the full nonlinear network. LFP envelope distributions from the linear and nonlinear systems are also in good 
agreement (Fig. 2(e,f)). Thus LFPs generated using the simple linear stochastic equations are statistically sim-
ilar to those extracted from the full nonlinear excitatory-inhibitory network, which themselves are similar to 
recorded LFPs in vivo20. Note that instead of considering a single LFP measure, namely the sum of the excitatory 
and inhibitory LFPs as is often done, here for completeness the two quantities are analyzed separately; they are 
linked by their ratio and phase difference as shown in Fig. 2(a,b).

Envelope and Phase equations.  We consider the coupled stochastic equations for the LFP dynamics in 
the transient synchrony regime. The goal is to derive equations governing the time evolution of the envelopes 
and phases of excitatory and inhibitory LFPs described in Eqs. 1 and 2. We make three hypotheses about the LFP 
properties (Fig. 2):

	 1.	 The distribution of the ratio between excitatory and inhibitory LFP envelopes is approximately Gaussian38, 
as shown in Fig. 2(a). Instead, a constant ratio is assumed, whose value equals the mean of the associated 
Gaussian distribution. This choice is made because in the PING model the numbers of E and I cells which 
fired during an oscillation cycle are almost proportional. This has been observed in a computational study 
of a more complex network54 and in vivo as well55.

	 2.	 The phase difference between excitatory and inhibitory oscillations is also approximately Gaussian38 as 
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observed in Fig. 2(b). A constant phase difference is assumed, and made equal to the mean of the corre-
sponding Gaussian distribution. This choice is based on the fact that the inhibitory neurons fire a small 
delay time after excitatory neurons during each oscillation cycle (this delay is smaller than the period of the 
oscillation), a known property of the PING model (Fig. 1 bottom)41,56.

	 3.	 The frequencies of the excitatory and inhibitory LFPs have moderate variability but are also approximately 
Gaussian (Fig. 2(c,d)); we choose the mean of those distributions as the mean LFP frequencies.

Without loss of generality, we seek an expression for the excitatory LFP in a sinusoidal form, with an envelope 
ZE(t) and phase φE(t) and a constant mean frequency ω0 to be defined below. The dynamics of the inhibitory LFP 
can be directly derived from this expression using the three assumptions above. The envelope ratio and phase 
difference between the excitatory and inhibitory LFPs are computed from the linear stochastic Eqs. 1 and 2 as

α δ≡ ≡ −
~

~
~ ~Env V t

Env V t
and Arg V t Arg V t[ ( )]

[ ( )]
[ ( )] [ ( )]

(3)
I

E
E I

where 〈.〉 can be considered a time average of the stochastic process in Eqs. 1 and 2. The envelope Env is defined 
as the magnitude of the analytic signal associated with the LFP (see Methods). Likewise, ∼Arg V[ ]E  is the phase angle 
of the analytic signal. We choose to work with the excitatory LFP in the form

V t Z t t t( ) ( )cos( ( )) (4)E E E0ω φ= + .

We seek the functions ZE(t) and φE(t) by substituting Eq. 4 into Eq. 3 to first obtain their inhibitory coun-
terparts, then inserting both into Eqs. 1 and 2 and finally applying the Stochastic Averaging Method (SAM) (see 
Methods). This yields the following dynamics of the envelope and phase (see Eq. 35):

Figure 2.  Properties of analytic versus filtered LFPs. Properties of the envelope and phase of the excitatory 
and inhibitory LFPs in Eqs. 1 and 2 obtained via the analytic signal technique (see Methods). Shown are the 
distributions of (a) the ratio of the envelopes of the inhibitory and excitatory LFPs (I/E), (b) the phase difference 
between E and I LFPs (c), the instantaneous frequency of the excitatory LFP, (d) the instantaneous frequency of 
the inhibitory LFP, (e) the envelope of the excitatory LFP envelope, and (f) the envelope of the inhibitory LFP. 
For all panels, distributions in black come from exact numerical simulations of the full nonlinear stochastic 
Wilson-Cowan neural network with 2-state neurons (Fig. 1 bottom panel), while those in red come from the 
approximate linear stochastic model, Eqs. 1 and 2. In panels (a–d), the vertical blue lines represent analytical 
predictions of the means of those distributions (Methods). For panels (a–b), the means were computed using 
Eq. 19, while for panels (c–d) we use the expression of ω0 right after Eq. 6. The instantaneous frequencies (Panels 
(e–f)) are obtained as in38.
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Here, W1(t) and W2(t) are independent Brownian motions (their time derivatives are Gaussian white noises), 
ν is the absolute value of the real part of the eigenvalues of the Eqs. 1 and 2 with zero noise, and ω0 is the peak 
frequency. The effective noise strength D in the envelope equation depends on the network coefficients govern-
ing the linear stochastic dynamics of the E and I populations, in particular on the two noise intensities. In the 
transient synchrony regime, D is either positive (A12 is always negative, and A21 is always positive), or zero if both 
those intensities are zero.

Inspection of these dynamics reveals that the time evolutions of the envelope and the phase are both driven by 
noises. With D = 0, the envelope decays to zero, and the phase remains constant. This is again in agreement with 
the idea that gamma-band LFPs are close to filtered noise in this description. In particular, the envelope equation 
highlights the importance of noise for the appearance of bursts in the LFP dynamics.

Interestingly the dynamics of the envelope of the LFP is not coupled to that of the phase in this approxima-
tion; the reverse is not true, as the phase evolution depends on the envelope. The phase undergoes a Brownian 
motion with envelope-dependent intensity. In contrast with38, our envelope-phase decomposition refers directly 
to all network parameters through ν and D and shows clearly the importance of the noise for the LFP dynamics. 
Consequently, it is easier with our description to investigate how different network parameters effectively shape 
the bursting structure of LFPs. In addition, our approach does not theoretically require the limitation ν/ω0 ≪ 1 
as in38. In fact, we tested our approach for values of ν/ω0 even close to one and found a good agreement with the 
corresponding Eqs. 1 and 2 (not shown).

Equation 5 is well-known in the statistics literature and is associated with the Rayleigh Process which describes 
the envelope of a periodic Gaussian process with uniformly distributed phase57,58. It also finds applications in the 
theory of stochastic mechanical and seismic vibrations where it models the envelope of a damped harmonic 
oscillator sustained by noise59. Equations 5, 6 both represent the envelope and the phase of a 2-dimensional inde-
pendent Ornstein-Uhlenbeck process with parameters ν and D see57. The uncoupling of the envelope and phase 
equations allows a derivation of certain statistical properties such as the joint probability of envelope and phase59. 
The dynamics of the inhibitory LFP can be easily recovered from Eqs. 3–4 (see Eq. 22 in Methods). Numerical 
simulations of LFPs derived from these envelope-phase equations show similar statistical properties as the simu-
lated LFPs from the linear model driven by additive noise in Eqs. 1 and 2 (see Fig. 3 and Methods).

From an experimental standpoint, it is of interest to know the proportion of time that the process spends 
near different envelope values. This can be obtained by computing the probability density for the process, either 
theoretically (if possible), or in an approximate form using numerical simulations of the process. The density for 
the envelope can in fact be computed analytically as the stationary density of the Fokker-Planck equation Eq. 41 
obtained from Eq. 5, namely Eq. 42 in the Methods section:

ν ν
= − .( ) ( )P Z

D
Z

D
Z( ) 2 exp (7)E E E
2

The peak R of the stationary density of this noisy envelope process lies at

ν
≡ .R D

2 (8)

The peak value R, which is the most probable envelope amplitude value, will be used below as a measure of the 
degree of network synchronization. A low value of R reflects the fact that the network is poorly synchronized, and 
can’t build up a strong oscillation; conversely, a high value of R implies a strong degree of network synchrony leading 
to strong oscillations in the recurrent circuit. One could use a more standard measure of the network oscillatory 
strength, such as a spectral coherence measure; generally we expect such measures to be proportional to R in this 
transient synchrony regime. But we have focused instead on a measure that is directly relevant to the envelope bursts.

We have thus provided a derivation for the envelope-phase dynamics for gamma oscillations in the transient 
synchrony regime that explicitly includes dependencies on all the parameters of the original full nonlinear model. 
The envelope-phase model is able to exhibit transient oscillations - and hence bursts - in other frequency bands 
by changing synaptic coefficients or synaptic time constants.

Envelope dynamics suggests distinct types of fluctuation amplification.  Our envelope-phase 
equations depend on network parameters through ν and D which are functions of all the parameters of the origi-
nal network model of the LFPs. We first investigate how these parameters lead to different network dynamics. We 
aim to understand this dependence in terms of connectivity parameters by varying two of them at a time while 
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keeping constant the two others as well as all other parameters. In the plane of the parameters governing the 
strength of recurrent connections, (Wee, Wii), we identify two easily separable regimes: transient synchrony and 
high synchrony (Fig. 4 left panel). The plane of the parameters governing feedforward connectivity, (Wei, Wie), 
gives a more complex array of possible transitions, and involves a third regime: an asynchronous non-oscillatory 
state. Two types of transitions from transient synchrony can occur: one to a high synchrony regime via a Hopf 
bifurcation (an equilibrium gives way to a periodic activity pattern), and another to the asynchronous regime 
(Fig. 4 right panel).

The value of R controls the magnitude of the envelope fluctuations, which in turn reflect different degrees of 
amplification of the white noise fluctuations that drive the E-I system. It also reflects the competition between 
the internal network noise and the deterministic oscillation. We can increase R by either decreasing the value of 
ν (which depends on A11 and A22) at constant effective noise strength D, or increase the value of D at constant ν, 
or increase D while decreasing ν.

In the first scenario, decreasing ν increases the damping time of oscillations, i.e. they are longer-lived. This 
scenario affects both the amplification of the fluctuations, i.e. the burst size, as well as the duration of these ampli-
fications, i.e. the burst duration; without fluctuations, the rhythm would just die out. Such envelope amplification 
has been observed both in computational studies and in vivo in another frequency band54,60. A simple way to 
implement this scenario in our model is to increase the recurrent excitation. This reduces the value of ν without 
significantly changing D; this can be seen from the fact that ν clearly depends on Wee, and D depends on Wee 
through ω0 (see expressions below Eq. 6 and in Methods).

The second scenario corresponds to a different type of amplification since it does not change ν; it thus keeps 
the amplification duration constant. We do not detail this type of amplification; its complexity requires an elab-
orate treatment that goes beyond our study. We verified that feedback inhibition can cause the increase of D at 
constant ν (we do not detail it here; however the expression of D depends clearly on Wei through A12, see below 
Eq. 6 and Methods). The third scenario is a mixture of the previous two.

The first scenario is appealing for our purposes since it yields rhythms similar to those seen in healthy and 
diseased states. We consider four points along a horizontal line in the recurrent plane of parameter space (Fig. 4 
left panel), lying increasingly closer to the transition between the transient and the high synchrony regimes. As R 
increases, so does the network synchronization (Fig. 5), although the peak frequency of the rhythm stays around 
85 Hz for our choice of parameters. Far from the transition, i.e. for a low value of R, there is a lack of synchroniza-
tion (Fig. 5(a)). The density of the envelope values has low variance (Fig. 5(a) inset). But the mode of this density 
and the duration of bursts are likely too small to support reliable communication through coherent oscillations. 
The notion of burst itself is compromised as it is difficult to extract from the surrounding small fluctuations. In 
addition, a similar lack of synchronization is observed in patients suffering of schizophrenia (negative symp-
toms)61–63 and constitutes one of the common markers of this pathology.

A working point too close to the transition, corresponding to a high value of R, leads to strong synchroniza-
tion (Fig. 5(d)). The broadness of the envelope distribution means high variability of the underlying amplitude 
value (Fig. 5(inset)). Burst durations can last more than 1 second. However, it has been argued that such exces-
sive synchronization could lead to the repetition of the same message and impede the transmission of other 
messages64. This could also destroy the flexible routing of information observed when synchronization is more 

Figure 3.  Dynamics of the LFPs, their envelopes and their phases components from Eqs. 1 and 2, Eqs. 5 and 6 
and Eq. 4 (also Eq. 22 in Methods). (b,d,f) LFPs, envelopes and phases from the Linear Noise Approximation 
(LNA) Eqs. 1 and 2. (a,c,e) LFPs, envelopes and phases from SAM Eqs. 5 and 6 and Eq. 4 (also Eq. 22 in 
Methods). Like for the previous figures, blue corresponds to excitatory components and red to inhibitory ones. 
In the SAM case, the envelope and phase processes were simulated using two independent OU processes (see 
Methods, Eq. 37, Eq. 41), integrated using the Euler-Maruyama method. The envelope and phase dynamics in 
the LNA case were obtained by applying hilbert transform on the excitatory and inhibitory LFPs (∼V t( )E I, ). The 
parameters are taken from Table 1.
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moderate26. Also, such long burst durations go counter to the fast temporal decorrelation of gamma band activ-
ity observed in vivo65,66. They have been associated with dysfunctions resulting from an excess of excitation or 
lack of inhibition which lead to sustained high envelope amplitude as seen in epilepsy67–69 or Attention Deficit 
Hyperactivity Disorder (ADHD)70.

Between these extremes, we show two working points with intermediate values of R (Fig. 5(b,c)). There we find 
moderate envelope values and burst durations (Fig. 5(b,c)). This suggests an optimal brain state between excess 
and lack of synchronization. Here and below, we use the word “optimal” to describe a range of parameters, rather 
than a specific set of parameter values, for which the burst statistics resemble those seen in healthy recordings 
from the monkeys. We can in fact propose three regimes in the transient synchrony regime: a noise-dominated 
regime at low R, an oscillation-dominated regime at high R, and an oscillation-noise regime at intermediate 
values of R. We can then assign pathologies related to lack of synchronization to the noise-dominated regime, 
those related to excessive synchronization to the oscillation-dominated regime, and healthy states to the 
oscillation-noise regime. The fact that the oscillation-noise regime covers a range of parameters relates to the 
fact that different healthy subjects can exhibit different gamma amplitude modulations.

Along a vertical line in the (Wie, Wei) parameter space (Fig. 4 right), two points at a relative same distance to 
the transition line lead to rhythms that can differ significantly in their peak frequency (not shown). The ampli-
tude modulations are however similar. Such points could correspond to separate brain states, such as awake or 
anesthetized, as reported in20. Our envelope-phase equations provide a simple explanation of how, in biophysical 
terms, different amplitude modulations of brain rhythms can relate to different brain states, assuming basic E-I 
connectivity.

Dynamics and statistics of Gamma bursts.  Burst extraction.  We define gamma bursts formally as 
epochs where the envelope process is sustained above a specific threshold. The corresponding burst duration is, 
therefore, the time the process spends above that threshold. Burst durations recorded in vivo have short mean 
values (on the order 100 ms). Our envelope process is not coupled with the phase process and allows in principle 
the derivation of the mean burst duration in terms of mean first passage times (MFPT) away from the threshold 
and back to it. Our derivation (see Eq. 51 in Methods) gives the following approximate mean burst duration in 
terms of network parameters:

ν
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Figure 4.  Different dynamics of the stochastic spiking network in the parameter space. Left: Recurrent plane 
(Wee,Wii). Black dots correspond to the four different values of the parameter R, obtained from left to right 
using the parameters (a) Wee = 20.4, ν = 0.0648, D = 0.0512, R = 0.6288. (b) Wee = 27.4, ν = 0.0182, D = 0.0613, 
R = 1.2999. (c) Wee = 28.4, ν = 0.0110, D = 0.0613, R = 1.6900. (d) Wee = 29.4, ν = 0.0038, D = 0.0648, 
R = 2.9194. Right: Feed-forward plane (Wie,Wei). Red and green curves with dots correspond respectively 
to the bifurcation lines between the transient and high synchrony regimes and the transient synchrony and 
asynchronous regimes. Left: The green bifurcation curve was plotted by setting ν = 0 through linear stability 
analysis (see Methods, Eq. 21). The transient synchrony regime then corresponds to the area ν < 0 and the 
high synchrony regime to ν > 0. Right: The red curve corresponds to the transition between the two oscillatory 
regimes as described in the left case. The green curve corresponds to the case ω0 = 0 and the asynchronous 
regime corresponds to the case where ν < 0. The two black dots in the right panel refer to two points at the same 
distance of the transition but at different frequencies (the diagram of frequencies is not displayed here). Wei 
sets the strength of the feedback inhibition received by the excitatory population, and Wie sets the strength of 
the feedback excitation received by the inhibitory population. And Wee and Wii are respectively the strengths 
recurrent excitation (excitation received by the excitatory population from itself) and recurrent inhibition 
(inhibition received by the inhibitory population from itself). For this right panel we have chosen hE = −7 
instead of hE = −8 as in all other figures.
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with b ≈0.59R and
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Here Ei is the exponential integral function, b is the threshold and c is an estimate of a typical maximal value that 
the process can reach during the burst.

Choosing the values of b and c to reveal burst characteristics regardless of the magnitude and duration scales 
of the fluctuations, as we did here, requires that these values be proportional to R. This enables the extraction of 
bursts and estimates of burst duration using a threshold and maximum value that scale with the mean size of 
the envelope fluctuations. Other choices are possible, but with this choice, the substantial variation of the burst 
duration is governed by the value of ν only (in the first scenario discussed at the end of the previous section). This 
choice would also work in the second scenario where D increases while ν is kept fixed, and the scenario where 
both covary.

Numerically, choosing a threshold for burst extraction is known as the Pepisode technique48,71–73. This technique 
has the advantage that it easily detects bursts. However, it also has some limitations. The first limitation is the fact 
that the choice of the threshold quantitatively affects the results. The second limitation comes from the fact that, 
since the envelope process is a noisy signal, rapid fluctuations regularly occur that spend too little time above 
threshold to be considered as meaningful bursts. Such rapid fluctuations create false bursts and their considera-
tion leads to biased exponential distributions for burst durations. To address the first point, we avoid choosing a 
value of threshold that is too small relative to the typical size of fluctuations, thereby averting most false bursts, or 
that is so high that several relevant bursts are excluded.

After choosing the threshold b, we deal with the second limitation by implementing a second “threshold”, or 
rather, second criterion: a fluctuation is considered a burst only if its envelope exceeds the mean of the envelope 
process for at least two oscillation cycles. This removes the artefactual short bursts, keeping only proper bursts. 
Further testing has revealed that changing the threshold value only modifies our results quantitatively rather than 
qualitatively. For example, increasing (decreasing) b slightly decreases (increases) the mode of the density of burst 
durations.

Gamma burst extraction in previous studies has been done using time-frequency analysis of the LFP. This 
involves thresholding the power of the smoothed version of the LFP. The advantage of those analyses is that 
they return both the burst duration and peak frequency content of the LFP. This usually allows one to compute 

Figure 5.  Dynamics of the envelope fluctuations (black) and their associated LFPs (blue) for the same four 
parameter values used in Fig. 4: (a) R = 0.6288, (b) R = 1.2999, (c) R = 1.6900, and (d) R = 2.9194. Insets show 
the corresponding probability densities for these fluctuations, computed both numerically as well as analytically 
using Eq. 42 (red curve). Note how the size of the fluctuations and their durations increase as R increases, i.e. as 
the network becomes more synchronized.
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marginal distributions of burst duration and burst peak frequency. From those distributions, one can calculate 
the mean burst duration and the mean burst peak frequency. Here, burst extraction using our criteria naturally 
returns a range of durations. Furthermore, to obtain the range of associated peak frequencies, we computed the 
corresponding peak frequency in each burst using the corresponding LFP epoch. With the set of burst durations 
and their corresponding peak frequencies, we can then compute the marginal distributions of the burst duration, 
their corresponding peak frequency, and their associated mean values.

Burst duration and peak frequency: mean and variability.  The mean burst duration observed in vivo is usually 
short (less than 100 ms on average) but its exact value varies depending on the brain state and animal subject, as 
well as the accuracy of the method used to extract bursts20,21. A normal mean burst duration observed in data is 
in the range (60–150 ms)20,21. The mean burst durations computed from marginal distributions and from Eq. 51 
vary across parameter space, and thus for the four R values of interest in our study (Fig. 6). We observe an increase 
in the mean values as the transition between the transient and high synchrony regimes is approached (Fig. 4 and 
insets). The precise values are respectively 35.00 ms (a), 74.50 ms (b), 112.25 ms (c) and 514.60 ms (d) for the four 
points in the phase parameters (see green and red vertical bars in Fig. 6, computed from burst duration marginal 
distributions and from Eq. 51, respectively). The durations computed in (b) and (c) fall inside the in vivo range. 
The duration of 35.00 ms calculated in (a) is too short and the corresponding envelope amplification too weak 
compared to in vivo recordings. Such short durations are not seen in healthy subjects, but have been seen in psy-
chiatric disorders such as schizophrenia. Further, the duration of 514.60 ms observed in (d) is too long, with a 
corresponding excessive envelope amplification uncharacteristic of healthy subjects.

Burst peak frequencies obtained in our analysis are characterized by their marginal distributions (not shown 
here). Unlike the burst duration distributions, the burst peak frequency distributions are approximately Gaussian. 
Also unlike the burst durations, the mean extracted from burst peak frequency distributions is roughly the same 
across the four cases (it is around 85 Hz). However, visual inspection suggests that burst peak frequency var-
iability is reduced as the transition from transient to high synchrony is approached; this is confirmed by their 
distributions (Fig. 6 insets). Indeed, burst peak frequency variability is an essential marker of gamma bursts in 
data. We define variability (peak-frequency deviation) as the difference between absolute peak frequency for the 
gamma burst and the mean peak gamma frequency, averaged across all of the gamma bursts20. We then numer-
ically compute from long time series a distribution of peak-frequency deviation values, and quantify the spread 
of this distribution by a standard deviation. This latter deviation is thus a measure of the burst peak frequency 
variability. We computed the standard deviations for each of the four points in the space parameter. Their values 
decrease as we get closer to the transition between the two regimes. The exact values of these standard deviations 
are respectively SD1 = 19.1 Hz (a), SD2 = 8.1 Hz (b), SD3 = 5.4 Hz (c) and SD4 = 1.6 Hz (d). We compared these 
values with those observed in recorded data and found that the cases (b) and (c) gave relatively good agreement.

For illustration, mean burst duration and burst peak frequency variability measures computed from recording 
on an anesthetized monkey in20 are respectively 65 ms and SD = 8.8 Hz. These values are relatively close to our 
case in (b) where we have a mean burst duration and a burst peak frequency variability of 74.50 ms and SD = 8.1 
Hz respectively. Furthermore, data from awake and anesthetized monkeys suggests that variability decreases 
as mean burst duration increases. This is illustrated by a slight decrease in the burst peak frequency variability 
from SD = 9 Hz to SD = 8.8 Hz, following a small increase of the mean burst duration from 62 ms to 65 ms for an 
anesthetized and an awake monkey, respectively. This supports the relative weakness of our computed burst peak 
frequency variability (SD = 5.4 ms) associated with a relatively high value of the mean burst duration (112.25 ms) 
in case (c) of our analysis. The burst peak frequency variability in cases (b) and (c) is therefore more likely to be 
observed in vivo. For the case (a) the burst peak frequency variability SD = 19.1 Hz is too high. In contrast, the 
case (d) shows a reduced variability SD = 1.6 Hz, close to a highly coherent oscillation process. Such regularity 
disagrees with the stochastic nature of gamma-band oscillations observed in vivo21.

Joint distribution of burst duration and peak frequency.  Next, we investigate the count of occurrences of a burst 
at a given oscillatory frequency with a specific duration. This is done using the joint distribution of burst duration 
and peak frequency20,21. Such distributions are investigated over the same four values of R (Fig. 7). The first case 
(Fig. 7(a)) does not show any structure close to what is observed in the data, as the bursts are too short and fre-
quencies quite high. In Fig. 7(d) the joint distribution shows a mode corresponding to the mean burst duration 
of 514 ms and peak frequency around 85 Hz. However, the lack of variability of the burst peak frequency and 
the excessive burst durations associated with this process disqualifies it as a model of healthy stochastic gamma 
oscillations observed in vivo.

The remaining cases (Fig. 7(b,c)) are good approximations of observed gamma oscillations20,21. They show 
modes corresponding respectively to mean burst duration and peak frequency similar to what has been done 
in previous computational and experimental studies20,21,26. We therefore conclude that there exists an optimal 
parameter range which reproduces the burst durations and their corresponding peak frequency variability 
observed in vivo. This region coincides with the oscillation-noise regime defined previously. This suggests that a 
mixture of intrinsic network noise and noise-free fixed point dynamics are needed to produce observed gamma 
oscillations. Indeed the two other regimes (noise-dominated and oscillation-dominated) both fail to reproduce 
in vivo data.

The theoretical expression of the mean burst duration Eq. 51, through its direct dependence on R (note the 
prefactor 1/ν) can partially explain these normal, perhaps optimal brain states. In fact, we remark that choosing 
an optimal state in our model corresponds first to choosing ν such that its inverse falls inside or is near to the 
range (60–150 ms) of mean burst durations seen in vivo. Then, we need to make sure that the value of D is suffi-
cient such that the value of the amplification strength R is high enough (and D needs to be not too small relative 
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to ν, because values of D close to zero decrease R to zero). In our illustration, values of (1/ν) for the four increas-
ing values of R are, respectively, 15.43 ms, 54.9 ms, 90.90 ms and 263.15 ms, and values of D are almost constant 
around 0.06, but not too small relative to values of ν. The values of (1/ν) in (a) and (d) are clearly away from the 
considered range. Also the value of (1/ν) of the paper of20 is 66.67 ms and falls inside the normal range found here.

Discussion
We obtained an envelope-phase representation of broadband gamma oscillatory LFP’s seen in vivo, and conse-
quently of noisy rhythms in general, by considering a simple neural network in the PING scenario with the essen-
tial properties of excitatory and inhibitory cell types. From numerical simulations of the excitatory and inhibitory 
LFP dynamics, we observed that their ratio of envelopes, their phase difference as well as their respective peak 
frequencies all follow approximately Gaussian distributions. This allowed us to link these LFPs together, and to 
consider just the excitatory LFP as the network LFP. We further applied the Stochastic Averaging Method (SAM) 
to extract evolution equations for the slow envelope of the LFP amplitude and the corresponding phase of the 
LFP in terms of the parameters of the original microscopic network. The distribution of frequencies in the LFP 
could also be derived from the phase dynamics. The envelope-phase equations depend on all single-neuron and 
network parameters, and are in agreement with these quantities extracted through the analytic signal technique 
based on the Hilbert transform of the LFP time series.

Under certain conditions, the envelope-phase equations produce dynamics that resemble recorded LFPs in 
vivo. The model therefore provides an appropriate theoretical framework for studying LFPs of rhythms and for 
our ultimate goal of characterizing burst dynamics in terms of all network parameters. We have followed our 
formulation for that latter purpose. While many parameters govern the E-I dynamics, surprisingly few combina-
tions of those parameters actually determine the envelope and phase dynamics. We investigated how the envelope 
process evolves across the parameter subspace relating to connectivity. Specifically, we chose four points in that 
subspace below the bifurcation between the transient synchrony and high synchrony regimes, which appears 

Figure 6.  Distributions of burst durations (histograms in blue), their corresponding means (vertical line in 
green) and theoretical mean values (vertical line red). Distributions in insets correspond to associated peak 
frequency variability in Hz. Theoretical values were computed from Eq. 51 and the value of c was chosen as the 
sum of the mean and the standard deviation of each envelope process (Methods). The four cases correspond 
respectively to different values of R in the previous figures, namely (a) R = 0.6288, (b) R = 1.2999, (c) R = 1.6900, 
and (d) R = 2.9194. The mean burst duration increases as we get closer to the transition between the High and 
transient synchrony regimes and the corresponding peak frequency variability decreases. The mean values 
computed from histograms (vertical green lines) are, respectively, 35.00 ms, 74.50 ms, 112.25 ms and 514.60 ms, 
and those from Eq. 51 (vertical red lines) are 27 ms, 86.10 ms, 132.90 ms and 465.50 ms. The associated standard 
deviations of the peak frequency variability are respectively SD1 = 19.1 Hz, SD2 = 8.1 Hz, SD3 = 5.4 Hz and 
SD4 = 1.6 Hz. Furthermore, we observe mean burst durations with corresponding peak frequency variability in 
the range of the experimental observation for the two intermediate working points (b) and (c).
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most relevant to gamma bursts. We found that the amplification of noisy perturbations - seen in large excursions 
of the envelope, i.e. bursts - and the corresponding burst durations increase as the transition is approached.

In the close vicinity of the transition, envelope amplifications and their durations become excessive, with pos-
sible relevance to disorders such as epilepsy and ADHD74. Far away from the transition, the process appears more 
noise-like, with the envelope exhibiting weak amplifications with very short lifetimes. The lack of synchronization 
in this latter case is accompanied by a reduced spectral power at gamma frequencies, and is sometimes observed 
in patients with neurological disorders like schizophrenia74. Between these two points, the two other parameter 
sets yield moderate amplifications and durations. These provide a better match to modulations observed in vivo. 
This suggests that there is an optimal region in the parameter space where healthy dynamics lie.

Non-normal amplification as a mechanism for Gamma bursts.  We showed that burst generation 
can depend on ν by changing Wee, and on D by changing Wei. The notion of an optimal region for in vivo gamma 
bursts first requires that the inverse of ν falls inside or lies near the healthy range (60–150 ms). But this is not 
sufficient, since a value of D close to zero will lead to a value of R close to zero and therefore to very little amplifi-
cation; decreasing ν further to recover some amplification then leads to burst durations outside the healthy range. 
Thus, the value of D also has a great importance for burst generation. The parameters ν and D appear to influence 
distinct types of amplification, but what types specifically?

While a full answer to this question exceeds the scope of our paper, we remark that amplification in the enve-
lope process obtained by approaching the transition (through decreasing |ν| in our “first scenario”) ressembles 
what is known as “normal amplification”. Normal amplification results from the real part of the eigenvalues of 
the linear noise-free dynamics being small. Very close to the transition, the absolute value of the real part of the 
eigenvalues, i.e. |ν|, approaches zero. Consequently, the amplification scales as |ν|−1/2 (Eq. 8), while the amplifi-
cation duration is proportional to |ν|−1 (Eq. 51). Therefore, bursts occur with explosive amplification and very 
long duration. Such amplification in a neural network is mostly induced by mutual excitation among neurons, 
resulting from strong recurrent excitation coefficients (Fig. 4); recall that increasing Wee makes ν tend toward 
zero, since A11, which increases with Wee, is positive and A22 < 0. In contrast, far from the transition, |ν| is not that 
small, and as a consequence, the corresponding normal amplification and its lifetime are smaller.

The two points in the middle correspond to sufficient normal amplification (not too weak and not too strong). 
This suggests that strong normal amplification does not agree with in vivo data. Furthermore, the value of D must 
be sufficient to avoid very weak amplification.

Interestingly, the amplification seen by increasing D at fixed ν (second scenario) may produce bursts that are 
compatible with those seen experimentally, as long as the values of ν are in the middle range mentioned above. 
Increasing D under these conditions has the advantage of increasing the burst magnitude without increasing burst 

Figure 7.  Joint distribution of burst durations and burst peak frequencies. The four cases correspond 
respectively to the four different values of R used in previous figures, namely (a) R = 0.6288, (b) R = 1.2999, (c) 
R = 1.6900, and (d) R = 2.9194. Panels (b,c) best represent the combinations of frequencies and burst durations 
seen experimentally.
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duration. This corresponds better to the so-called non-normal amplification75–78. Such amplification is believed 
to play an important role in selective amplification observed in cat primary visual cortex (V1)79,80. It is also called 
balanced amplification because it is associated with the stabilization of strong recurrent excitation by feedback 
inhibition80. This could be the dominant amplification used by a healthy brain to produce bursts in gamma and 
perhaps also beta rhythms, as long as ν is properly set to produce normal amplification. Therefore, the two types 
of amplifications may underlie healthy conditions.

Envelope-phase decomposition of more complex neural networks using SAM.  Our study uses 
a network which does not model neurons with intrinsic voltage dynamics, and neglects the additional excit-
atory (AMPA and NMDA) and inhibitory (GABA-A) synaptic receptor dynamics81. Furthermore, noise is an 
intrinsic property in our network due to finite-size effects. But noise in real neural networks in vivo comes also 
from the constant bombardment of synaptic inputs, including those whose origin is outside the network81. Our 
approach could be applied to such detailed spiking networks given the approximate linear dynamics that have 
been extracted for those networks. For example, the Dynamic Mean Field (DMF) technique can be applied to 
more detailed realistic models82–84. DMF adequately approximates the temporal dynamics of the complex net-
work by stochastic nonlinear equations close to our stochastic equations for the excitatory and inhibitory activi-
ties (Methods) (Eqs. 11 and 12). Such stochastic nonlinear equations can be further linearized around the stable 
fixed point; the resulting linear stochastic equations sustained by noise provide a fairly good approximation of the 
complex network dynamics83,84. Therefore for the purpose of studying gamma bursts in such realistic networks, it 
could suffice to tune parameters in the vicinity of the transient and high synchrony regimes, as in our study. The 
same can be said of neural field theoretic approaches with intrinsic noise to describe rhythms where linearization 
can be used to investigate spectra and the emergence of rhythms85.

Rate dynamics can also be derived for conductance-based spiking networks86. Such dynamics can be line-
arized, and our envelope-phase decomposition can be fully applied. In fact, this is true for any spiking network 
which can be described by 2D rate equations or 2D activity dynamics. Our approach could further be extended 
to networks with complex topology, such as the 2D plane model of the primary visual cortex86,87, or to multiple 
coupled E-I networks83,84,88. The resulting dynamics can be used to study the effect of the feedback from extrastri-
ate cortex on visual cortex86,87, phase-synchronization between brain rhythms25,27, inter-areal brain communica-
tion12,13,26, functional connectivity88–90 or cross-frequency coupling more generally.

The extension of our model to beta rhythms may involve considering other mechanistic origins of the oscil-
lations, such as thalamocortical loops. Likewise, bursty gamma rhythms may arise from inputs from extrastriate 
cortex86. Our method could be applied to the putative circuitry as long as the associated loop causes a damped 
oscillation.

It may be that bursts in one frequency range are the result of a cross-frequency interaction, i.e. between a fast 
rhythm and another slower rhythm both emerging from the feedback structure. Our modeling framework could 
still be used if the dynamics of the corresponding two networks are damped, i.e. with linearized dynamics having 
eigenvalues with negative real part and imaginary values corresponding to the two frequencies present.

Alternately, we could further develop our framework to describe the potential situation where a quasi-cycle 
in e.g. the gamma range is driven by a slower (e.g. beta) rhythm arising outside of the feedback loop. This would 
likely lead to stochastic amplitude-phase equations as we have described in our work, with the noise-induced 
rhythm being modulated by the time-dependent forcing. The mean frequency of the quasi-cycle would have to 
be significantly faster than the external forcing. Its mean amplitude would also have to be smaller than that of the 
quasi-cycle for the analysis to carry through to this driven case–otherwise, the external modulation could drag 
the fast rhythm in and out of the quasi-cycle regime. This analysis could be further developed to account for the 
transients that occur when this external input is switched on.

Preliminary simulations of a periodically forced gamma quasi-cycle reveal that the properties of the bursts 
change according to the frequency and the amplitude of the external input (not shown). The effect also depends 
on whether the forcing is applied to the excitatory population only, the inhibitory population only, or to both 
populations. The precise dependence of gamma burst properties on such external input parameters and network 
regimes is not a trivial problem, and our work in this direction promises to be a stand-alone hefty story.

Envelope-phase decomposition of an all-to-all delayed inhibitory network.  We have also inves-
tigated broadband rhythms generated by a population of stochastic two-state neurons (as in Fig. 1) but with 
all-to-all delayed inhibitory coupling. The delay and the proximity of a Hopf bifurcation are necessary for the 
appearance of the quasi-cycles44,91, and differs from the ING mechanism. The same transition between transient 
synchrony and high synchrony occurs in that model as it does in our study based on the PING mechanism. 
We have verified numerically, using the Hilbert transform to extract the envelope of the rhythm, that a qualita-
tively similar behaviour of the burst magnitude and duration occurs in this inhibitory system as the transition 
is approached from the transient synchrony side (not shown). We also see an analogous optimal region in the 
subspace of parameter space spanned by the delay and the inhibitory coupling strength, where the variability in 
the burst duration and in the peak frequency during bursts resembles those seen in vivo. This further supports 
the generality of our result, in the sense that the essential determinants of the burst statistics are there again the 
presence of noise in the vicinity of a bifurcation to synchrony. Again, to understand rhythm bursts, our envelope 
approach could be applied to the linearizable formalisms that have been proposed for noise-induced rhythms and 
their spectra in this case such as44,91, and92 in the spatio-temporal noise-driven neural field case.

Future work should also consider the statistics of bursts in the chaotic networks with long range excitatory 
connections that produce fast decorrelating gamma rhythms42,43, to see whether they exhibit qualitatively differ-
ent features than those discussed here. And while our approach can easily be adapted to rhythms in other fre-
quency bands, it does rely on linearization, and thus may not provide adequate descriptions of envelope and phase 
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dynamics for all nonlinearities that underlie brain rhythms. One expects in those cases as well that our approach 
will provide a good first understanding of the parameter range underlying observed burst statistics, and what to 
do in case these statistics fall out of the healthy range.

Methods
The Model.  We begin by summarizing a recent model of noisy gamma activity that is based on a network of 
nonlinear neurons that spike probabilistically41. This more biophysically realistic model is used here to illustrate 
gamma bursts. We then review the relation of this model to the stochastic Wilson-Cowan firing rate model and 
show its ability to also generate gamma bursts in terms of firing rate rather than spike events. Our envelope-phase 
reduction will be derived from this rate model.

The network is composed of fully connected NE excitatory neurons and NI inhibitory neurons. Each neuron 
can exist in one of the two following states: an active state (a) representing the firing of an action potential and its 
accompanying refractory period, and a quiescent state (q) associated with a neuron at rest. Each neuron follows a 
two-state Markov process. The dynamics of a neuron are specified by the transition rates between the two states. 
The transition probability for the ith neuron to decay from the active to the quiescent state is

α→ =P active quiescent in time dt dt( , )i i

where αi, i = E, I is a constant; thus this transition probability does not depend on the input to the neuron. It is 
typically high to mimic the largely deterministic nature of voltage reset after a spike. In contrast, the transition 
probability from quiescent to active is:

β→ =P quiescent active in time dt f s t dt( , ) ( ( ))i i i

with input

∑= + .s t W a t h( ) ( )i
j

ij j i

Here f is the neuron input-output response function, typically a sigmoid, Wij is the strength of the synaptic weight 
from a j-type cell onto an i-type cell (defined positive), hi the external input, ∑ W a t( )j ij j  the network input and si(t) 
the total input to neuron i. We set ai(t) = 0 if neuron i is quiescent and ai(t) = 1 if it is active.

At the network level, we assume that the total synaptic weight from the excitatory population to itself is Wee; 
the mean synaptic weight from an excitatory cell to another excitatory cell in the excitatory population is just 
Wee/NE. Similar assumptions hold for the other connection strengths, namely −Wii/NI between inhibitory neu-
rons, Wie/Ne from excitatory to inhibitory neurons, and −Wei/NI from inhibitory to excitatory neurons. Also, each 
excitatory neuron receives the same external input hE; likewise, all inhibitory neurons receive the external input 
hI. The total input current sE to excitatory neurons and sI to inhibitory neurons are then given by

= − +s t W
N

k t W
N

l t h( ) ( ) ( )
(9)E

ee

E

ei

I
E

= − +s t W
N

k t W
N

l t h( ) ( ) ( )
(10)I

ie

E

ii

I
I

where k(t) is the number of active excitatory neurons and l(t) the number of active inhibitory neurons. This 
network is simulated in discrete time using the Gillespie algorithm as in41. A typical simulation result is shown 
in Fig. 1 where, in spite of the presence of a noisy rhythm, the firing behavior of individual neurons (excitatory 
and inhibitory) is close to a Poisson process. Short-lived gamma oscillations are produced at the network level 
especially in the transient synchrony regime41.

In this formalism, it is possible to approximate the Poisson statistics by Gaussian statistics for firings in any 
time interval. This leads to the following activity of the excitatory population defined as E(t) = k(t)/NE

41:

α β= − + − +
dE t

dt
E t E t f s t I t( ) ( ) (1 ( )) ( ( )) ( ) (11)E E EE

Similarly for inhibitory neurons, we have:

α β= − + − +
dI t

dt
I t I t f s t I t( ) ( ) (1 ( )) ( ( )) ( ) (12)I I I I

with noise sources with time-dependent variances given by

β α
η

β α
η=

− +
=

− +
.I t E t f s t E t

N
t I t I t f s t I t

N
t( ) (1 ( )) ( ( )) ( ) ( ) and ( ) (1 ( )) ( ( )) ( ) ( )E

E E E

E
E I

I I I

I
I

Here ηE,I(t) are Gaussian white noises satisfying:

η η η δ δ〈 〉 = 〈 ′ 〉 = − ′ = .t t t t t i j E I( ) 0, ( ) ( ) ( ) , { , }i i j ij
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According to the Linear Noise Approximation (LNA), if NE and NI are quite large but stochastic effects are still 
important, one may apply a further Gaussian approximation. The activities (k, l) can then be represented as the 
sum of a deterministic component (E0, I0) scaled by the population sizes and stochastic perturbations ∼ ∼V t V t( ( ), ( ))E I  
scaled by square root of the population sizes41. We then have

= + = +
∼ ∼E t E t

N
V I t I t

N
V t( ) ( ) 1 , ( ) ( ) 1 ( )

(13)E
E

I
I0 0

where E0(t) and I0(t) are solutions of the deterministic version of Eqs. 11 and 12 above:

α β= − + −
dE t

dt
E t E t f s t( ) ( ) (1 ( )) ( ( )) (14)E E E

0
0 0 0

α β= − + −
dI t

dt
I t I t f s t( ) ( ) (1 ( )) ( ( )) (15)I I I

0
0 0 0

with

= − + = − + .s W E W I h s W E W I h,E ee ei E I ie ii I0 0 0 00 0

We focus on oscillations induced by noise, for which Eqs. 14 and 15 must admit a stable equilibrium or “fixed” 
point (i.e. its complex eigenvalues have negative real part). This fixed point is the solution of

β

α β

= − + −

= − + − .

⁎ ⁎

⁎ ⁎

⁎

⁎

a E E f s
I I f s

0 (1 ) ( )
0 (1 ) ( ) (16)

E E E

I I I

0 0

0 0

0

0

After a transient, the deterministic solution (E0(t), I0(t)) converges to the fixed point (E0
*, I0

*) and the LNA 
becomes:

= + = + .
∼ ∼⁎ ⁎E t E

N
V t I t I

N
V t( ) 1 ( ), ( ) 1 ( )

(17)E
E

I
I0 0

Replacing Eq. 17 into Eqs. 11 and 12 and keeping the terms of order N( )E  and N( )I , the dynamics of 
fluctuations around the equilibrium point are obtained:

σ η= + +
∼

∼ ∼dV t
dt

A V t A V t t( ) ( ) ( ) ( )E
E I E E11 12

σ η= + + .
∼

∼ ∼dV t
dt

A V t A V t t( ) ( ) ( ) ( )I
E I I I21 22

In terms of all the biophysical parameters of the original nonlinear stochastic spiking E-I network, the seven 
parameters governing these fluctuations around the equilibrium are given by:

α β β
α

α
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Using the fixed point equations, the noise intensities can be rewritten as σ α= ⁎E2E E 0  and σ α= ⁎I2I I 0 . 
Therefore we obtain linear equations driven by noise which represent the LFP dynamics ∼VE and ∼VI. Changing one 
parameter, such as the strength of connectivity of I cells onto E cells Wei, will change a number of these parameters 
as well as the fixed points. In turn we will see below that these changes impact only two “master parameters” that 
govern the envelope dynamics.

Linear analysis.  We consider the linear stochastic Eqs. 1 and 2 and first consider the deterministic case 
σE = σI = 0. The associated noise-free linear system is written in the following matrix form:

=
dV t

dt
AV t( ) ( )

0
0

where

= 





= 




.V t

V t
V t

and A
A A
A A

( )
( )
( )

E

I

0
0

0
11 12

21 22

We look for a trial solution in the form:







= 





.λ
~

~
V t
V t

B
B

e
( )
( )

E

I

E

I

t
0

0

where = θ
B B eE E

j E and = θ
B B eI I

j I. The eigenvalue λ of the associated matrix A is found by substituting the trial 
solution into the linear system, yielding

λ
λ

=
−

−
= −

−



B
B

A
A

A
A

E

I

12

11

22

21

The second equality leads to

λ = + ± − − − .A A j A A A A1
2

( )
2

( ) 411 22 11 22
2

12 21

We rewrite the eigenvalue in the compact form

λ ν ω= − ± j (18)0

with

ν ω= −
+

= − − − = − .
A A A A A A and j

2
, 1

2
( ) 4 111 22

0 11 22
2

12 21

This leads to the exact expression of the complex amplitude ratio and phase difference between the excitatory 
and inhibitory LFPs:

α
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−
=
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−
≈ .

α
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α
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−
−
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A A

if A A
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arctan 2 0
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0

11 22
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11 22

Note that in the absence of noise, the time-dependent amplitudes both go to zero exponentially with char-
acteristic time ν−1. One can nevertheless compute the ratio of amplitudes as above. However, in the presence of 
noise, one can compute the ratio from simulated time series using the analytic signal technique. The amplitudes 
ratio and the phase difference are obtained by the following approximations:

α δ θ θ= ≈ = − ≈ − .
~

~
~ ~B Env V t

Env V t
and Arg V t Arg V t

B
[ ( )]
[ ( )]

[ ( )] [ ( )]
(19)

I

E

I

E
E I E I

Here 〈.〉 can be considered a time average of the stochastic process in Eq. 1. Env is defined as the enve-
lope of the analytic signal associated with the LFP. For example, the analytic signal corresponding to VE(t) is 
VE(t) + jH[VE(t)], with the Hilbert transform H defined as
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∫π
τ

τ
τ=

−−∞

∞
H x P x

t
d[ ] 1 ( )

(20)

where P signifies the Cauchy principal value. The envelope of the stochastic signal is then = +Env V V H V[ ] [ ]E E E
2 2 . 

Likewise, the phase angle of the analytic signal is defined as Arg V H V V[ ] arctan[ [ ]/ ]E E E= .
The transition between the transient and high synchrony regimes happens when the real part of the eigenvalue 

is zero. This condition is expressed as
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We use this expression to plot Fig. 4(Left panel). For Fig. 4(Right panel), we first use Eq. 9 to shift from the 
self-connectivity parameters to the (Wei, Wie) plane. We next derive an expression for the dynamics governing the 
time evolution of the envelopes of the excitatory and inhibitory stochastic processes themselves.

Stochastic Averaging Method (SAM).  Taking into account the constant ratio of envelopes and constant 
phase difference (see our three assumptions early in the Results section), the expression of the excitatory and 
inhibitory LFPs are given by

V t Z t t t and V t Z t t t( ) ( )cos( ( )) ( ) ( )cos( ( ) ) (22)E E E I E E0 0ω φ α ω φ δ= + = + − .

We plug these expressions into the linear stochastic equations Eq. 1 and rewrite the resulting equations in 
terms of variables ZE and φE as follows:

φ φ η η= +Ż t f Z g Z( ) ( , ) ( , , , ) (23)E E E E E E I1 1

φ φ φ η η= +˙ t f Z g Z( ) ( , ) ( , , , ) (24)E E E E E E I2 2
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The equations above can be written in a more compact form as

η= +X t f X g X( ) ( ) ( , ) , (29)

with the following 2 × 1 matrix definitions: 
φ

= 





X
ZE

E
, = 
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


f
f
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2

, = 
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


g
g
g

1

2
 and η

η
η= 




.E

I
 The stochastic averaging 

method says that, under certain conditions (usually met for regular functions like f and g), the above system of 
two stochastic differential equations can be approximated by the following 2-dimensional Markov process93:

= +dX t m X dt h X dW t( ) ( ) ( ) ( ), (30)

where m is a 2 × 1 matrix, h is a 2 × 2 matrix and W(t) denotes a 2-dimensional vector of independent Wiener 
processes with unit variance. Also, m and h are respectively O(ε2) and O(ε) functions (ε is an infinitesimal num-
ber) defined as:
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∫ τ= +
∂
∂ τ

−∞
+( {( ) } )m T E f E g

X
g d{ } ( )

(31)
av

t
t

0

∫ τ= τ
′

−∞

∞ ′
+( ){ }hh T E g g d( ) ( ) (32)

av
t t

here (') denotes transposition, and ∂
∂( )g

X t
 is a 2 × 2 Jacobian matrix. Moreover, E. denotes the expectation operator 

and Tav is the time averaging operator defined by

∫. = .
+

T
T

dt( ) 1 ( )
(33)

av

t

t T

0 0

0 0

where = π
ω

T0
2

0
 is the period of a gamma oscillation cycle. When evaluating the expectations in the stochastic 

averages formula, the elements of X are treated as constants in time. A somewhat lengthy calculation leads to the 
resulting Markov processes for the LFP envelope and phase:

ν= − + +( )dZ t Z t D
Z t

dt D dW t( ) ( )
2 ( )

( )
(34)E E

E
1

φ =d t D
Z t

dW t( )
( )

( )
(35)E

E
2
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ω
σ σ= − − + .( )D A A A

2 (36)
I E

12

0
2 12

2
21

2

Note that the coefficient D is zero when both the excitatory and/or inhibitory noise intensities σE and σI are 
zero. One can call it a noise-induced coefficient in the drift part of the stochastic differential equation for the 
envelope.

For computational purposes, the envelope and phase equations above can be rewritten using two independent 
Ornstein-Uhlenbeck (OU) processes as:

ν= − +dE t E t dt D dW t( ) ( ) ( ) (37)1 1 1

ν= − +dE t E t dt D dW t( ) ( ) ( ) (38)2 2 2

from which we can extract the envelope and phase:

φ= + = .( )Z t E t E t t E t
E t

( ) ( ) ( ) ( ) arctan ( )
( ) (39)E E1

2
2
2 2

1

These quantities satisfy the differential equations for ZE and φE above. The envelope and phase processes are 
then the envelope and phase of two independent Ornstein-Uhlenbeck processes with the same parameters. Our 
simulations actually use these two OU processes, rather than the ZE − ΦE equations above, in order to avoid the 
occurrence of negative values of ZE. The corresponding equations for the inhibitory population are obtained 
from these ones by using the ratio and phase difference factors in Eq. 19. This ratio and phase difference are to be 
interpreted as constant averaged quantities; they will fluctuate around these quantities in any finite realization.

Probability distributions in Fig. 8 show that the dynamics obtained from SAM are statistically equivalent to 
those of the LNA. This suggests that our SAM is an appropriate framework for envelope and phase dynamics of 
bursty gamma oscillations.

Probability density and Mean First Passage Times (MFPT).  For simplicity, we consider the envelope 
of the excitatory population and denote it z(t). The envelope process with its initial condition is given by (see 
Eq. 35):

ν= − + +

= .

( )dz t z t D
z t

dt D dW t

z z

( ) ( )
2 ( )

( )

(0) (40)0

The associated Fokker-Planck equation for the probability density of z(t), conditioned on the initial condition, 
is given by
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In the stationary limit, this reduces to the differential equation

ν− 


− + 


+ = .
d
dz

z D
z

P z D d P z
dz2

( )
2

( ) 0
2

2

The stationary probability function then reads

( ) ( )P z
D

z
D

z( ) 2 exp (42)
2ν ν

= − .

The peak value is obtained by imposing

=
= ∗

dP z
dz
( ) 0

(43)z z

which leads to

ν
= .⁎z D

2 (44)

Note that z* ≡ R in the main text. Properties such as the mean and standard deviation of z(t) can be easily com-
puted from the stationary probability density function, and are known for decades as properties of the Rayleigh 
distribution58. The mean and the standard deviation are given by:

π π
= = − =

−
.∗ ∗( )E z z and std z E z E z z[ ]

2
[ ] [ ] [ ] 4

2
2 2

A burst is defined as an epoch during which the envelope process stays above a particular threshold (see 
Fig. 9). A full theoretical treatment leading to the density of such epochs - known as residence times - is mathe-
matically very involved and beyond the scope of this paper. Rather, here we resort to an approximate derivation 
of the properties of these epochs that yields some analytical insight into their parameter dependence. The burst 
duration can be seen to correspond roughly to the time the amplitude process spends reaching its maximum 
value after crossing the threshold from below, plus the time it spends from this maximum value until it crosses the 
threshold again but from above (see Fig. 9). These two durations can be expressed distinctly by their associated 
Mean First Passage Times (MFPT). Generally, the MFPT from an initial condition z0 to a specific border of an 
interval A where the amplitude process is confined is given by57:

Figure 8.  Probability distributions of LFPs ((a) and (b)), envelopes ((c) and (d)) and phases ((e) and (f)) 
computed from LNA versus SAM. Solid lines are distributions computed from LNA Eqs. 1 and 2, while 
crossed lines are those computed from SAM Eqs. 5 and 6 and Eq. 22. Blues lines (a), (c) and (e) corresponds 
to excitatory components and reds lines (b), (d) and (f) to Inhibitory ones. We can observe good matching 
between LNA and SAM dynamics, which shows that the dynamics obtained from SAM are statistically 
similar to those in the LNA. The parameters are taken in Table 1.
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The MFPT also satisfies the following first-order differential equation57:
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In our case, we define the interval where the process lies to be A = [b, c] where b is the threshold defining the 
start and the end of a burst, while c is a “typical” maximum value that the envelope process can attain during that 
burst. During the period when the envelope increases towards its maximum, an absorbing boundary condition is 
imposed at c leading to T1(c) = 0, and a reflecting boundary condition is imposed at b, given by =

=
0dT z

dz z b

( )1 0

0
0

. 

This results in the following expression for the “first” MFPT on the way up:
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where Ei is the integral exponential function defined as94:

Ei x e
x

dx( )
x

∫= − .

Further, assigning the threshold value b to the initial condition of an above-threshold epoch, then the first 
MFPT is given by

ν
ν ν
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To compute the time interval for the process to leave its maximum value and cross the threshold from above, 
a reflecting boundary condition is now set at c, which translates into =

=
0dT z

dz z c

( )2 0

0
0

, and an absorbing condition 

at b, T2(b) = 0. The associated “second” MFPT is then given by
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We now assign z0 = c and the second mean duration is
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Therefore, the approximated burst duration is given by T = T1(b) + T2(c), which simplifies to

ν
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Figure 9.  Typical burst duration following our approach. Computation of the mean burst duration. The 
green bars show the increase and decrease of the envelope process in black. The vertical dashed magenta line 
shows the separation between the two mean first passage times. The red bar sets the value of the threshold b. 
A typical burst is the epoch during which the envelope stays above the threshold and the burst duration is the 
corresponding time.

https://doi.org/10.1038/s41598-019-54444-z


2 1Scientific Reports |         (2019) 9:18335  | https://doi.org/10.1038/s41598-019-54444-z

www.nature.com/scientificreportswww.nature.com/scientificreports/

(Where we have used the relation =
ν

R D
2

).
While the choice of b and c are arbitrary, we found that satisfactory estimates of mean burst durations followed 

from choices that made intuitive sense. Specifically, we chose the threshold to be equal to half the median of the 
envelope density P(z); this corresponds to setting = ≈ .b R Rln(2)/2 0 59 . We choose the value of c as the mean 
of P(z), i.e. πR /2  plus one standard deviation π−R (4 )/2 :

π π
= +

−
.( )c R

2
4

2

This approximate analysis provides an estimate of the mean burst duration as a function of the synchroniza-
tion parameter R. One could also choose a threshold that does not depend on R or any other parameter, but that 
would yield no bursts for smaller R values, even though close inspection of the smaller envelope reveals burstiness 
at the smaller scale.
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