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Tradeoffs in the value of 
biodiversity feature and cost data in 
conservation prioritization
Amanda D. Rodewald   1,2*, Matt Strimas-Mackey   1, Richard Schuster   3,4 & Peter Arcese   5

Decision-support tools are commonly used to maximize return on investments (ROI) in conservation. 
We evaluated how the relative value of information on biodiversity features and land cost varied 
with data structure and variability, attributes of focal species and conservation targets, and habitat 
suitability thresholds for contrasting bird communities in the Pacific Northwest of North America. 
Specifically, we used spatial distribution maps for 20 bird species, land values, and an integer linear 
programming model to prioritize land units (1 km2) that met conservation targets at the lowest 
estimated cost (hereafter ‘efficiency’). Across scenarios, the relative value of biodiversity data increased 
with conservation targets, as higher thresholds for suitable habitat were applied, and when focal 
species occurred disproportionately on land of high assessed value. Incorporating land cost generally 
improved planning efficiency, but at diminishing rates as spatial variance in biodiversity features 
relative to land cost increased. Our results offer a precise, empirical demonstration of how spatially-
optimized planning solutions are influenced by spatial variation in underlying feature layers. We also 
provide guidance to planners seeking to maximize efficiency in data acquisition and resolve potential 
trade-offs when setting targets and thresholds in financially-constrained, spatial planning efforts aimed 
at maximizing ROI in biodiversity conservation.

Conservation decision-makers often respond to constraints on human effort, funding, or data quality by seeking 
to acquire land with high biodiversity values but low transaction, management, or opportunity costs. Although 
opportunism can play a role in such efforts1, decisions that fail to incorporate reliable ecological or cost data can 
increase the risk of protecting land with limited conservation value or high associated costs2–5. These shortcom-
ings reduce the efficiency of conservation actions. Consequently, many decision-support tools now incorporate 
ecological design concepts, such as complementarity and irreplaceability, to identify portfolios of sites that effi-
ciently conserve mapped biodiversity features while also minimizing the anticipated costs of land acquisition and/
or management6–10.

Most recently, systematic spatial planning tools have employed integer linear-programming (ILP) to allow 
planners to include multiple features across a wide range of temporal and spatial scales to identify cost-effective 
solutions to highly complex conservation planning problems (e.g.11–13). However, whereas 96% of spatial prior-
itizations reviewed by Sinclair et al.14 included data on focal species, far fewer included spatial data on land value 
(24%) or implementation costs (33%). Such exclusions could arise due to the high cost of data acquisition, uncer-
tainty about its precision, or a reluctance to make existing models more complex. Irrespective of the cause, these 
exclusions raise questions about the opportunity costs of improving biodiversity feature data versus spatial data 
on land or management costs and highlight inherent trade-offs in data type and quality that can affect long-term 
rates of return on funds and effort investment in conservation2,5. Theoretical studies suggest that the marginal 
value of biodiversity and land cost data in spatially-optimized conservation plans can vary with data structure 
and variability, the attributes of focal species, and the conservation targets or habitat suitability thresholds applied, 
with potentially dramatic effects on return on investment5,15. However, few empirical studies have examined this 
issue explicitly1,2,6,16.
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Theory suggests that the risk of prioritizing low-value sites increases as spatial variation in costs exceed spatial 
variation in the ecological or other features of interest, and empirical studies suggest this situation is common 
and sometimes extreme (but see17–22). A corollary of this theory is that as the spatial variation of one feature layer 
becomes large relative to others, the more variable layer increasingly drives solutions19,23. However, despite the 
potential influence of spatial variation in biodiversity feature or cost data on the solutions obtained, empirical 
tests of these theoretical predictions are scarce (but see 5 for case study in the Appalachians and 15 for simulation 
study). In particular, few studies quantify the contribution of biodiversity feature data on the efficiency of opti-
mized solutions or identify conditions under which ‘informed opportunism’ in area-based conservation plans is 
most likely to be achieved24.

In this paper, we estimate the value of biodiversity feature and land cost data on the efficiency of systematic 
conservation plans to protect focal birds of the Pacific Northwest of North America. Specifically, we examined 
how the relative value of cost and biodiversity data varied with (1) data structure and variability, (2) species attrib-
utes, (3) conservation targets, (4) and decision rules regarding acceptable levels of habitat suitability (Table 1). 
Because our study aimed to elucidate general principles underlying efficient conservation planning, rather than to 
identify a portfolio for real-world implementation, we focused our examination and findings using two groups of 
birds indicative of land of relatively low versus high cost, and associated with forested versus human-dominated 
landscapes, respectively.

Methods
Study area.  We focused on a 27,250 km2 portion of the Georgia Basin, Puget Trough and Willamette Valley 
of Pacific Northwest of the US and Canada (Fig. 1), and experiencing climatic conditions typical of Coastal 
Douglas-fir (CDF) forest and savanna habitats of southwestern British Columbia24. Land cover in the region is 
diverse, with approximately 57% of the land in forest, 8% in savanna or grassland, 5% in cropland, and 10% being 
urban or built.

Data layers.  Biodiversity data.  Our prioritizations were run with data from the eBird program, which is 
a citizen-science effort that has produced one of the largest and rapidly growing biodiversity databases in the 
world25,26. From the 2013 eBird Reference Dataset (http://ebird.org/ebird/data/download) we used a total of 
12081 checklists in our study area, then filtered these checklists to retain only those from March – June to capture 
the breeding season, <1.5 hours in duration, <5 km travelled, and a maximum of 10 visits to a given location 
(unpublished R code; Hochachka, pers. com.). Sampling locations <100 m apart were collapsed to one location, 
yielding 5470 checklists from 2160 locations, visited from 1–10 times and 2.53 times on average (Supplementary 
Materials Fig. 1). Following Schuster et al.27,28 we used a combination of quantitative models and expert elicita-
tion to identify which species were associated either with forest habitat or with human-dominated habitat, such 
as built or residential land (Supplemental Material Methods, Supplementary Material Tables 1 and 2). Data and 
code used to generate occupancy maps can be found at a GitHub repository (https://github.com/ricschuster/
Tradeoffs-biodiversity-cost).

Cadastral layer and land cost.  We incorporated spatial heterogeneity in land cost27,28 in our plan by using cadas-
tral data and 2012 land value assessments from the Integrated Cadastral Information Society of BC, resulting in 
193,623 polygons for BC27,28. Cadastral data, including tax assessment land values from Washington State came 
from the University of Washington’s Washington State Parcel Database (https://depts.washington.edu/wagis/
projects/parcels/; Version: StatewideParcels_v2012n_e9.2_r1.3; Date accessed: 2015/04/30), as well as San Juan 
County Parcel Data with separate signed user agreement. The combined cadastral layer included 1.92 M polygons. 
Cadastral data, including tax assessment land values from Oregon State had to be sourced from individual coun-
ties, which included Benton, Clackamas, Columbia, Douglas, Lane, Linn, Marion, Multnomah, Polk, Washington 
and Yamhill. The combined cadastral layer for Oregon included 605,425 polygons.

Conservation prioritization.  To assess the importance of biodiversity data, we compared prioritizations 
using both cost and biodiversity data to prioritizations using only cost. In both cases, the goal was to identify a set 
of planning units that captured a given percentage of each species’ total occupancy across the entire study region. 
When prioritizing sites with biodiversity data, we modeled the ‘minimum set problem’ in conservation planning 
wherein the goal is to minimize the cost of the solution whilst ensuring that all conservation targets are met. This 
objective is similar to that used in Marxan9. As such, we used a Marxan-like approach to find the minimum set 
of planning units that met the given occupancy targets ranging from 5–100% (in 5% increments) for the lowest 

Attribute Values

Relative variability of data CV of biodiversity data were 2, 4, 
8, or 16 times that of cost data

Conservation target 0–100% of populations protected

Habitat suitability (occupancy 
threshold)

A species has a 25%, 50%, or 75% 
probability of occurrence

Species group Forest vs. human-associated birds

Land cost Incorporated vs not incorporated

Biodiversity data Included vs. not included

Table 1.  Range of values or conditions evaluated across prioritization scenarios.
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possible cost. When prioritizing sites without biodiversity data, we used a C-rank approach (Supplementary 
Material Appendix A), whereby sites were selected from the cheapest to most expensive until occupancy tar-
gets were satisfied for all species. To explore the influence of constraints on habitat quality, we obtained optimal 
solutions to our spatial planning problem using three progressively more conservative thresholds for identifying 
suitable habitat (e.g., occupancy probability [p(occ)] ≥25%, ≥50%, or ≥75% likely to occupy a site). Doing so was 
achieved simply by excluding sites with estimated occupancy probability less than the threshold indicated. For all 
scenarios, we used 1 km2 planning units, generated by aggregating the species and cost data to this coarser reso-
lution from the original 1-ha cells. Aggregation was accomplished by taking the sum of cost data and the mean of 
species data for all 1-ha cells within the larger 1 km2 cells.

Figure 1.  (a–c) The focal area for this study showing the (a) cost and occupancy probabilities for (b) forest-
associated birds and (c) human-associated birds within 1 km2 planning units. Maps were produced using R 
version 3.6.1 (https://www.r-project.org/) with the following packages: fields v9.8-6, raster v3.0-2, rnaturalearth 
v0.1.0, sf v0.7-7, viridis v0.5.1. The base map is within the Creative Common’s domain and accessible through 
Natural Earth (https://www.naturalearthdata.com/).
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The relative value of cost data was assessed by comparing prioritizations generated with both cost and biodi-
versity feature data, to prioritizations based only on the latter. The value of biodiversity feature data was estimated 
similarly, by comparing the cost of scenarios that included biodiversity data to those based only on cost (i.e., 
C-rank). In both cases, we solved the Marxan-like prioritization problem for occupancy targets ranging from 
5–100%, in 5% increments, while maintaining a occupancy threshold ≥75% to ensure that only high quality 
habitat was selected. When using cost data we selected the cheapest set of planning units that met the occupancy 
targets; without cost data, we selected the smallest number of 1 km2 planning units that met habitat area and 
quality targets.

The above prioritizations were repeated for the 10 forest and 10 human-associated species to explore the 
consquences of spatial variation in cost, under the expectation that the more variable layer would be dispropor-
tionately influential on the prioritized solution. All prioritizations were run using the the prioritizr package29 in 
R30, which solves conservation prioritization problems exactly using integer linear programming. We solved all 
problems without a boundary length modifier term (BLM) and to within 1% of the optimal solution.

Relative variation in costs and benefits.  We explored how the relative variation in biodiversity and cost 
data drove prioritization solutions by examining scenarios in which the coefficient of variation (CV) of the biodi-
versity data was 2, 4, 8, or 16 times the CV of the cost data. To do so, we added a fixed quantity to the cost of each 
planning unit, which increased the mean cost without altering the standard deviation, thereby decreasing the CV. 
This quanitity (Δcost) was chosen based on the following formula:

μΔ =
⋅

−
CV SD

CVcost
relative cost

benefit
cost

where SD is the standard devition, μ  is the mean, CV =  SD/μ  is the coefficient of variation, 
CVrelative = CVbenefit/CVcost, and Δcost is the amount added to the cost layer to achieve the desired relative CV of 2, 4, 
8, or 16. Throughout this process, the benefit CV was held constant and measured as the average CV of the species 
occupancy layers. We then performed all of the prioritizations described above for each of the relative CV values. 
In each case (with and without cost data; with and without biodiversity data), we produced cost-benefit curves 
illustrating the cost, as a percentage of the total cost of the entire study region, to achieve a given occupancy target. 
More efficient solutions are depicted with steeper cost-benefit curves and reach a higher occupancy target for 
lower cost. As such, we used the area under the cost-benefit curves as a metric of the efficiency of prioritization 
approaches across all occupancy targets.

Results
Land cost and biodiversity feature data varied widely across our study area for both focal species group. Planning 
unit costs varied over 8 orders of magnitude, from $744 to 44.1 billion dollars per km2 (mean = $78 ± 565 million; 
CV = 7.25). The coefficients of variation in species occupancy probability predictions ranged from 0.407 to 1.415 
(Supplementary Material Table 1). On average, the predicted occurrence of human-associated species was pos-
itively related to land cost (rcost = 0.083 ± 0.094; mean ± standard deviation), whereas forest species occurrence 
declined with land cost (rcost = −0.066 ± 0.053; mean ± standard deviation; Supplementary Material Table 1).

Contrary to the assumption that biodiversity feature data reliably enhances the efficiency of spatially-optimized 
conservation plans, we found that the relative value of cost and biodiversity data varied by context. First, the 
value of biodiversity data and efficiency of solutions increased as planning efforts adopted more ambitious 
conservation targets, and/or became more restrictive by raising the threshold for occupancy, or habitat suit-
ability (Figs 2, 3). Second, although incorporating land cost in prioritizations tended to make scenarios more 
cost-effective, efficiency gains declined as the relative variability of biodiversity feature to land cost data increased 
(Fig. 4, Supplementary Material Fig. 2). Third, we observed that biodiversity data tended to drive solutions more 
so when spatial variation in biodiversity feature data was high, relative to spatial variation in cost data (Fig. 5, 
Supplementary Material Fig. 3). These relationships support our expectation that the most variable data layer was 
likely to be most influential of optimized solutions.

The influence of biodiversity feature and land cost data on solutions also differed among focal species as a con-
sequence of underlying correlations between species occurrence and land cost. For example, human-associated 
birds were much more likely to occupy land that varied greatly in cost than did species relying on mature forest. 
Although human-associated species are not often targeted for conservation, there are many instances where spe-
cies of conservation concern are likely to occur in high-cost landscapes (e.g., Coastal California Gnatcatcher, 
Polioptila californica californica31). Prioritizations for such ‘cost-correlated’ species were most efficient when both 
land cost (Fig. 4) and biodiversity feature data (Fig. 5) were incorporated. In contrast, gains in efficiency achieved 
by including land cost and/or biodiversity feature data were more modest for mature forest species, whose pre-
dicted occurrence was not strongly correlated with variation in land cost in the landscape we examined.

Discussion
Biodiversity feature and land cost data are frequently used to prioritize portfolios of sites potentially capable of 
achieving conservation goals at the lowest land and/or management costs. We estimated the relative influence 
of biodiversity and land cost data empirically and illustrated the effect of spatial variation in cost and biological 
data by contrasting spatially-optimized solutions to scenarios including a wide range of habitat suitability targets 
and thresholds. Despite some contextual effects, four rules-of-thumb emerged from our analyses of these effects.

First, we found that including land costs in spatial prioritizations led to more efficient solutions in almost all 
cases. Consideration of land or opportunity cost has been widely shown to improve cost-efficiency of biodiver-
sity conservation and/or reduces negative impacts on extractive and recreational sectors32,33. The value of cost 

https://doi.org/10.1038/s41598-019-52241-2


5Scientific Reports |         (2019) 9:15921  | https://doi.org/10.1038/s41598-019-52241-2

www.nature.com/scientificreportswww.nature.com/scientificreports/

data was similarly demonstrated in a review of global conservation decisions for seven taxonomic groups, for 
which biodiversity data were typically less influential than socioeconomic concerns22. Yet despite the fact that 
a vast majority of conservation professionals favorably regarded the inclusion of cost-effectiveness in planning 
exercises, most consider cost to be less important than other program design elements34 and, hence, seldom 
include cost as part of return-on-investment evaluations35. Indeed, a recent survey of individuals conducting 
spatial prioritizations showed that only one-quarter to one-third of prioritizations incorporated land value or 
cost of implementation14, suggesting a potential disconnect between motivation and practice in optimization 

Figure 2.  Using biodiversity feature data in conservation prioritization (dashed line) improved the efficiency 
of meeting conservation targets as compared to using parcel cost alone (solid line). Cost-only solutions were 
derived purchasing land from least to most expensive until targets were met (C-rank prioritization; biodiversity 
data only used to determine when targets were meet; see Methods). Only parcels meeting the indicated 
occupancy threshold (25%, 50%, or 75%) were used to ensure the selection of parcels where species were very 
likely to occur.

Figure 3.  Cost savings varied widely across conservation targets and occupancy thresholds when including 
or excluding biodiversity feature data in Marxan-like prioritizations for forest and human-associated species. 
Restricting the prioritization to only select higher quality habitat (i.e. increasing the occupancy threshold), 
led to greater cost savings from including biodiversity data. Similarly, higher occupancy targets also led to an 
increase in the cost savings from including biodiversity data.

https://doi.org/10.1038/s41598-019-52241-2
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exercises. One barrier to including cost may be the highly variable and aggregated ways that costs are estimated 
and/or reported36.

Second, biodiversity feature data became more influential of scenario outcomes as conservation targets 
became more ambitious (e.g., scenarios protecting 75% vs. 25% of suitable habitat; Fig. 5). This finding is inter-
esting because conservation targets vary widely in practice; for example, the Convention on Biological Diversity 
aims to protect 17% of terrestrial ecosystems, whereas the Nature Needs Half movement aims to conserve 50% 
of 846 ecoregions globally (e.g., natureneedshalf.org). Still higher targets may be applied to species of particular 
concern to conservation, such as endemic, range-restricted, or critically endangered species.

Third, the value of biodiversity feature data tended to increase with thresholds used to identify suitable habitat 
(e.g., probability of occupancy ≥75% vs. 25%; Fig. 3), underscoring the potential influence of precision in maps 
used to set thresholds for suitable habitat. For example, uniform range maps (e.g., International Union for the 
Conservation of Nature (IUCN), BirdLife International) are widely used in conservation prioritization, but may 
contribute little spatial variance when used as biodiversity feature data. In contrast, improvements to uniform, 
expert-elicited, and other course-scale map products are occurring rapidly as citizen-science data are used to 
enhance existing and create new map products based on multi-species assemblages (e.g.4,12,13,37,38).

Fourth, our most general finding was that the value of biodiversity feature or land cost data depended on 
its relative variability (CVrelative) and relationship to each other, and on the extent to which species occurrence 

Figure 4.  Fractional gain in efficiency when using both cost and biodiversity data, as compared to biodiversity 
data alone, declined as the relative variability of costs decreased. Human-associated species (dashed line) 
experienced a greater gain in efficiency from incorporating cost data than forest-associated species (solid line).

Figure 5.  Fractional gain in efficiency from including biodiversity data in addition to cost data, compared to 
cost data alone, increased as the relative variability of biodiversity data increased. Human-associated species 
(dashed line) experienced a greater gain in efficiency from incorporating species data than forest-associated 
species (solid line).

https://doi.org/10.1038/s41598-019-52241-2
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patterns were correlated with spatial variation in land cost. As variability in land cost increased relative to var-
iability in biodiversity data, cost increasingly drove solutions and vice versa – a finding that is consistent with 
Ferraro18 and Naidoo and Adamowicz19. Land cost had particularly strong effects on prioritization scenarios 
targeting ‘cost-correlated species’, i.e., species whose probability of occurrence increased in areas with high mean 
and variance in land cost. These effects appeared as comparatively larger efficiency gains in human-associated 
(positively correlated to cost) than forest-associated birds (weakly negatively correlated to cost). Conversely, when 
biodiversity features and costs were negatively correlated in space – as was the case for forest birds in our study, 
cost had less influence relative to biodiversity data alone. Other empirical studies have also found cost data to be 
more variable than biodiversity feature data, often by several orders of magnitude16–20. Perhans et al.22 reported 
that ecological data tended to be more variable than cost data when selecting among parcels of similar type and 
value. Taken together, these results and our own suggest that spatial variation in feature data can be used to antici-
pate its influence on optimized solutions to complex planning problems and, potentially, to evaluate the marginal 
value of ‘better’ data given the additional costs or effort required to collect it.

Spatial prioritizations are increasingly used to guide conservation and a recent survey showed that 74% of 
prioritizations intended for implementation produced action on-the-ground14. Because prioritization exercises 
inform real-world decisions, understanding the manner in which solutions are influenced by the types of data 
layers included is imperative. We showed that incorporating cost data greatly improved the efficiency of con-
servation planning solutions, particularly when biodiversity feature and cost data were positively correlated in 
space (e.g., when target species occurrence increased with land cost), and when spatial variation in cost exceeded 
spatial variation in benefits. We further showed that biodiversity feature data exerted a greater influence on solu-
tions as conservation targets and/or the minimum thresholds of habitat suitability were increased, especially 
in cost-correlated species. One challenge potentially arising for planners is that, in practice, spatial variation in 
land cost, though often easier to estimate than biodiversity features, frequently exceeds variation in biodiversity 
feature data, especially in areas dominated by humans17,20. Consequently, there may be cases where the marginal 
value of additional or more precise biodiversity feature data has little or no effect on optimized solutions. It is also 
the case that access to or the affordability of cost data varies regionally and can be very hard to estimate, such as 
when tenure is uncertain or contested. Nevertheless, we suggest that considering correlations between cost and 
benefit data and variability in them should help decision-makers prioritize investments in data acquisition and 
refinement when attempting to maximize efficiency in spatial prioritizations of land for conservation. Although 
we recognize that insights based upon case studies are not uniformly applicable to different regions or planning 
contexts, our study reveals several important lessons that should be considered as part of the planning process.

Received: 22 July 2019; Accepted: 3 October 2019;
Published: xx xx xxxx

References
	 1.	 Knight, A. T. & Cowling, R. M. Embracing opportunism in the selection of priority conservation areas. Conserv. Biol. 21, 1124–1126 

(2007).
	 2.	 Pressey, R. L. & Bottrill, M. C. Opportunism, Threats, and the Evolution of Systematic Conservation Planning. Conserv. Biol. 22, 

1340–1345 (2008).
	 3.	 Bennett, J. & Arcese, P. Human influence and classic island biogeographic predictors of rare species occurrence. Conserv. Biol. 27, 

417–421 (2013).
	 4.	 Schuster, R. & Arcese, P. Using bird species community occurrence to prioritize forests for old growth restoration. Ecography 36, 

499–507 (2013).
	 5.	 Armsworth, P. R. et al. Factoring economic costs into conservation planning may not improve agreement over priorities for 

protection. Nature Comm. 8, 2253 (2017).
	 6.	 Pressey, R., Humphries, C. C., Margules, C., Vanewright, R. & Williams, P. Beyond Opportunism - Key Principles for Systematic 

Reserve Selection. Trends Ecol. & Evol. 8, 124–128 (1993).
	 7.	 Gonzales, E. K., Arcese, P., Schulz, R. & Bunnell, F. L. Strategic reserve design in the central coast of British Columbia: integrating 

ecological and industrial goals. Can. J. For. Res. 33, 2129–2140 (2003).
	 8.	 Moilanen, A. Landscape zonation, benefit functions and target-based planning: unifying reserve selection strategies. Biol. Conserv. 

134, 571–579 (2007).
	 9.	 Ball, I. R., Possingham, H. P. & Watts, M. Marxan and relatives: software for spatial conservation prioritisation. Spatial conservation 

prioritisation: Quantitative methods and computational tools:185–195 (2009).
	10.	 Lehtomaki, J. & Moilanen, A. Methods and workflow for spatial conservation prioritization using Zonation. Environmental 

Modelling and Software 47, 128–137 (2013).
	11.	 Beyer, H. L., Dujardin, Y., Watts, M. E. & Possingham, H. P. Solving conservation planning problems with integer linear 

programming. Ecol. Modelling 328, 14–22 (2016).
	12.	 Wilson, S. et al. Prioritize diversity or declining species? Trade-offs and synergies in spatial planning for the conservation of 

migratory birds. bioRxiv, 429019 (2018).
	13.	 Schuster, R. et al. Optimizing the conservation of migratory species over their annual cycle in the Western Hemisphere. Nature 

Comm. 10, 1740 (2019).
	14.	 Sinclair, S. P. et al. The use, and usefulness, of spatial conservation prioritizations. Conserv. Letters 2018, e12459 (2018).
	15.	 Kujala, H., Lahoz-Monfort, J. J., Elith, J. & Moilanen, A. Not all data are equal: Influence of data type and amount in spatial 

conservation prioritisation. Methods in Ecology and Evolution 9, 2249–2261 (2018).
	16.	 Arponen, A., Cabeza, M., Eklund, J., Kujala, H. & Lehtomaki, J. Costs of Integrating Economics and Conservation Planning. 

Conserv. Biol. 24, 1198–1204 (2010).
	17.	 Balmford, A., Gaston, K., Blyth, S., James, A. & Kapos, V. Global variation in terrestrial conservation costs, conservation benefits, 

and unmet conservation needs. Proc. Nat. Acad. Sci. USA 100, 1046–1050 (2003).
	18.	 Ferraro, P. Assigning priority to environmental policy interventions in a heterogeneous world. J. Policy Anal. Manage. 22, 27–43 

(2003).
	19.	 Naidoo, R. & Adamowicz, W. L. Modeling opportunity costs of conservation in transitional landscapes. Conserv. Biol. 20, 490–500 

(2006).
	20.	 Polasky, S. Why conservation planning needs socioeconomic data. Proc. Nat. Acad. Sci. USA 105, 6505–6506 (2008).

https://doi.org/10.1038/s41598-019-52241-2


8Scientific Reports |         (2019) 9:15921  | https://doi.org/10.1038/s41598-019-52241-2

www.nature.com/scientificreportswww.nature.com/scientificreports/

	21.	 Bode, M. et al. Cost-effective global conservation spending is robust to taxonomic group. Proc. Nat. Acad. Sci. USA 105, 6498–6501 
(2008).

	22.	 Perhans, K. et al. Conservation Goals and the Relative Importance of Costs and Benefits in Reserve Selection. Conserv. Biol. 22, 
1331–1339 (2008).

	23.	 Babcock, B. A., Lakshminarayan, P. G., Wu, J. & Zilberman, D. The economics of a public fund for environmental amenities: a study 
of CRP contracts. (Conservation Reserve Program). American Journal of Agricultural Economics 78, p961(911), https://doi.
org/10.2307/1243852 (1996).

	24.	 Game, E. T. et al. Possingham. Informed opportunism for conservation planning in the Solomon Islands. Conservation Letters 4, 
38–46, https://doi.org/10.1111/j.1755-263X.2010.00140.x (2010).

	25.	 Hochachka, W. M. et al. Data-intensive science applied to broad-scale citizen science. Trends Ecol. & Evol. 27, 130–137 (2012).
	26.	 Sullivan, B. L. et al. The eBird enterprise: an integrated approach to the development and application of citizen science. Biol. Conserv. 

169, 31–40 (2014).
	27.	 Schuster, R., Martin, T. G. & Arcese, P. Bird community conservation and carbon offsets in western North America. PloS one 9, 

e99292 (2014).
	28.	 Schuster, R. et al. Tax-shifting and incentives for biodiversity conservation on private lands. Conservation Letters, https://doi.

org/10.1111/conl.12377 (2017).
	29.	 Hanson, J.O. et al. prioritizr: Systematic Conservation Prioritization in R. – R package version 3.0.4, https://CRAN.R-project.org/

package=prioritizr (2018).
	30.	 R Core Team R: A language and environment for statistical computing. R Foundation for Statistical Computing, Vienna, Austria. 

URL, https://www.R-project.org/(2018).
	31.	 U.S. Fish and Wildlife Service. 2004 Economic analysis of critical habitat designation for the California Gnatcatcher. Division of 

Economics, 4401 Fairfax Ave., Arlington, VA, https://www.fws.gov/economics/Critical%20Habitat/Final%20Draft%20Reports/
CA%20coastal%20gnatcatcher/CAGN_DEA_Feb2004.pdf Accessed September 2019.

	32.	 Dilkina, B. et al. Trade-offs and efficiencies in optimal budget-constrained multispecies corridor networks. Conserv. Biol. 31, 
192–202 (2017).

	33.	 Manhaes, A. P. et al. Low-cost strategies for protecting ecosystem services and biodiversity. Biol. Conserv. 217, 187–194 (2018).
	34.	 Grand, L., Messer, K. D. & Allen, W. III Understanding and Overcoming the Barriers for Cost-effective Conservation. Ecol. Econ. 

138, 139–144 (2017).
	35.	 Murdoch, W. et al. Maximizing return on investment in conservation. Biol. Conserv. 139, 375–388 (2007).
	36.	 Cook, C. N., Pullin, A. S., Sutherland, W. J., Stewart, G. B. & Carrasco, L. R. Considering cost alongside the effectiveness of 

management in evidence-based conservation: A systematic reporting protocol. Biol. Conserv. 209, 508–516 (2017).
	37.	 Carroll, C., Parks, S. A., Dobrowski, S. Z. & Roberts, D. R. 2018. Climatic, topographic, and anthropogenic factors determine 

connectivity between current and future climate analogs in North America. Global Change Biology First published: 02 July 2018, 
https://doi.org/10.1111/gcb.14373.

	38.	 Stralberg, D. et al. Macrorefugia for North American trees and songbirds: Climatic limiting factors and multi‐scale topographic 
influences. Glob. Ecol.and Biogeogr. 27, 690–703 (2018).

Acknowledgements
We are grateful to eBird participants for their data contributions and eBird development team, especially S. 
Kelling, D. Fink, and T. Auer, for their innovation, support, and helpful discussions. eBird-related work was 
funded by The Leon Levy Foundation, The Wolf Creek Charitable Foundation, NASA (NNH12ZDA001N-
ECOF), Microsoft Azure Research Award (CRM: 0518680), and the National Science Foundation (ABI sustaining: 
DBI-1356308; computing support from CNS-1059284 and CCF-1522054).

Author contributions
A.D.R. and P.A. conceived of the study, and M.S.M., R.S. and P.A. collected data and conducted analyses. All 
authors contributed to writing and editing the paper.

Competing interests
During this project, A.D.R. and M.S.M. were supported by the Cornell Lab of Ornithology, R.S. was supported 
by a Liber Ero Fellowship, and P.A. by the University of British Columbia.

Additional information
Supplementary information is available for this paper at https://doi.org/10.1038/s41598-019-52241-2.
Correspondence and requests for materials should be addressed to A.D.R.
Reprints and permissions information is available at www.nature.com/reprints.
Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and 
institutional affiliations.

Open Access This article is licensed under a Creative Commons Attribution 4.0 International 
License, which permits use, sharing, adaptation, distribution and reproduction in any medium or 

format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Cre-
ative Commons license, and indicate if changes were made. The images or other third party material in this 
article are included in the article’s Creative Commons license, unless indicated otherwise in a credit line to the 
material. If material is not included in the article’s Creative Commons license and your intended use is not per-
mitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the 
copyright holder. To view a copy of this license, visit http://creativecommons.org/licenses/by/4.0/.
 
© The Author(s) 2019

https://doi.org/10.1038/s41598-019-52241-2
https://doi.org/10.2307/1243852
https://doi.org/10.2307/1243852
https://doi.org/10.1111/j.1755-263X.2010.00140.x
https://doi.org/10.1111/conl.12377
https://doi.org/10.1111/conl.12377
https://CRAN.R-project.org/package=prioritizr
https://CRAN.R-project.org/package=prioritizr
https://www.R-project.org/
https://www.fws.gov/economics/Critical%20Habitat/Final%20Draft%20Reports/CA%20coastal%20gnatcatcher/CAGN_DEA_Feb2004.pdf
https://www.fws.gov/economics/Critical%20Habitat/Final%20Draft%20Reports/CA%20coastal%20gnatcatcher/CAGN_DEA_Feb2004.pdf
https://doi.org/10.1111/gcb.14373
https://doi.org/10.1038/s41598-019-52241-2
http://www.nature.com/reprints
http://creativecommons.org/licenses/by/4.0/

	Tradeoffs in the value of biodiversity feature and cost data in conservation prioritization

	Methods

	Study area. 
	Data layers. 
	Biodiversity data. 
	Cadastral layer and land cost. 

	Conservation prioritization. 
	Relative variation in costs and benefits. 

	Results

	Discussion

	Acknowledgements

	Figure 1 (a–c) The focal area for this study showing the (a) cost and occupancy probabilities for (b) forest-associated birds and (c) human-associated birds within 1 km2 planning units.
	Figure 2 Using biodiversity feature data in conservation prioritization (dashed line) improved the efficiency of meeting conservation targets as compared to using parcel cost alone (solid line).
	Figure 3 Cost savings varied widely across conservation targets and occupancy thresholds when including or excluding biodiversity feature data in Marxan-like prioritizations for forest and human-associated species.
	Figure 4 Fractional gain in efficiency when using both cost and biodiversity data, as compared to biodiversity data alone, declined as the relative variability of costs decreased.
	Figure 5 Fractional gain in efficiency from including biodiversity data in addition to cost data, compared to cost data alone, increased as the relative variability of biodiversity data increased.
	Table 1 Range of values or conditions evaluated across prioritization scenarios.




