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Long-distance device-independent 
quantum key distribution
Víctor Zapatero* & Marcos Curty

Besides being a beautiful idea, device-independent quantum key distribution (DIQKD) is probably the 
ultimate solution to defeat quantum hacking. Its security is based on a loophole-free violation of a Bell 
inequality, which results in a very limited maximum achievable distance. To overcome this limitation, 
DIQKD must be furnished with heralding devices like, for instance, qubit amplifiers, which can signal the 
arrival of a photon before the measurement settings are actually selected. In this way, one can decouple 
channel loss from the selection of the measurement settings and, consequently, it is possible to safely 
post-select the heralded events and discard the rest, which results in a significant enhancement of the 
achievable distance. In this work, we investigate photonic-based DIQKD assisted by two main types 
of qubit amplifiers in the finite data block size scenario, and study the resources—particularly, the 
detection efficiency of the photodetectors and the quality of the entanglement sources—that would be 
necessary to achieve long-distance DIQKD within a reasonable time frame of signal transmission.

The use of quantum mechanics for cryptographic means was first proposed in the early 70’s by Stephen Wiesner, 
aiming to create unfalsifiable banknotes1. Inspired by this seminal work, Charles Bennett and Gilles Brassard 
introduced a protocol to securely distribute cryptographic keys2. Nowadays, intense theoretical and experimen-
tal research3–5 has turned this latter task—called quantum key distribution (QKD)—into a feasible commercial 
solution6.

Despite such tremendous progress, a major flaw of QKD today is the existing big gap between the theory and 
the practice. This is so because security proofs of QKD typically rely on simple mathematical models to describe 
the behaviour of the different physical devices. As a result, any departure from these models might render real-life 
QKD implementations vulnerable to quantum hacking attacks7–13.

To overcome this problem, the ultimate solution probably is device-independent QKD (DIQKD)14–19. Given 
that the users’ devices are honest20,21, DIQKD can guarantee security without characterizing the internal function-
ing of the apparatuses, thereby ruling out all hacking attacks against the physical implementation. It is based on a 
feature of some entangled states known as nonlocality22, which guarantees that two distant parties (say, Alice and 
Bob) sharing an ideal nonlocal quantum state observe perfectly correlated outcomes when performing adequate 
quantum measurements on their shares. Moreover, these correlations are monogamous, i.e., the measurement 
outcomes are statistically independent of any pre-existing information held by a third party. This property can be 
verified with a two-party Bell test22–27 known as the Clauser-Horne-Shimony-Holt (CHSH) test, which basically 
consists of repeatedly playing a two-party nonlocal game19,28. The winning rate of the game indicates the amount 
of monogamous correlations shared between Alice and Bob.

The security of DIQKD has been rigorously established in different works, first against collective attacks15 in 
the asymptotic regime, then against coherent attacks17 also in the asymptotic regime, and only recently in the 
practical scenario of finite data block sizes28 (see also29). The security proof in28 relies on the so-called entropy 
accumulation theorem30,31, which effectively allows to prove the security of the full protocol from the security of 
a single round of the protocol by using a worst-case scenario.

Security proofs require, however, that two fundamental loopholes are closed: the locality loophole22 and the 
detection loophole22,32,33. The former is closed by enforcing a proper isolation of Alice’s and Bob’s devices. Closing 
the detection loophole is more tricky, especially if Alice and Bob wish to cover long distances. Indeed, if an adver-
sary were able to correlate channel loss to Alice’s or Bob’s measurement settings, such an adversary could easily 
fake nonlocal correlations, and thus compromise the security of the distilled key. A simple solution is to assign a 
pre-established outcome value to each lost signal while running the CHSH test. The main drawback of this tech-
nique is however the limited achievable distance, because such mapping translates loss into errors. Indeed, with 
such an approach, even if the entanglement source could generate perfect Bell pairs and Alice and Bob could 
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measure them with unit efficiency detectors, channel loss would limit the maximum DIQKD transmission dis-
tance to about only 3.5 km for a typical optical fiber in the telecom wavelength with an attenuation coefficient 
equal to α = .0 2 dB/km.

To enhance the distance, Alice and Bob need to use heralding devices. These are devices that herald the arrival 
of a signal to the receiver, allowing a fair post-selection of the heralded events. Then, if Alice and Bob choose their 
measurement settings a posteriori, i.e., once their heralding devices have declared the reception of a signal, they 
actually decouple channel loss from their measurement settings selection, thus paving the way for DIQKD over 
long distances.

A heralding device particularly suited for DIQKD is a qubit amplifier34–36, which basically consists of a tele-
portation gate. That is, a successful heralding corresponds to the teleportation of the state of the arriving signal to 
a signal at the output port of the qubit amplifier. DIQKD supported by qubit amplifiers has been analysed in34–38 
in the asymptotic regime, i.e., by considering an infinite number of signals. In this work, we focus on the practical 
finite data block size scenario. More precisely, we study finite-key DIQKD with the two different types of qubit 
amplifier architectures introduced in35 and36. We pay particular attention to the effect that typical device imper-
fections (especially, the finite detection efficiency of the photodetectors and the multi-photon pulses emitted 
by practical entanglement light sources) have on the performance of the system. In doing so, we determine the 
resources needed to achieve long-distance implementations of DIQKD within a reasonable time frame of signal 
transmission.

Results
DIQKD protocol.  We consider the DIQKD protocol introduced in28. It is based on a CHSH test24, and it is 
equivalent to a certain two-party nonlocal game known as the CHSH game.

Before presenting the steps of the protocol in detail, let us introduce some notation first. Alice’s measurement 
setting in the i-th successfully heralded round of the protocol is denoted by X {0, 1}i ∈ , where X 0i =  and =X 1i  
tag the measurements described by the two following Pauli operators 

( ) ( )1 0
0 1 and 0 1

1 0 , (1)z xσ σ=
−

=

respectively. On the other hand, Bob’s measurement setting in the i-th successfully heralded round of the protocol 
is denoted by Y {0, 1, 2}i ∈ , where =Y 0i  tags the measurement σ σ σ= ++ ( )/ 2z x , Y 1i =  indicates the measure-
ment ( )/ 2z xσ σ σ= −−  and Y 2i =  refers to the measurement σz, with σz and σx again given by Eq. (1). Similarly, 
Alice’s (Bob’s) outcome in the i-th successfully heralded round is denoted by A {0, 1}i ∈  ( ∈B {0, 1}i ).

Next, we present the different steps of the protocol. A schematic is shown in Fig. 1. For simplicity, we shall 
assume here that only Bob holds a qubit amplifier to compensate channel loss (see the Methods section for a 
description of the qubit amplifiers we consider), while Alice has the entanglement source, ρab, in her lab. The case 
where both Alice and Bob hold a qubit amplifier and the entanglement source is located in the middle of the 
channel between them is analyzed in the Supplementary Information.
Protocol steps

	 1.	 Initialization. Bob sets the counter i of successfully heralded rounds to 0. While <i nSH for a certain 
prefixed value nSH, steps 2 and 3 below are repeated.

	 2.	 Distribution. Alice prepares a bipartite entangled state, abρ , and sends system B to Bob through the quantum 
channel. If no successful heralding takes place at Bob’s qubit amplifier, the signal is discarded and step 2 is 
repeated. Otherwise, Bob updates the counter i to i 1+ . Then, he randomly chooses a bit value ∈T {0, 1}i  
with probabilities γ= = −TP( 0) 1i  and TP( 1)i γ= = , respectively, and sends it to Alice through an 
authenticated classical channel. We denote by T T T T( , , , )n1 2 SH

= …  the string of all bit values Ti.

Figure 1.  Schematic of the considered DIQKD protocol. While Alice holds an entanglement source, ρab, in her 
lab, Bob holds a qubit amplifier, which consists of an entanglement source, ρbc, and a Bell state measurement 
(BSM) used for teleportation. The role of the qubit amplifier is to mitigate the effect of channel loss. In every 
round of the protocol in which a successful heralding takes place at the qubit amplifier, Bob randomly chooses a 
bit value ∈T {0, 1}i . If T 0i = , Alice (Bob) chooses as measurement setting Xi zσ=  (Yi zσ= ). If T 1i = , Alice 
chooses at random her measurement setting X { , }i z xσ σ∈ , with zσ  and xσ  being the Pauli matrices given by  
Eq. (1). Similarly, in this latter case, Bob chooses at random his measurement setting σ σ∈ + −Y { , }i , where 
σ σ σ= ±± ( )/ 2z x . Their respective outcomes are recorded as A B, {0, 1}i i ∈ , where Ai (Bi) indicates which of 
Alice’s (Bob’s) two photodetectors registered a single-photon pulse. If, say, Alice obtains an inconclusive result 
(i.e., no photons or multiple photons are observed, she deterministically selects =A 1i , and similarly for Bob. 
The reader is referred to the main text for further details.
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	 3.	 Measurement. If =T 0i , the i-th successfully heralded round is considered to be a key generation round, 
and Alice and Bob choose the settings =X Y( , ) (0, 2)i i . If =T 1i , such round is considered to be a test 
round (i.e., a CHSH game round), and they independently select X Y, {0, 1}i i ∈  uniformly at random. 
Alice and Bob record their measurement outcomes as Ai, B {0, 1}i ∈ , respectively. If, say, Alice (Bob) 
obtains an inconclusive result (i.e., no photon or multiple photons are observed in the detectors) she (he) 
deterministically assigns A 1i =  ( =B 1i ) to keep the detection loophole closed. Finally, Alice (Bob) 
publicly announces the measurement settings Xi (Yi). In what follows, we will denote by X (Y) the bit string 
X X X, , , n1 2 SH

…  (Y Y Y, , , n1 2 SH
… ) of Alice’s (Bob’s) measurement settings for the successfully heralded 

rounds. Similarly, a (B) will denote the string of measurement outcomes A A A, , , n1 2 SH
…  ( …B B B, , , n1 2 SH

).
	 4.	 Information reconciliation. Alice and Bob use an error correction protocol to obtain two identical bit 

strings, ZA and ZB, from A and B, respectively. For this, Alice sends Bob leakIR bits of syndrome informa-
tion and Bob obtains an estimate, ZB, of A. Next, they perform an error verification step (using two-univer-
sal hash functions) that leaks at most ⌈ ⌉log (1/ )2 IR  bits of information to Eve, for a certain prefixed 
parameter IR. If this last step is successful, it is guaranteed that Alice’s and Bob’s bit strings =Z AA  and ZB 
satisfy P Z Z( )A B IR≠ ≤ . Otherwise, the protocol aborts.

	 5.	 Parameter estimation. Bob sets the parameter Ci = ⊥ for the key generation rounds (i.e., when T 0i = ) and 
ω=C Z B X Y( , , , )i i i iCHSH Bi

 for the test rounds (i.e., when T 1i = ), with = …i n1, 2, , SH, and where ZBi
 

denotes the i-th bit of the string ZB and the function CHSHω  is defined as 

ω =





⊕ = ⋅a b x y a b x y( , , , ) 1 if ,
0 otherwise, (2)CHSH

 with ⊕ denoting bit addition modulo 2 and ⋅ denoting bit multiplication. The overall number of test rounds 
in which =C 1i  (and thus the parties win the CHSH game) is denoted by = ∑ =C Ci T iSH { : 1}i

. This quantity 
allows to compute a lower bound on the number of secret bits that can be extracted from ZA and ZB using 
privacy amplification28. Bob aborts the protocol if the fraction of wins lies below a certain prefixed 
threshold value, i.e., when C n/SH SH SH estω γ δ< | − , where ω| ∈ +(3/4, (2 2 )/4)SH  is the expected 
winning rate of the CHSH game in the test rounds (which requires an experimental characterization of the 
setup), γ is again the probability that Bob uses a successfully heralded round as a test round, and estδ  is the 
confidence interval that defines the abortion threshold. That is, δest is the maximum difference between the 
expected and the actual winning rates of the CHSH game that Bob accepts without aborting.

	 6.	 Privacy amplification. Alice and Bob apply a privacy amplification protocol to their bit strings ZA and ZB to 
obtain the final keys, KA and KB, of length l. This protocol uses a randomness extractor that succeeds except 
with error probability PA.

The main protocol arguments are summarised in Table 1.
We remark that in the distribution step of the protocol, Alice and Bob need to store their signals until they 

choose their measurement settings and measure the signals in the third step of the protocol. For simplicity, below 
we will optimistically assume that, for this purpose, both of them hold noiseless and lossless quantum memories 
in their labs. Alternatively, they could also decide which rounds are key generation rounds and which ones are test 
rounds a posteriori by using the typical sifting step in QKD, though this approach results in a slightly less efficient 
solution. This is so because the data associated to Alice measuring σx and Bob measuring σz is not used in the 
protocol.

Also, we note that in a photonic implementation of the DIQKD scheme, the measurements Xi and Yi can be 
realised by means of a polarization modulator that rotates the polarization state of the incoming signals, together 
with a PBS that separates vertical and horizontal polarization modes, followed by two photodetectors. For exam-
ple, the rotation angles of the polarization modulator associated to the measurements σz, σx, σ+ and σ− are 0, π/4, 

/8π  and π− /8 radians, respectively. The observation of one single-photon in, say, horizontal (vertical) polarization 
is recorded by Alice as A 0i =  ( =A 1i ), and the same applies to Bob.

Evaluation.  A major goal of this work is to determine the resources needed to implement DIQKD over long 
distances, with a particular emphasis on the detection efficiency and the quality of the entanglement sources. 
In this section, we use the device models and the secret key rate formula presented in the Methods section to 

Protocol arguments

nSH Post-processing block size

γ Probability of a test round

estδ Confidence interval for the CHSH game winning rate

IR Error probability of information reconciliation

PA Error probability of privacy amplification

l Length of the final keys KA and KB

Table 1.  List containing the main protocol arguments.
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evaluate the performance of the DIQKD protocol described above. All the relevant calculations required to repro-
duce the results presented here are included in the Supplementary Information.

To start up with, let us introduce some concepts and notation that shall be used in what follows. First of all, we 
will refer to two different DIQKD setups: the entanglement swapping relay (ESR) based setup and the polarizing 
qubit amplifier (PQA) based setup. The only difference between them lies in the qubit amplifier34–36, particularly, 
in the internal mechanism it uses to generate entangled photons for teleportation. To be precise, the ESR utilizes 
a source of entangled pairs directly36 (for instance, a PDC source), while the PQA34,35 generates entanglement by 
interfering single photon pulses in a linear optics network (see the Methods section). In both cases, we suppose 
that the teleportation is performed using a standard linear optics Bell state measurement (BSM). Regarding the 
photodetectors, we assume that all of them are photon-number-resolving (PNR) with the same detection effi-
ciency, ηd, and the same dark count probability, pd. Similarly, all the optical couplers used to link the light sources 
to the optical fiber are assumed to have the same coupling efficiency, cη . See the Methods section for further 
details about the device models, as well as for a detailed description of the qubit amplifiers we consider.

For simplicity, in the simulations below we assume that the coupling efficiency of the light sources is equal to 
the detection efficiency of the photodetectors, i.e., we set c d c,dη η η= = . This decision is motivated because 
DIQKD requires very high values of c,dη , so the effect of this simplification is negligible, and it reduces the number 
of experimental parameters to consider. Also, unless otherwise stated, we fix the dark count rate of the photode-
tectors to = −p 10d

7. Although this is a quite low value, it is achievable with current technology, for instance, by 
using superconducting nanowire single-photon detectors39,40 or even avalanche photodiodes41.

Regarding the security of the protocol, Alice and Bob should agree on the value of the secrecy parameter, sec, 
the correctness parameter, cor , and the robustness parameter, rob in advance. Of course, these and other param-
eters, together with the secret key length of the protocol, are properly presented in the Methods section. For 
illustration purposes, in the simulations we consider two examples of security parameter sets   ( , , )sec cor rob , 
which we denote by S1 and S2. These sets are given in Table 2. In addition, we further simplify the numerics by 
fixing the value of the failure probability of the entropy accumulation theorem, EA , which is another parameter 
entering the security analysis. Precisely, we take 10EA

6 = −  ( 10EA
10 = − ) for the set S1 (S2). We remark, however, 

that according to our simulations the loss of generality that results from fixing the value of EA  in advance is very 
small. The secret key rate is then maximised over the remaining parameters. These include some security error 
terms affecting the secret key length, together with some experimental parameters that depend on the photon 
sources and on the qubit amplifier under consideration.

Importantly, the number of signals transmitted in an execution of the protocol, which we shall denote by N , is 
not determined a priori. Indeed, as described in the previous section, it is the target number of successful herald-
ing events that we fix, nSH. Therefore, in the absence of real experimental data, we set N  to its expected value N  
for the simulations. In this way, what we shall refer to as the secret key rate in this section is the ratio 

K l
N

,
(3)

=

l being the secret key length of the protocol. Similarly, the conditional secret key rate (i.e., the number of secret 
key bits per successful heralding event) reads | =K l n/SH SH, and it is related to k via K P KSH SH= | , where PSH is the 
successful heralding probability of the qubit amplifier. Note that we are assuming here that PSH is the same for all 
the rounds of the protocol, in such a way that 

N n
P (4)

SH

SH
=

Finally, in all the plots below we assume a threshold value for the secret key rate K  as low as −10 10. That is, 
whenever the resulting secret key rate is smaller than this threshold value, it is considered to be impractical and 
we neglect it. Although this choice is arbitrary, 10 10−  seems to be a reasonable value: even with an ideal entangle-
ment source with a high repetition-rate of 10 GHz, one could only extract 1 secret bit/s at most, which is probably 
too low for most applications.

Ideal sources.  We start by analyzing the ideal scenario where Alice and Bob hold perfect photon sources. 
Obviously, this case provides the best possible performance, and thus it can be used as a reference about the min-
imum resources (say, e.g., the minimum value of the detection and coupling efficiency, c,dη , and the minimum 
block size, nSH) that are required to achieve a certain secret key rate.

More precisely, we consider here that the entanglement source abρ  at Alice’s lab generates perfect polarization 
Bell pairs. On the other side, the entangled states ρbc used for teleportation are different for each qubit amplifier 
architecture. In the case of a PQA, bcρ  is generated via the interference of two single photon signals, ρh

single and 
ρv

single, on a beamsplitter of tunable transmittance t (see the Methods section for more details). Here, we set h
singleρ  

(ρv
single) to be a perfect single-photon source generating horizontally (vertically) polarised single photons. 

Similarly, in the case of an ESR, we directly set bcρ  to be a perfect source of polarization Bell pairs, as abρ .

No channel loss.  To begin with, we compare the achievable performance when using PQAs and ESRs in the 
absence of channel loss, i.e., we set the transmission distance L to zero. This scenario allows us to determine the 
minimum value of nSH as a function of ηc,d.
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As we will show below, it turns out that c,dη  is quite high even in this ideal scenario. This means that the prob-
ability that any of these two amplifiers provides a spurious success at Bob’s side due to the dark counts of the PNR 
detectors within the BSM is negligible compared to that of a genuine success triggered by a single photon from 
Alice. Therefore, for simplicity, in this subsection we set the dark count rate pd equal to zero. With this approxima-
tion and on the basis of the ideal form of ρab and bcρ  just presented, one can readily use the models for the detec-
tors and the optical couplers to derive analytical expressions for the three experimental parameters that enter the 
secret key rate formula: the successful heralding probability of the qubit amplifier, PSH (entering K  via N ), the 
expected conditional winning rate at the CHSH game, ω|SH, and the expected conditional quantum bit error rate, 
Q SH|  (the latter two entering K  via l). In the ESR-based setup, one obtains 

ξ

ω ξ ξ ξ ξ

ξ ξ

=

| =
+

+ − + −

| = −

P

Q

2
,

2 2
4

3
4

(1 ) (1 ),

(1 ), (5)

SH
ESR

2

SH
ESR 2 2

SH
ESR

where the parameter ξ η= c,d
2 . We remark that the successful heralding probability scales with 2ξ , i.e., with c,d

4η , 
because it requires the successful detection of two photons in the BSM. Note that the detection probability of each 
photon scales with ξ, as this quantity includes both the detection and the coupling factors, i.e., ξ η η η= =c d c,d

2 . 
Similarly, in the PQA-based setup, one finds 

P t t

t
t

t

Q t
t

(1 ) [1 (1 )],

1
1 (1 )

2 2
4

3
4

(1 )

(1 )
2

(1 ) ,

(1 ) (1 )
2[1 (1 )]

,
(6)

SH
PQA 2

SH
PQA 2 2

SH
PQA

ξ ξ

ω
ξ

ξ ξ

ξ ξ

ξ ξ
ξ

= − − −

| =
− −







+
+ −

+
+

−






| =
+ −

− −

where the parameter t corresponds to the transmittance of the BS within the amplifier. The reader is referred to 
the Supplementary Information for the detailed calculation of PSH, ω|SH and |Q SH in more general settings that 
reduce to Eqs. (5) and (6) when ideal sources are considered.

From Eq. (6), it is evident that there is a trade-off on the coefficient t. The terms SH
PQAω|  and Q SH

PQA|  favor t 1≈ , 
and thus the conditional secret key rate K SH| , which depends on these parameters but not on PSH

PQA, also favors 
≈t 1. Indeed, in the limit t 1→  we have that SH

PQA
SH
ESRω ω| = |  and | = |Q QSH

PQA
SH
ESR. On the other hand, PSH

PQA is max-
imised when t 1 (2 ) 1ξ= − − , and it actually vanishes when t 1= . This behaviour can be easily understood by 
examining the states bc bcρ ϕ ϕ=  generated with the single-photon interference inside the PQA, whose 
expression with ideal single photon sources is of the form ϕ ψ φ χ= − + − −t t t t(1 ) 2 (1 )bc bb cc bc 
and the states bbψ , φ cc and χ bc are given in Eq. (17) of the Methods section. In short, by setting t close to 1 we 
have that whenever a successful heralding takes place at the qubit amplifier, this event is due to the entangled pair 

bcχ  with a high probability, and thus K SH|  is maximised. On the contrary, the lower the transmittance t is, the 
more likely it is that a success comes from the spurious term ψ bb and, consequently, |K SH is minimised. In our 
simulations, we numerically optimise the value of t so that the overall secret key rate K  is maximised.

Also, we remark that by substituting the parameters from Eqs. (5) and (6) in Eq. (31), equating the resulting 
expression to zero and numerically solving for ξ, one obtains the minimum value of ξ required for a positive key 
rate. This minimum value happens to be very large, ⪆ξ .92 3% (or, equivalently, ⪆η ξ= .96 1%c,d ) for both types 
of qubit amplifiers. Similarly, from Eqs. (5) and (6), it can be shown that, irrespectively of the value of t, whenever 
ξ ≥ 50% we have that P PSH

ESR
SH
PQA> , SH

ESR
SH
PQAω ω| ≥ |  and Q QSH

ESR
SH
PQA| ≤ | . That is, an ESR-based qubit amplifier 

always outperforms a PQA in the absence of channel loss, if perfect sources are assumed. In Fig. 2(a) we plot the 
minimum block size, nSH, and the minimum detection efficiency, ηc,d, that are needed to obtain a secret key rate 
above the threshold value of −10 10 at =L 0 km. We denote this secret key rate by K L 0=  and the minimum block 
size by n LSH 0|∗

= . The value of |∗
=n LSH 0 is obtained for each c,dη  via exhaustive numerical search over all the free 

parameters contained in the finite-key rate formula. The solid (dashed) bluish (reddish) lines correspond to the 
ESR (PQA) architecture, and in each case the lower (upper) line uses the set of security requirements S1 (S2) of 

sec cor rob

S1
−10 5 10 10− 10 2−

S2 10 9− −10 15 10 3−

Table 2.  Sets of security parameters sec, cor and rob  considered in the performance evaluation of DIQKD. The 
set S1 provides a lower level of security than the set S2.
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Table 2. Remarkably, despite the security parameters of S2 being significantly more demanding than those of S1, it 
turns out that the set S2 does not require much larger block sizes than S1.

Also, Fig. 2(a) indicates that both qubit amplifiers require a similar minimum block size, |∗
=n LSH 0, to deliver a 

secret key rate above the threshold value. Indeed, it is easy to show that if the threshold value for the secret key 
rate were zero (instead of 10 10− ) then the value of |∗

=n LSH 0 would be equal for both qubit amplifiers. However, the 
fact that we use a threshold value greater than zero implies that n LSH 0|∗

=  is always slightly lower for the ESR than 
for the PQA. This is so because, even though the latter can mimic the conditional secret key rate of the former for 
any efficiency c,dη , the ESR has a higher success probability PSH

ESR, thus leading to a higher overall secret key rate. 
Nevertheless, this effect cannot be fully appreciated with the resolution of Fig. 2(a).

Finally, the dotted black vertical line illustrated in Fig. 2(a) corresponds to the (asymptotic) minimum effi-
ciency, η ≈ .96 1%c,d , required to obtain ≥∞ =

−K 10L 0
10. That is, no secret key rate above such threshold value is 

possible when 96 1%c,d ⪅η . , no matter how much we increase the block size.
In what follows, we will refer to the lines in Fig. 2(a) as the critical lines, since every pair n( , )c,d SHη  lying below 

these lines delivers a negligible secret key rate with the corresponding security requirements.
Figure 2(b) shows the zero-distance secret key rate, =K L 0, as a function of the detection and coupling effi-

ciency, c,dη , for different values of the block size, nSH. As already discussed above, the ESR architecture always 
leads to larger secret key rates for all values of ηc,d, while the minimum efficiencies required to have a secret key 
rate larger than the threshold value are roughly equal for both qubit amplifiers. Again, the small mismatch 
between the minimum efficiencies required by both amplifiers occurs because the selected threshold is greater 
than zero. Otherwise, the minimum efficiencies would match. For illustrative purposes, Fig. 2(b) considers four 
different block sizes: nSH → ∞, =n 10SH

11, n 10SH
9=  and =n 10SH

17. As already shown in Fig. 2(a), the smaller 
the block size is, the larger the value of the minimum efficiency ηc,d that is required. For instance, for a block size 
as large as, say, n 10SH

11= , and if one considers the weaker set of security requirements S1, the minimum effi-
ciency is at least 96 4%c,dη ≈ . . Also, for any given value of nSH, the greater the detection efficiency considered 
(with respect to its minimum value), the closer the resulting secret key rates corresponding to the security settings 
S1 and S2 become. This is so because, in this situation, the effect of finite statistics is less prominent. Note that in 
the limit given by the asymptotic regime, the secret key rate ∞K  does not depend on the security sets S1 and S2, but 
these sets are only relevant in the finite-key regime.

Channel loss.  In this subsection, we consider the effect of channel loss as modeled in the Methods section, where 
it is parametrised by the quantity LαΛ =  measured in dB. Here and throughout this work, the transmission 
distance L is the distance between Alice’s lab and Bob’s lab. For example, when only Bob has a qubit amplifier, then 
L represents the distance between Alice’s entanglement source ρab (located inside Alice’s lab) and Bob’s qubit 
amplifier (located inside Bob’s lab). Similarly, when both Alice and Bob have a qubit amplifier (see the 
Supplementary Information), L is the distance between Alice’s qubit amplifier and Bob’s qubit amplifier. Also, we 
set here the dark count rate of the detectors to p 10d

7= − , as the effect of dark counts becomes relevant in this 
scenario.

Figure 3 plots the secret key rate K  as a function of Λ for various values of ηc,d and nSH, and for the two qubit 
amplifier architectures under consideration. More precisely, we use two values for ηc,d: the ideal one, i.e., 
η = 100%c,d , and another one close to the threshold value of .96 1% discussed above, say, η = .96 5%c,d . Moreover, 
for each of these values of the efficiency ηc,d, we plot three different secret key rates: the asymptotic one ∞K , and 
two finite-key rates, one for the security settings S1 and another one for the security settings S2. In both finite-key 
cases, we use a common block size nSH close to the critical value obtained from Fig. 2(a). Specifically, we set 
n 10SH

7=  when 100%c,dη = , and n 10SH
11=  when η = .96 5%c,d . In doing so, and for the considered security 

analysis, we are simultaneously providing upper bounds (given by K∞) and lower bounds (given by the finite-key 
rates) to the finite-key performance that could be achieved with the chosen detection and coupling efficiencies, 
and the security requirements. By increasing the value of nSH, the finite-key rates approach the asymptotic sce-
nario. Also, K∞ with η = 100%c,d  provides a clear upper bound for the achievable secret key rate with the security 
analysis introduced in Sec. IV B.

Figures 3(a) and 3(b) further show, as expected, that in the case of ideal sources the ESR architecture outper-
forms the PQA architecture also in the presence of channel loss.

As a final remark, we note that if Bob did not use a qubit amplifier, then the maximum possible value of Λ 
would be very limited. Indeed, it can be shown that in the case of ideal sources, and even if one sets 100%c,dη =  
and → ∞nSH , the maximum value of Λ is as low as ⪅0 7Λ .  dB. See the Supplementary Information for further 
details.

Time constraints.  In the discussion so far, we have not considered the duration of a DIQKD session, which 
is another crucial experimental parameter. Indeed, this parameter imposes strong restrictions on the loss that 
DIQKD can tolerate. We study it in this section.

According to the protocol described earlier, the post-processing block size, nSH, is fixed a priori. This means, 
in particular, that the number of transmitted signals, N , and thus the duration of the distribution step of the pro-
tocol, which we shall denote by τ, are random variables. Their mean values are given by Eq. (4) and τ ν= N , 
respectively, where ν represents the clock rate of system. From Eq. (4) we have that, for a given nSH, the value of 
N  increases when the success probability of the qubit amplifier decreases, for instance, due to channel and/or 
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detection loss. Indeed, according to Eqs. 5 and 6) we find that N  at =L 0 km, which we will denote by =N L 0, 
is, in the case of an ESR, equal to 

η
| ==N n2 ,

(7)
L 0

SH

c,d
2

while in the case of a PQA it satisfies 

N n
t t

n
t

(1 ) [1 (1 )]

(1 ) (8)

L 0
SH

c,d
4

c,d
2

SH

c,d
4

η η

η

| =
− − −

≈
−

.

=

This is illustrated in Fig. 4, which shows N L 0=  as a function of c,dη  when n {10 , 10 , 10 }SH
7 9 11= . From Fig. 4 

we find that the value of =N L 0 associated to the PQA presents a much steeper slope than that of the ESR archi-
tecture when c,dη  decreases. This is because the optimal transmittance t of the PQA approaches 1 in that regime.

In the scenario where L 0>  km, the success probability of the qubit amplifier decreases exponentially with the 
channel loss. In particular, we find that the value of 

≥N L 0 in this case is given by 

Figure 2.  Performance evaluation of DIQKD with ideal photon sources at L 0=  km, for the setup given in 
Fig. 1. Bluish (reddish) lines are used for the ESR (PQA) architecture. (a) Minimum value of the detection and 
coupling efficiency, c,dη , and minimum value of the block size, nSH, required to obtain a zero-distance secret key 
rate K 10L 0

10≥=
− . Both sets of security requirements, S1 and S2, are compared for each qubit amplifier. Any 

combination of parameters ηc,d and nSH must be above the lower (upper) lines to achieve a secret key rate above 
the threshold value with the security requirements given by the sets S1 (S2). The dotted black vertical line 
indicates the (asymptotic) minimum efficiency, 96 1%c,dη ≈ . , which is the smallest detection efficiency that 
delivers a zero-distance asymptotic secret key rate ≥∞ =

−K 10L 0
10. (b) Zero-distance secret key rate, =K L 0, as a 

function of c,dη  for various values of the block size nSH. For each qubit amplifier, four different block sizes are 
considered: nSH → ∞, n 10SH

11= , =n 10SH
9 and n 10SH

7= . The finite secret key rates appear in pairs of solid 
lines, one for the security set S1 (upper line) and another one for the security set S2 (lower line). The asymptotic 
secret key rates corresponding to nSH → ∞ are illustrated with dotted lines.
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η
η η

η η

| = −

+ + −

≥

−

N n p

p

2 {(1 4 )

4 [1 (1 2 )]} , (9)

L 0
SH

c,d
2 d ch c,d

2

d ch c,d
2 1

 for the ESR architecture, and 

η η

η η η

| =
− −

− −

× + − +

≥

−

N n
t

p t

p t

[1 (1 )]
{(1 10 )(1 )

4 (1 /2)} , (10)

L 0
SH

c,d
2

c,d
2 d

ch c,d
2

d ch
1

 for the PQA. In these two equations, for simplicity, the success probability PSH is computed to the first order in pd.
We recall that Fig. 3 shows the overall channel loss that Alice and Bob can tolerate before the secret key rate 

drops down to zero, and which secret key rates they can attain depending on the channel loss. This information is 
complemented by Table 3, which, for every finite block size curve in the figure, tells us the value of N L 0≥

 
required at the extreme channel loss where the key rate starts dropping down to zero. These values are easily 
translated into time constraints, and they are quite large from a practical point of view. Indeed, if one considers, 
for example, that the clock rate of the system is, say, 10 GHz, we find that when 96 5%c,dη = .  it would take about 
.2 1 ( .37 0) days to establish a secret key of length 7 56 107. ×  ( . ×8 64 107) bits—out of a block size n 10SH

11= —
over a channel loss of 39 dB (37 dB) when using the ESR (PQA) architecture and the security settings given by S1. 
Of course, the result improves when ηc,d increases. For instance, if η = 100%c,d  then it would take of the order of 

Figure 3.  Secret key rate K  as a function of the overall channel loss Λ measured in dB for the case of ideal 
photon sources. The considered setup is again that of Fig. 1. (a) Corresponds to the ESR architecture and (b) to 
the PQA architecture. In both figures, we use two different detection and coupling efficiencies, η = 100%c,d  and 
η = .96 5%c,d , each of them tagged with a different color. For each value of the efficiency, we plot the asymptotic 
secret key rate ∞K  (dotted line), together with two finite-key rates for different values of nSH (solid lines). Each 
finite-key rate is plotted twice, the upper (lower) line corresponding to the security settings S1 (S2), and in both 
cases a common block size nSH close to the critical one is assumed (see Fig. 2(a)). More precisely, we take 

=n 10SH
7 when η = 100%c,d  and n 10SH

11=  when η = .96 5%c,d . By increasing the value of c,dη  and/or nSH the 
finite-key rates approach those of the optimal scenario, which corresponds to ∞K  assuming 100%c,dη = .

https://doi.org/10.1038/s41598-019-53803-0


9Scientific Reports |         (2019) 9:17749  | https://doi.org/10.1038/s41598-019-53803-0

www.nature.com/scientificreportswww.nature.com/scientificreports/

120 (250) seconds to establish a secret key of length 1 56 105. ×  (1 58 105. × )—out of a block size =n 10SH
7—over 

48 dB when using the ESR (PQA) architecture and the security settings given by S1. These particular examples are 
given to illustrate the maximum duration of a DIQKD session, but the duration of a session with arbitrary values 
of nSH, c,dη  and L can be computed directly from Eqs. (9) and (10).

Generic sources.  In this section we investigate the effect that vacuum pulses and multiple photon pairs, gener-
ated by practical entanglement sources, have on the performance of DIQKD. For concreteness, and also moti-
vated by the results of the previous subsection, we focus on the ESR architecture for the qubit amplifier at Bob’s 
lab, and we consider entanglement sources ρab and bcρ  (as in Fig. 1) that generate a coherent superposition of 
bipartite entangled states written as 

ψ ϕ ϕ ϕ= + +p p p , (11)ab ab ab ab0 0 1 1 2 2

 where pn, with n 2≤  and p p p 10 1 2+ + = , stands for the probability of generating a n2 -photon entangled state 
of the form 

† † † †

n n
a b a b1

! 1
( ) 0

(12)n ab
n

abh v v hϕ =
+

− .

In Eq. (12), 0 ab is the vacuum state and ah
† and †av  ( †bh  and bv

†) denote, respectively, the creation operators of 
horizontally and vertically polarised photons at the spatial mode a (b). Remarkably, we set =p 0n  for n 3≥  in 
Eq. (11). The underlying assumption is that the effect of multiple photon pairs is properly encompassed by the 
effect of double photon pairs, which is supported by our numerical simulations. A particular example of entan-
glement sources that sticks to the structure given by Eq. (12) are the parametric down conversion (PDC) 
sources42,43, and a thorough analysis of their performance for DIQKD is given in the Supplementary Information 
(considering a contribution of up to n 3=  photon pairs). There, we show that PDC sources do not seem to be 
suitable for DIQKD, especially in the long-distance regime, since they require really long DIQKD sessions and 
deliver very low secret key rates.

For the evaluation of an entanglement source subject to Eq. (11), we characterise the photon-number statistics 
by means of two parameters alone: the probability p0 of emitting vacuum, and the ratio =q p p/2 1 between the 
probability of emitting a double photon pair and that of emitting a single photon pair. Of course, if one considers 
a practical entanglement source, the photon-number statistics pn cannot be controlled separately, but they typi-
cally depend on an intensity parameter. For instance, in the case of PDC sources, we have that pn is fixed for all n 
once we set the value of p0 (or, equivalently, the intensity of the source), and in the low intensity regime the 
double-to-single photon pair ratio reads = ≈ − − = − +− −q p p p p p p p/ (1 )/ ( 1)( 2)/2PDC 2 1 0 1 1 0

1/2
0

1/2 . The case 

Figure 4.  Average number of signals, =N L 0, that Alice needs to send Bob to collect a data block size equal to 
nSH when using ideal photon sources, as a function of the detection and coupling efficiency c,dη  at L 0=  km. As 
in Eqs. 5 and 6), in this figure we disregard dark counts because their effect at =L 0 km is negligible. Also, we 
set the free experimental and security parameters to those values that optimise the secret key rate given by 
Fig. 2(b). The figure considers three different data block sizes, i.e., n 10SH

7= , =n 10SH
9 and =n 10SH

11. All the 
plots are cut at the value of c,dη  for which the resulting secret key rate is below the threshold value of −10 10. We 
note that, since in the case of the ESR the value of =N L 0 does not depend on any parameter to be optimised, 
the cases S1 and S2 only differ in the minimum c,dη  that still provides ≥ −K 10 10, which can be extracted from 
Fig. 2. In the case of the PQA, =N L 0 depends on the transmittance t to be optimised, and therefore the cases S1 
and S2 differ more from each other.
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of ideal sources, on the other hand, corresponds to p p 00 2= =  and thus =q 0. Due to the poor performance of 
PDC sources when used for DIQKD (see the Supplementary Information), below we consider combinations of 
p q( , )0  that satisfy ≤ <q q0 PDC for the corresponding >p 00 . In doing so, we investigate an intermediate sce-

nario between the photon number statistics of ideal sources and those of PDC sources.
We remark, however, that the Supplementary Information includes a full mode analysis, both for the ESR and 

PQA architectures, which allows the evaluation of any desired photon number distribution for the different light 
sources, including the contribution of up to any wanted number of photon pairs per source.

The results for the simplified scenario discussed above are illustrated in Fig. 5, which shows the secret key rate 
as a function of the channel loss Λ for =n 10SH

9 and the security requirements given by S1. Regarding the detector 
and coupling efficiency, we use {100%, 98 7%}c,dη ∈ . . Note that the value 96 5%c,dη = .  is not used here, as it is too 
close to the threshold efficiency with ideal sources. Instead, we choose 98 7%c,dη = . , which in turn allows to sim-
plify the comparison between this case and the one based on PDC sources in the Supplementary Information. For 
each value of ηc,d, we plot three different cases. The first (second) case, assumes that the entanglement source ρbc 
(ρab) is an ideal entanglement source, while abρ  ( bcρ ) is characterised by the parameters p q( , )0 . The third case con-
siders that both bcρ  and abρ  are characterised by the parameters p q( , )0 , which, for simplicity, we assume are the 
same for both sources. In general, though, the optimal intensity for each source will depend of the value of the 
channel loss. In each figure, we evaluate two possible values for p0: p 0 50 = .  (solid lines) and p 0 90 = .  (dotted 
lines). Also, we consider four different values for the parameter q {0, 10 , 10 , 10 }2 1 5 1∈ = − − . − .

In all the plots within Fig. 5, if one compares the solid lines with the dotted lines, we observe that reducing the 
value of the probability p0 for a fixed value of q basically leads to a rigid increase of the secret key rate (i.e., an 
increase by a constant factor that keeps the slope of the curve in logarithmic scale). This is so because vacuum 
signals rarely lead to false heralding flags in the qubit amplifier: if abρ  ( bcρ ) emits a vacuum state, it is necessary that 
either ρbc (ρab) emits more than one photon pair or that at least one dark count takes place at the detectors within 
the qubit amplifier in order to have a (spurious) successful heralding event. As a consequence, to a good extent, p0 
mainly affects the pre-factor PSH, but not the conditional secret key rate, K SH| . The greater the value of p0, the 
smaller the value of PSH, and thus the secret key rate rigidly decreases.

On the other hand, for a fixed value of p0, increasing q significantly affects K SH| , so that multiple photon pairs 
are responsible for the changing slope of the secret key rate as well as for the position of the cutoff point where the 
secret key rate starts dropping down to zero, as shown in Fig. 5. This is so because multiple photon pairs lead to 
spurious heralding events that limit the utility of the qubit amplifier, and, as expected, this effect is amplified when 
the detection and coupling efficiency c,dη  decreases. In this regard, we also note that the performance of DIQKD 
seems to be more robust to the presence of multiple photon pairs in ρab than in bcρ . The reason goes as follows. 
Multi-photons arising from ρab need to undergo a lossy channel, but multi-photons from ρbc do not. Therefore, the 
latter are more likely to trigger a spurious success at the qubit amplifier when the input from the channel is a vac-
uum signal. Actually, from Fig. 5 we observe that the curves with an ideal source bcρ , and abρ  characterised with 

= −q 10 2 or 10 1 5− .  are relatively close to the curve corresponding to q 0= . This is so because the cutoff points of 
these curves at the high loss regime are due to the dark counts of the detectors at the qubit amplifier, as in the case 

=q 0, and not to the presence of multiple photon pairs in ρab. On the contrary, all the curves with an ideal source 
ρab, and ρbc characterised with a nonzero q, show an early cutoff point induced by the multiple photon pairs in ρbc.

Furthermore, we note that the cutoff points match for = .p 0 50  and p 0 90 = .  if they are caused by the presence 
of multiple photon pairs, but they do not match if they are caused by the dark counts of the detectors. This is so 
because, in the former case, the cutoff point is roughly determined by the double-to-single photon pair ratio (i.e., 
by the parameter q), while in the latter case it is determined by the dark count to single photon pair ratio, which is 
different for each curve. Either way, Fig. 5 suggests that the noise induced by multiple photon pairs generated by 
the sources, particularly those generated by the sources within the qubit amplifier, seems to be the major chal-
lenge to achieve long-distance DIQKD with the considered setup.

S1 ηc,d nSH Λcutoff Kcutoff N⟨ ⟩

ESR 100% 107 48 dB . × −1 3 10 7 . ×1 2 1012

ESR 96 5%. 1011 39 dB . × −4 2 10 8 . ×1 8 1015

PQA 100% 107 48 dB 6 3 10 8. × − . ×2 5 1012

PQA .96 5% 1011 37 dB 2 7 10 9. × − 3 2 1016. ×

S2 c,dη nSH Λcutoff Kcutoff ⟨ ⟩N

ESR 100% 107 44 dB . × −2 1 10 7 5 0 1011. ×

ESR 96 5%. 1011 35 dB . × −9 8 10 8 7 2 1014. ×

PQA 100% 107 44 dB . × −1 0 10 7 9 9 1011. ×

PQA .96 5% 1011 28 dB . × −2 4 10 9 4 0 1015. ×

Table 3.  Average number of signals, N , that Alice needs to send Bob to collect a data block size equal to nSH, 
when using ideal photon sources and setting the channel loss to the cutoff value for which the secret key rate 
starts dropping down to zero in Fig. 3. The dark count rate of the photodetectors is set to = −p 10d

7, and the 
detection and coupling efficiency is ηc,d. The considered combinations of c,dη  and nSH correspond to the cases 
illustrated in Fig. 3, and both sets of security settings, S1 and S2, are considered.
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This effect is investigated further in Fig. 6, where we plot an upper bound on the maximum value of the 
parameter q, which we denote by qmax, to achieve K 0≥  with N 1015≤ , as a function of the channel loss Λ. For 
this, we assume that the source abρ  is an ideal source and we parametrise the source bcρ  with the quantity q. Note 
that since here we use the condition that the secret key rate is strictly greater than zero, we can set p 00 =  for ρbc 
as well. This is so because, as already explained, setting p 00 >  simply translates into a rigid decrease of the secret 
key rate, thus not affecting the value of qmax. That is, we define = − | ≥q p p Kmin {(1 )/ 0}pmax 1 11

. For illustration 
purposes, we consider the extreme cases η = 100%c,d  and 96 5%c,dη = .  again, and in addition we set =p 0d  in 
order to investigate the limitations imposed by the noise due to multiple photon pairs alone. In this scenario, 
Fig. 6 suggests that, irrespectively of the block size nSH, the value of the detector efficiency ηc,d and the security 
settings, the double-to-single photon pair ratio q severely restricts the maximum distance that is achievable with 
DIQKD. Moreover, note that in a realistic situation with a non-ideal ρab, qmax would be lower than the value shown 
in Fig. 6. The vertical cutoffs in the graphs indicate the points where N 1015≈ , as this value is already probably 
too large for a QKD session today. Since qmax is very small at these cutoff points, the corresponding values of Λ are 
very close (indistinguishable to our numerical precision) to those of the case q 0= , which are given by 

n150 10log 2

(13)
10

SH

c,d
4η

Λ = −












for the different pairs η n( , )c,d SH . This expression is directly obtained from Eq. (9) assuming p 0d = . As a final 
remark, note that one might achieve a source whose parameter <q qmax for a given distance by simply decreasing 
the intensity of the source. Indeed, this is the case, for example, of PDC sources, where one can reduce λ and thus 
q at the price of significantly increasing the probability p0 of emitting vacuum. While this might provide a positive 
key rate according to Fig. 6 (by assuming still that ρab is an ideal source), the resulting secret key rate might be 
probably too low to be practical because the probability of having a successful heralding event would be very low. 
The situation gets worse in the presence of dark counts.

Discussion
Device independence is a desirable feature for quantum key distribution (QKD) to ultimately defeat quantum hack-
ing. However, it comes at a high price, in terms of achievable performance and required resources. Indeed, long dis-
tance device-independent QKD (DIQKD) requires the use of heralding devices, like for instance qubit amplifiers, 
which can herald the arrival of a photon and thus decouple channel loss from the measurement settings selection.

Figure 5.  Secret key rate K  as a function of the overall channel loss Λ measured in dB for generic photonic 
sources and assuming the ESR architecture. (a) considers a detection and coupling efficiency η = 100%c,d  and 
(b) considers 98 7%c,dη = . . Each figure evaluates three different cases. The first (second) case, assumes that the 
entanglement source ρbc (ρab) is an ideal entanglement source, while abρ  ( bcρ ) is characterised by the parameters 
p0 and =q p p/2 1. The third case considers that both ρbc and abρ  are characterised by the parameters p0 and 

=q p p/2 1. All figures consider two possible values for p0, i.e., = .p 0 50  (solid lines) and = .p 0 90  (dotted lines), 
and four different values for the parameter ∈ = − − . −q {0, 10 , 10 , 10 }2 1 5 1 . Also, for concreteness, in all cases 
we set =n 10SH

9 and choose the security settings S1.
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In this work, we have investigated all-photonic DIQKD assisted by two general types of qubit amplifiers—
entanglement swapping relays and polarization qubit amplifiers—in the finite-key regime. In doing so, we have 
quantified some crucial experimental parameters that are essential to achieve DIQKD over practical distances and 
within a reasonable time frame of signal transmission. This includes, for example, the minimum value of the 
detection efficiency of the photodetectors and the quality of the entanglement light sources, in terms of their 
vacuum and multi-photon contributions. In this regard, we have shown that, even if perfect entanglement sources 
and photon-number-resolving detectors were available, the ability to achieve large enough violations of a 
loophole-free CHSH test within a DIQKD session of a reasonable time duration already imposes very strong 
restrictions on the minimum detection efficiency (96, 5%), which further increases quickly with the length of 
the transmission link. Similarly, we have shown that multi-photon pulses emitted by practical entanglement 
sources have a severe effect on the performance of DIQKD assisted by qubit amplifiers, as multiple photon pairs 
lead to spurious heralding events that strongly decrease the conditional secret key rate.

Altogether, our results suggest that the possibility of implementing optical DIQKD over long distances using 
the considered qubit amplifier architectures is probably quite far-off, as it seems to require a significant improve-
ment of our current experimental capabilities.

Methods
Device models.  In this section we briefly introduce the mathematical models that we used to derive the 
results exposed in Sec. II These models describe the main optical devices employed in a photonic implementation 
of a DIQKD setup, together with the behaviour of a typical lossy quantum channel.

Photodetectors.  We consider that Alice and Bob have photon-number-resolving (PNR) detectors at their dis-
posal, which are able to count the number of photons contained in each incoming optical pulse. In the relevant 
regime of low noise, they can be described by a positive operator valued measure (POVM) with the following 
elements: 

Π =







− Π =

− Π + Π ≥

∼

∼ ∼
−

p k

p p k

(1 ) if 0,

(1 ) if 1, (14)
k

k k

d 0

d d 1

 where the quantity pd stands for the dark count rate of the photodetectors, which is, to a good approximation, 
independent of the incoming signals. On the other hand, the operators Π∼k that appear in Eq. (14), with k ∈ , are 
given by 

∑ η ηΠ =






 −

∼
=

∞ −j
k

j j(1 ) ,
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 with ηd denoting the detection efficiency of the detectors, and where j  stands for a Fock state with j photons.

Figure 6.  Upper bound on the maximum double-to-single photon pair ratio qmax of the entanglement source 
bcρ  required to achieve ≥K 0 with N 1015≤ , as a function of the channel loss Λ. Here, we set =p 0d , so that 

the multiphotons generated in the qubit amplifier are the only source of noise in the system. The bluish lines use 
coupling and detection efficiency η = 100%c,d  and they include the block sizes =n 10SH

11, 109 and 107, while the 
yellow lines use η = .96 5%c,d  and they only include the case =n 10SH

11. This is so because n 10SH
9=  and 

=n 10SH
7 do not deliver a positive secret key rate for η = .96 5%c,d . Also, for each pair η n( , )c,d SH , the graphs 

corresponding to both sets of security settings, S1 and S2, are included whenever they are significantly different. 
Otherwise, we only plot that of S1 for simplicity. The vertical cutoffs in the graphs indicate the points where 

≈N 1015. As expected, when c,dη  decreases the value of qmax decreases as well.
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We remark that the mathematical model given by Eq. (14) assumes, for simplicity, that dark counts can only 
increment by one unit the number of photons observed in a given pulse. That is, if an optical pulse contains, say, k 
photons, we assume that the measurement outcome is at most +k 1 photons due to the dark counts, but not greater 
than this. This is a fair approximation given that pd is sufficiently low, which indeed is typically the case in practice.

Heralded qubit amplifiers.  To achieve long-distance DIQKD, we assume that Alice and Bob use heralded qubit 
amplifiers34–36 to notify them the arrival of a photon before they select their measurement settings. That is, only 
after the qubit amplifier confirms that a photon has arrived, Alice (Bob) selects the measurement and measures 
the photon. If no successful heralding takes place, the optical pulse is simply discarded.

Typical qubit amplifiers consist in a teleportation gate44. That is, a successful heralding occurs when the state 
of the arriving photon is teleported to a photon at the output port of the qubit amplifier. The general mechanism 
is depicted in Fig. 7(a), while Fig. 7(b) shows the standard linear-optics BSM used by the qubit amplifiers intro-
duced in34–36 to teleport the input photon. More efficient BSMs exist45,46 and could be used here as well, although 
they require complicated entangled ancilla states. Depending on the mechanism used to generate the bipartite 
entangled states, bcρ , illustrated in Fig. 7(a), one can distinguish two types of qubit amplifiers: polarization qubit 
amplifiers (PQAs)34,35 and entanglement swapping relays (ESRs)36.

PQAs, first introduced in34 based on the seminal work reported in47, typically employ practical single-photon 
sources to generate ρbc. For instance, the PQA proposed in35 uses the linear-optics circuit shown in Fig. 7(c) 
for this purpose, where single

hρ  (ρsingle
v ) represents the state of a single-photon pulse prepared in horizontal (vertical) 

polarization. In the ideal case of perfect single-photon sources and unit detection and coupling efficiencies, it is 
straightforward to show that the circuit given by Fig. 7(c) generates states bc bcρ ϕ ϕ=  with 

Figure 7.  (a) Working principle of an heralded qubit amplifier based on teleportation34–36. A successful 
heralding is indicated with a flag. It notifies that a photon at the input port, a, of the qubit amplifier was 
teleported to a photon at its output port, c. For this, the qubit amplifier first generates a bipartite entangled state, 

bcρ , and then measures the signals in modes a and b with a BSM. In doing so, the state of the photon at mode a is 
teleported to that at mode c up to a unitary rotation. The only difference between the qubit amplifiers proposed 
in34–36 is the mechanism to generate the entangled states bcρ . See the main text for further details. (b) Linear-
optics BSM. The input states in modes a and b interfere at a 50:50 beamsplitter (BS). A polarizing BS (PBS) 
located at each output port of the BS separates vertically and horizontally polarised photons. Here we shall 
assume that all detectors are PNR detectors. A successful BSM corresponds to detecting two photons with 
orthogonal polarizations, i.e., only when exactly two detectors record one input photon each for any of the 
following photodetector pairs: D D( , )h v , D D( , )h v

∼ , ∼D D( , )h v  or ∼ ∼D D( , )h v . (c) Scheme introduced in35 to generate 
bcρ . A light source emits horizontally (vertically) polarised single-photons h

singleρ  ( v
singleρ ), which interfere at a PBS 

and then go through a BS of tunable transmittance t. Two Hadamard gates, denoted by H in the figure, are used 
to avoid (if one disregards noise effects) that input vacuum signals at mode a can produce a successful heralding 
flag when the BSM is that given by (b).
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t t t t(1 ) 2 (1 ) , (16)bc bb cc bcϕ ψ φ χ= − + − −

where the parameter t is the transmittance of the tunable beamsplitter (BS) illustrated in Fig. 7(c), and the states 
bbψ , φ cc, and bcχ  have the form 

† †

† †

† † † †

ψ

φ

χ

= −

= −

= − .

b b

c c

b c b c

1
2

( ) 0 ,

1
2

( ) 0 ,

1
2

( ) 0
(17)

bb b

cc c

bc bc

h
2

v
2

h
2

v
2

h h v v

In Eq. (17), the states 0 b, 0 c and 0 bc denote the vacuum states of the corresponding modes. The expression 
for the output states of the PQA in the practical scenario with non-ideal sources and non-unit detector and cou-
pling efficiencies can be found in the Supplementary Information.

Let us continue assuming, for simplicity and for the moment, an ideal scenario where the BSM within  
the qubit amplifier uses perfect PNR detectors (i.e., =p 0d  and η = 1d  in Eqs. 14 and 15) and lossless BSs. Then, 
from Eq. (16), it can be shown that whenever a single-photon pulse prepared in, say, the pure state 

a a( ) 0a ain h vφ α β= +† †  (with α β+ = 12 2 ) arrives at the input port a of the qubit amplifier, a successful 
BSM occurs with probability −t t(1 ). Also, in the case of a successful result, the state of the output photon at 
mode c (after applying an appropriate unitary transformation) is equal to † †c c( ) 0c cout h vφ α β= + . That is, the 
state φ ain  of the input photon is successfully teleported to an output photon. On the other hand, if a vacuum 
pulse, φ = 0a ain , arrives at the input port a of the qubit amplifier, this state can never lead to a spurious herald-
ing event, at least in the ideal scenario. This is so because, when the BSM uses perfect PNR detectors with no dark 
counts, the state 0 a bcϕ , with ϕ bc given by Eq. (16), cannot produce two detection clicks associated to orthog-
onal polarizations if it is measured with the BSM shown in Fig. 7(b).

Finally, qubit amplifiers based on ESRs36 directly prepare the state bcρ  with practical entanglement light 
sources like, for example, PDC sources. Indeed, in contrast to the arguments presented in34,48, it was shown in36 
that when this type of qubit amplifier is used in DIQKD, it can provide higher secret key rates than those achiev-
able with the PQA introduced in34 when using PDC sources.

Optical couplers.  Our analysis in Sec. II considers a fiber-based implementation of DIQKD. Thus, we model the 
coupling of the photons generated by the light sources into the optical fibers by means of a BS of transmittance cη . 
One input to the BS is the quantum signal, while the other input is a vacuum state. Similarly, one of the outputs of 
the BS is the optical fiber, while we assume that the other output is not accessible and represents the loss.

Quantum channel.  For simplicity, we suppose that the quantum channel mainly introduces loss. That is, we 
disregard any noise effect due for example to polarization or phase misalignment.

The channel loss is modeled with a BS of transmittance 10ch
/10η = −Λ , where the parameter Λ (dB) is related 

to the transmission distance L (km) by an attenuation coefficient α (dB/km) via the expression LαΛ = . The spe-
cific value of α depends on the considered channel. For instance, a typical value for α in the case of single-mode 
optical fibers in the telecom wavelength is 0 2α = .  dB/km.

Secret key length.  We use the security analysis introduced in28, which is valid against coherent attacks. Prior 
to the execution of the protocol, Alice and Bob agree on three parameters that tag the security of the final keys, KA 
and KB. These parameters are the secrecy parameter, sec, the correctness parameter, cor , and the robustness 
parameter, rob .

In particular, a protocol is said to be sec -secret, when implemented using a device D, if it satisfies 

P[1 (abort)] , (18)K E U E 1 seclA
ρ ρ ρ− || − ⊗ || ≤ 

where P(abort) is the abortion probability of the protocol, ρ ρρ=∣∣ ∣∣ †
1  stands for the trace norm, E is a quantum 

register held by the eavesdropper that may be initially correlated with D, K EA
ρ  is the output state of the DIQKD 

protocol describing Alice’s key string KA and the quantum register E conditioned on not aborting, 
z zU z

1
2 Al lρ = ∑  is the uniform mixture of all possible values of a l-bit string KA, and ρ ρ⊗U El

 is the perfectly 
secret output state.

The parameter sec  is upper bounded by 

≤ + +    , (19)sec PA s EA

where PA s +  is the total failure probability associated to the privacy amplification step, PA being an upper 
bound on the error probability of the randomness extractor and s being the smoothing parameter of the s
-smooth min-entropy28. The term EA  is the failure probability associated to the entropy accumulation theorem30, 
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which only guarantees that a certain lower bound on the s -smooth min-entropy holds with a probability larger 
than −1 EA.

The correctness parameter, cor, quantifies the probability that the final keys, KA and KB, are not equal. More 
precisely, a protocol is said to be cor-correct if P K K[ ]A B cor≠ ≤  . According to the protocol definition given in 
the previous section, we have that  cor IR= .

Finally, a protocol is said to be rob -robust for a specific honest implementation (i.e., for a particular implemen-
tation where the eavesdropper does not intervene) if it aborts with a probability smaller than rob. The protocol 
described above can only abort in two steps: the information reconciliation step, and the parameter estimation 
step. Therefore, we have that rob  satisfies 

   , (20)rob rob
IR

rob
PE≤ +

where rob
IR  ( rob

PE ) is the probability of aborting at the information reconciliation (parameter estimation) step for the 
considered honest implementation. Moreover, we have that the quantity rob

PE  verifies 

≤ + , (21)rob
PE

rob
EA

IR  

where rob
EA is the probability of the fraction of CHSH wins, C n/SH SH, being lower than the threshold SH estω γ δ| − . 

That is, 

P C
n (22)

rob
EA

SH
SH

SH
estω γ δ=






| − >




.

Note that for fixed values of rob
EA  and nSH, the minimum value of estδ  such that Eq. (22) holds satisfies49


δ ≥











.
n
1

2
ln 1

(23)
est

SH rob
EA

Also, we note that the parameter IR  contributes to rob
PE  in Eq. (21) because, conditioned on not aborting the 

protocol in the error verification step, Bob performs the parameter estimation step by using his original bit string 
of outcomes, B, and his estimate, ZB, of Alice’s string, which is equal to ZA except with probability IR .

A list with the main parameters related to the security of the protocol is provided in Table 4.
Then, it turns out that, conditioned on not aborting, the DIQKD protocol presented in the Results section 

delivers cor-correct and sec -secret output keys, KA and KB, whose length, l, is given by 


 





η γ= − − −






+






× − −








− −
















− .

l n

n leak

( ) 2log7 1 2log
4

( )

3log 1 1
4

2log 1
(24)

SH opt
s

EA IR

SH IR
s

2

PA

Here, the term ηopt represents a lower bound on the entropy generation rate of the CHSH game, 

n p n( , , , , /4, ) max , , , , /4, ,
(25)p topt SH SH est s EA IR 3

4
2 2

4

SH est
SH s EA IR

t
     η ω γ δ η

ω γ δ
γ

γ| + =





| −
+




< < +

 where  η γp p n( , , , , , )t SH 1 2  has the form 

Finite-key security parameters

sec Secrecy parameter

cor Correctness parameter

rob Robustness parameter

s Smoothing parameter of the min-entropy

rob
PE Abortion probability of parameter estimation

rob
IR Abortion probability of information reconciliation

rob
EA Abortion probability of entropy accumulation

EA Error probability of the entropy accumulation bound

Table 4.  List containing the main finite-key security parameters.
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In this equation, f p p( , )tmin  is given by 
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 and the function g p( ) reads 

= −

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


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g p h p p( ) 1 1
2

1
2

16 ( 1) 3 ,
(28)

 where the winning probability p lies in the interval p0 (2 2 )/4≤ ≤ + . Similarly, h x( ) is the binary entropy 
function, = − − − −h x x x x x( ) log (1 )log(1 ).

On the other hand, the information reconciliation leakage term in 24, leakIR, depends not only on the expected 
conditional quantum bit error rate of the key rounds, |Q SH, but also on the expected conditional winning rate of 
the test rounds, ω|SH. It can be written as 
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where rob
IR

IR IR  = +′ .
Recently, a slightly improved bound on the smooth min-entropy was derived for the entropy accumulation 

theorem31, thus enabling an improvement of the secret key length given by Eq. (24). However, the results reported 
in29,31 suggest that such improvement is small and does not probably have a significant impact in the regime of 
block sizes required by practical DIQKD.

Finally, in an actual execution of the protocol that required the transmission of N  signals, the secret key rate is 
defined as 

= .K l
N (30)

We remark that, in the limit where → ∞nSH , Eq. (30) matches the asymptotic secret key rate against general 
attacks reported in17, which is given by 

K
n leak
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