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Metabolome and microbiome 
profiling of a stress-sensitive rat 
model of gut-brain axis dysfunction
Shalome A. Bassett1,2, Wayne Young1,2,3, Karl Fraser   1,2,3, Julie E. Dalziel   1,2, Jim Webster4, 
Leigh Ryan1, Patrick Fitzgerald5, Catherine Stanton7,8, Timothy G. Dinan5,7, John F. Cryan   5,6, 
Gerard Clarke5,7, Niall Hyland5,9 & Nicole C. Roy1,2,3

Stress negatively impacts gut and brain health. Individual differences in response to stress have been 
linked to genetic and environmental factors and more recently, a role for the gut microbiota in the 
regulation of stress-related changes has been demonstrated. However, the mechanisms by which 
these factors influence each other are poorly understood, and there are currently no established robust 
biomarkers of stress susceptibility. To determine the metabolic and microbial signatures underpinning 
physiological stress responses, we compared stress-sensitive Wistar Kyoto (WKY) rats to the normo-
anxious Sprague Dawley (SD) strain. Here we report that acute stress-induced strain-specific changes 
in brain lipid metabolites were a prominent feature in WKY rats. The relative abundance of Lactococcus 
correlated with the relative proportions of many brain lipids. In contrast, plasma lipids were significantly 
elevated in response to stress in SD rats, but not in WKY rats. Supporting these findings, we found that 
the greatest difference between the SD and WKY microbiomes were the predicted relative abundance 
of microbial genes involved in lipid and energy metabolism. Our results provide potential insights for 
developing novel biomarkers of stress vulnerability, some of which appear genotype specific.

The microbiome-gut-brain axis is influenced by stress while the gut microbiota plays a significant role in regu-
lating stress-related responses1. Given the significant comorbidity of stress-related disorders and gut disorders, 
animal models of stress and anxiety are routinely used to study functional gastrointestinal disorders such as 
irritable bowel syndrome (IBS)2–5 as well as to develop new, more efficient pharmacological and/or behavioural 
treatments2,6–8. More recently, these models have also been applied to study the effects of diet and food compo-
nents on stress9–11. However, the physiological factors that underlie stress sensitivity are not well understood.

The idea that psychological wellbeing is influenced by the gut microbiota is gaining momentum12–14. However, 
because communication between the gut and its microbiome and the brain is bidirectional, the origin of the caus-
ative factors in stress susceptibility involving this axis remain elusive. Stress can trigger anxiety and depression15,16 
and is a significant risk factor for IBS and the associated symptoms17. Chronic stress can also alter microbiota 
composition18,19, and compositional alterations of the gut microbiota has been associated with both IBS and 
depression20. Of note, recent evidence has also suggested that, in the majority of patients, IBS and functional 
dyspepsia originate in the gut and precede the onset of anxiety and depression21. Yet whether or not fluctuations 
in gut microbiota composition and stability is the consequence or cause of these adverse health states remains 
unclear.

The Wistar Kyoto (WKY) rat strain is a model commonly used to study stress, anxiety and depression, as well 
as visceral hypersensitivity22,23 general. WKY rats have a greater innate sensitive to stress and display visceral 
hypersensitivity than Sprague-Dawley (SD) rats24. As such, these rat strains have also been used as models for 
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studying gut-brain axis (GBA) dysfunction25 because susceptibility to chronic stress often results in anxiety and 
gut microbiota alterations26.

Little is known about the metabolic changes associated with stress in either WKY or SD rats. Understanding 
such changes may be important for better understanding stress in humans, where the search for reliable bio-
markers to assist with accurate diagnosis, prevention and treatment of stress-related mental illnesses remains 
on-going27. Untargeted metabolomics using MS-based methods can provide a global snapshot of the metabolites 
present in a biological system, a key early step in identifying new potential biomarkers and impacted pathways28. 
This discovery-based approach has recently been used to identify metabolic changes in plasma thought to be 
involved in stress-related diseases, such as major depressive disorders29,30. These results suggest that, in humans, 
depression may be associated with alterations in the metabolism of lipids, amino acids and neurotransmitters29,30. 
However, whether this is also the case in rodent models is currently unknown. There is also limited knowledge of 
which microbial signatures underpin physiological responses to stress in these rat strains, or the interrelationship 
between these. Understanding the association between acute stress and the microbiota in WKY and SD animals 
will help to define an appropriate response phenotype and provide insights into dysregulated host-microbiota 
physiology, which may be relevant for human stress-related conditions.

In this study, we hypothesized that factors influencing the gut-brain axis (GBA), such as host metabolism, play 
a key role in the susceptibility to stress-related disorders. We investigated the functional response to acute stress 
in WKY and SD rats by examining the stress-induced effect of the forced swim test on metabolic activity and 
microbiota composition. Stress-induced alterations in metabolites and caecal microbiota were identified which 
could serve as potential biomarkers for studying the effect of dietary or pharmacological treatments on behaviour, 
stress, and anxiety, in addition to supporting the selection of appropriate rodent models for future work. These 
biomarkers may also provide further insight regarding the pathophysiology of human depression and the effec-
tiveness of novel therapies.

Results
Open field test (OFT).  WKY rats displayed a significantly lower velocity (P < 0.001), travelled a shorter 
distance (P < 0.001), entered the inner zone of the arena less (P < 0.01) and spent less time in the inner zone 
(P < 0.01) than SD rats as shown in Supplementary Fig. S1.

Novel object recognition (NOR).  Both strains spent more time exploring the novel rather than famil-
iar object as shown by the total exploration time and discrimination index. There was no significant difference 
between strains (Supplementary Fig. S2).

Forced swim test (FST).  The FST-induced stress response was used to verify that the WKY rats displayed 
an acute stress hypothalamic pituitary adrenal axis (HPA) response and accompanying behaviour profile and 
physiology. It also provided an acute stress challenge to the function of the microbiome. SD rats spent more time 
swimming (P = 0.005) and climbing (P < 0.001) than WKY rats (Supplementary Fig. S3). WKY rats spent more 
time in an immobile state than SD rats (P < 0.001). SD rats produced more faecal pellets than WKY rats during 
the FST (P < 0.001).

Stress-induced corticosterone levels.  Corticosterone levels increased in response to acute stress (both 
strains; P < 0.001), as measured by pre-FST levels compared to postmortem levels, but there was no difference 
between rat strains (P = 0.55) as shown in Supplementary Table S1. Corticosterone levels were also higher in 
stressed than non-stressed (control) rats (both strains; P < 0.001) but there was no difference between rat strains 
(P = 0.87).

This result confirmed that the animals were stressed by the FST.

LC-MS metabolomic profiling of plasma and brain.  Table 1 shows the number of features for polar 
and lipid metabolites obtained in both positive- and negative-ion modes used for statistical analysis, along with 
the number of components identified (listed in brackets). Positive and negative ion data for each biological sam-
ple and analysis mode were combined resulting in four data sets for multivariate analysis. Principle component 
analysis (PCA) showed the run-order correction process was successful and the data were of suitable quality for 
further statistical analysis. PCA revealed only minor run order effects in a few analyses which were corrected 
using a linear regression function in R. The quality controls for all analyses demonstrated the data collected were 
suitable for further analysis.

Brain and plasma polar metabolites.  Orthogonal partial least squares discriminant analysis (OPLS-DA) 
showed metabolites profiles were altered by stress. The OPLS-DA model for plasma (Fig. 1A) was significant 

Analysis mode Plasma Brain

Polar positive 657 (22) 496 (22)

Polar negative 552 (16) 310 (21)

Lipid positive 1017 (143) 624 (166)

Lipid negative 821 (40) 621 (96)

Table 1.  Number of features (and annotated components) from each analytical stream used for statistical 
analysis.
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(P = 0.0005) with R2(Y) and Q2(cum) values of 96.9% and 48.8%, respectively. However, strain differences were 
not significantly resolved by this model for the brain polar metabolites (Fig. 1B) and, because stress was the focus 
of the data analysis, data for both plasma and brain was separated by rat strain and reanalysed using univariate 
tools.

Brain and plasma lipid data were examined at the lipid class level by summing all lipid species of the same class 
within the respective sample matrix and performing univariate analysis. No significant differences in either brain 
or plasma were observed between any lipid class due to stress (data not shown).

In the brain, there was no significant difference in polar metabolites between stressed and control rats of 
either strain after false discovery rate (FDR) correction (Table 2). We did note some evidence that glutamine and 
tyrosine were elevated and DHA reduced in stressed SD rat brain (P < 0.01; FDR < 0.5) in both ionization modes. 
Creatine was increased in brain of both rat strains in response to stress.

Fold change and significance values of differential polar metabolites in the plasma of SD and WKY rats in 
response to stress are shown in Table 3. For WKY rats, glutamic acid, gamma-aminobutyric acid (GABA), and 
3-methoxytyrosine were significantly lower in the plasma of stressed animals. These metabolites also trended 
lower in the stressed SD rats. As observed in the brain, tyrosine again trended to higher levels in stressed SD rats. 
Cytosine was decreased, and methionine trended toward an increase in stressed WKY rats.

Differences between the strains (control groups) in the plasma polar metabolites were detected by supervised 
statistical approaches and the metabolites responsible have been reported elsewhere31.

Brain and plasma lipidomics.  Rat strain differences were not significantly resolved for brain lipids by the 
OPLS-DA model (Fig. 1D). Consequently, data analysis was performed within rat strains for the effect of stress 
using univariate tools. WKY rats had 49 different brain lipid species between non-stressed (control) and stressed 
groups that reached close to significance following FDR correction. This was not observed for SD rats (Table 2). 
For example, while some phosphatidylethanolamine (PE) were not significant, as a whole group they consist-
ently shifted negatively. In particular, sphingomyelins (SM) and phosphatidylinositol (PI) were trended toward 
an increase in the stressed WKY rat brain. Along with PE, groupings of phosphatidylserine (PS), phosphati-
dylcholine (PC), lysophosphatidylcholine (LPC), lysophosphatidylethanolamine (LPE) and diacylglycerol (DG), 
also trended towards a decrease. Of the glycosphingolipids (CerG1) that were annotated, one trended toward an 
increase in response to stress while two showed a decreasing trend.

In contrast, no significant difference in plasma lipids were detected in WKY rats when stressed, yet a range of 
plasma triacylglycerides (TAGs) were trended higher in SD rats. Free fatty acids (vaccenic, linoleic and palmitic) 
were also increased in response to stress in SD rats (Table 3). Of the 87 circulating triacylglycerides annotated in 
plasma, 57 were increased by > 30% (which is generally considered to be physiologically relevant) in SD rats in 
response to stress compared to the SD control rats (Supplementary Table S3), whereas only two were decreased 
by more than 30%.

Differences in plasma lipids between rat strains (non-tested control groups) were detected (Fig. 1C) using the 
OPLS-DA model (P = 0.0001) with R2(Y) and Q2(cum) values of 62.0% and 32.9%, respectively.

Figure 1.  Score plots of OPLS-DA models for plasma (A) and brain (B) polar metabolites, and plasma (C) and 
brain (D) lipids. SD_C = Sprague Dawley (Control), SD_S = Sprague Dawley (Stressed), WK_C = Wistar Kyoto 
(Control), WK_S = Wistar Kyoto (Stressed).
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Rat Stain Metabolite P-value FDR Log2FC (T/NT)

Sprague Dawley Polar

Creatine 0.017 0.682 1.7732

L-glutamine 0.008 0.457 0.1753

Tyrosine 0.006 0.457 0.2034

DHA (fragment) 0.009 0.457 −0.4265

Wistar-Kyoto

Polar Creatine 0.0005 0.222 0.288

Lipid

SM(d34:1) 0.021 0.063 0.267

SM(d36:1) 0.004 0.063 0.015

SM(d38:1) 0.001 0.063 0.122

SM(d40:0) 0.058 0.241 0.258

SM(d42:0) 0.019 0.241 0.019

SM(d42:2) 0.018 0.063 0.041

CerG1(d40:2) 0.017 0.241 −0.060

CerG1(d41:0) 0.016 0.241 0.113

CerG1(d42:2) 0.017 0.241 −0.100

LPE(16:0) 0.076 0.122 −0.233

LPE(20:1) 0.084 0.132 −0.072

LPC(18:0) 0.016 0.241 −0.335

DG(34:1) 0.036 0.241 −0.038

DG(36:1) 0.020 0.241 −0.053

DG(36:2) 0.061 0.241 −0.118

DG(38:6) 0.017 0.241 −0.084

PI(40:6) 0.047 0.241 0.318

PE(34:1) 0.018 0.063 −0.128

PE(36:1) 0.015 0.063 −0.178

PE(36:2) 0.008 0.063 −0.033

PE(36:3) 0.003 0.063 −0.253

PE(38:1) 0.011 0.063 −0.171

PE(38:2) 0.018 0.063 −0.162

PE(38:5) 0.028 0.067 −0.165

PE(38:6) 0.017 0.063 −0.152

PE(39:0) 0.019 0.063 −0.045

PE(40:6) 0.032 0.072 −0.198

PE(40:8) 0.041 0.083 −0.678

PE(42:1) 0.011 0.063 −0.029

PE(42:2) 0.018 0.063 −0.006

PE(42:10) 0.018 0.063 −0.242

PE(44:1) 0.012 0.063 −0.029

PE(44:2) 0.019 0.063 −0.075

PE(44:10) 0.012 0.063 −0.116

PS(36:1) 0.034 0.075 −0.126

PS(36:2) 0.020 0.063 −0.126

PS(38:1) 0.030 0.068 −0.010

PS(38:3) 0.035 0.075 −0.123

PS(40:2) 0.035 0.075 −0.056

PS(41:5) 0.017 0.063 −0.245

PS(43:5) 0.012 0.063 −0.169

PS(43:6) 0.012 0.063 −0.159

PS(44:10) 0.023 0.063 −0.116

PC(38:1) 0.055 0.241 −0.091

PC(40:2) 0.049 0.241 −0.045

PC(42:2) 0.064 0.241 −0.093

PC(42:7) 0.032 0.241 −0.127

PC(44:2) 0.058 0.241 −0.063

PC(44:12) 0.022 0.241 −0.069

Table 2.  Brain metabolites significantly differing in abundance between stressed and control animals. 
S = stressed; C = control; FDR = false discovery rate; where FDR < 0.1 for HILIC (polar) and FDR < 0.05 for 
lipid analysis were considered significant.

https://doi.org/10.1038/s41598-019-50593-3


5Scientific Reports |         (2019) 9:14026  | https://doi.org/10.1038/s41598-019-50593-3

www.nature.com/scientificreportswww.nature.com/scientificreports/

Caecal microbiota and short chain fatty acids (SCFAs).  Gut microbiota communities of SD and WKY 
rats could be differentiated by principle coordinate analysis (PCoA) of unweighted Unifrac phylogenetic distances 
(Fig. 2A) and taxonomic composition (Fig. 2B); these included Ruminococcus (SD 5.45 ± 0.68; WKY 2.25 ± 0.35; 
% ± SEM; FDR < 0.001), Blautia (SD 2.4 ± 0.42; WKY 5.11 ± 0.75; % ± SEM; FDR = 0.004), and unclassified 
Lachnospiraceae (SD 32.6 ± 2.34; WKY 24.01 ± 1.36; % ± SEM; FDR = 0.004). However, the genera were differen-
tially altered at the end of the FST between SD and WKY rats. Relative abundances of Desulfovibrio, unclassified 
Desulfovibrionales and unclassified Alphaproteobacteria (all of which belong to the Proteobacteria phylum) were 

Rat strain Metabolite P-value FDR
Log2 FC 
(S/C)

Sprague Dawley

Polar

Glutamic acid 0.0045 0.245 −0.710

3-Methoxytyrosine 0.0004 0.185 −0.674

Tyrosine 0.003 0.185 0.450

GABA 0.001 0.206 −0.777

Lipids

TG(62:4) 0.0008 0.101 1.077

TG(58:1) 0.001 0.101 1.203

TG(60:2) 0.0015 0.101 1.194

TG(55:0) 0.0019 0.108 1.039

TG(59:2) 0.0025 0.108 1.178

TG(64:3) 0.0028 0.108 1.092

TG(57:1) 0.0028 0.108 1.181

TG(60:4) 0.0039 0.141 0.900

Palmitic acid 0.0004 0.231 0.673

Vaccenic acid 0.0012 0.231 0.850

Linoleic acid 0.0017 0.231 0.781

Wistar-Kyoto Polar

Glutamic acid 1.94e-4 0.0191 −0.861

3-Methoxytyrosine 1.86e-7 9.17e-5 −0.870

GABA 0.0004 0.032 −0.801

Cytosine 0.0023 0.096 −0.264

Methionine DL- 0.0032 0.105 0.159

Table 3.  Plasma metabolites significantly differing in abundance between stressed and control animals. 
S = stressed; C = control; FDR = false discovery rate; where FDR < 0.1 for HILIC (polar) and FDR < 0.05 for 
lipid analysis were considered significant.

Figure 2.  Caecal Microbiota. (A) PCoA biplot of unweighted Unifrac phylogenetic distances of the caecal 
communities in SD and WKY rats. Grey circles show the nine most relatively abundant genera where diameter 
is proportional to the mean relative abundance across all samples, with distance from origin (X0, Y0, Z0) 
indicating contribution to the variation along the principal components. (B) Bar plot of the mean relative 
abundance of the 25 most prevalent bacterial genera across all samples. Codes in parentheses indicate phylum; 
Ve = Verrucomicrobia, Pr = Proteobacteria, Fi = Firmicutes, Ba = Bacteroidetes, Un = Unclassified.
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increased in stressed SD rats compared to controls (P < 0.02), although after multiple testing adjustment the dif-
ference was not significant (FDR = 0.8). Furthermore, these taxa made up only a relatively small proportion of the 
microbiota; collectively they accounted for 1% of the community in SD rats and 1.75% in WKY rats. Following 
the FST, there were altered proportions of some Proteobacteria in SD rats, whereas in WKY rats, proportions of 
several taxa belonging to the Firmicutes phylum were altered. Changes in WKY rats post-FST included increased 
proportions of Ruminococcus (WKY stressed 2.92%; WKY controls 1.6%; P = 0.05), Roseburia (WKY stressed 
0.6%; WKY controls 0.3%; P = 0.03), and Lactococcus (WKY stressed 0.09%; WKY controls 0.03%; P < 0.001), 
and decreased proportions of Lactobacillus (WKY stressed 0.19%; WKY controls 0.70%; P = 0.02). However, after 
FDR adjustment, only the change in Lactococcus proportions was significant (FDR < 0.001). Although only a 
limited number of low relative abundance taxa appeared to shift after exposure to the experimental procedures, 
an overall pattern could be discerned in WKY rats using random forest classification (Supplementary Table S2), 
where 10/12 control WKY rats were correctly classified as control, and 10/12 stressed WKY rats were correctly 
classified (overall error rate = 16.7%). The taxa that contributed the most to the random forest decision trees were 
the genera Rothia from the Actinobacteria phylum, and Lactococcus, Allobaculum, and Anaerosporobacter, all of 
which belong to the Firmicutes phylum. In contrast, random forest classification was unable to discern tested SD 
rats from non-tested SD rats, with an overall classification error rate of 58%.

Analysis of the core microbiome identified 21 taxa up to the genus level that were present in all rats; these 
included Rothia, Bacteroides, Prevotella, Lactococcus, Clostridium, Blautia, Roseburia, and Desulfovibrio. Further 
analysis showed 46 genus level taxa in > 75% of the rats. Overall, 99 genus level taxa were identified across all rats.

PICRUSt analysis of the predicted bacterial metagenomes, based on the 16S rRNA analysis, showed the 
microbiota of SD and WKY rats significantly differed in the relative abundance of the KEGG functions Lipid 
Metabolism (SD 2.80 ± 0.01; WKY 2.75 ± 0.01; % ± SEM; FDR < 0.01) and Energy Metabolism (SD 5.39 ± 0.04; 
WKY 5.58 ± 0.04; % ± SEM; FDR = 0.02). No significant differences were detected between stressed and control 
rats, regardless of rat strain. Hierarchical clustering analysis of predicted metagenome KEGG functions showed a 
good separation between SD and WKY rats (Fig. 3).

Caecal short chain fatty acid (SCFA) concentrations were clearly differentiated between the two rat strains. 
Levels of isobutyric (P = 0.0003) and isovaleric (P = 8.93e-05) acids were higher in WKY than SD rats, whereas 
levels of butyric (P = 0.0045) and succinic (P = 0.0026) acids were lower. However, there was no significant differ-
ence in SCFA concentrations between stressed vs control rats within strains (Supplementary Fig. S4). There were 
no significant differences in the other SCFA measured (acetic, propionic, valeric, caproic, lactic and formic acids), 
either between strains or between stressed vs control rats within strains.

Figure 3.  Heat map showing hierarchical clustering of predicted metagenome KEGG level 2 functions in the 
caecal microbiome of SD and WKY rats exposed to acute stress or non-stressed controls. The colour ribbon 
beneath the upper dendrogram indicates rat strain; WKY (red), SD (green).
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Associations between microbe and metabolite relative abundances.  Canonical correlation anal-
ysis of all metabolites across treatment groups showed that relative abundances of Bacteroides across all rats was 
negatively correlated (association score < −0.65) with a wide range of phospholipids and phospholipid metabo-
lites including several phosphtatidylcholines, phosphtatidylethanolamines, ceramides, and sphingolipids (Fig. 4). 
However, Lactococcus showed the reverse propensity, where relative proportions correlated positively (association 
score > 0.6) with a range of the same metabolites and lipids in the brain.

Discussion
The results of this study show that WKY and SD rats responded differently to acute stress with respect to observed 
microbiome and metabolome changes. The main new finding from this study is the strong stress response exhib-
ited in acutely challenged WKY rats and concomitant alteration in brain lipid profile. In contrast, the SD stress 
response was characterized by changes in plasma lipids. This reveals an important relationship between brain and 
peripheral physiological responses together with changes in the functional gut microbiome readouts. Associated 
with different behaviour in the stress challenges, our results show that SD and WKY rats also exhibit different 
physiological stress responses, as characterized by distinct brain or plasma metabolite profiles in the host, and 
caecal microbiota profiles. Indeed, exposure to acute stress had little impact on the caecal microbiome in SD rats, 
but led to a consistent shift in the microbial community in WKY rats as shown by random forest classification.

As expected based on previous literature22,23,32, anxiety-prone WKY rats were more disposed to depression-like 
and anxiety-like behaviours than their normo-anxious SD counterparts, as determined by the FST and OFT 
respectively. As expected, corticosterone elevations confirmed the expected impact of the acute stressor (FST) 
on HPA axis activation. These results support the findings of previous studies where WKY rats had expressed 
increased depression-like behaviour compared with SD rats during the FST3,22,33,34, and increased anxiety-like 
behaviour in the OFT compared to SD rats35,36. However, in contrast to the OFT and FST, the NOR test is used to 
evaluate memory. Our results show that SD rats displayed similar interest in the novel object to WKY rats, sug-
gesting there was no difference between strains in terms of memory and learning.

Limitations: We acknowledge the need to be somewhat cautious in interpreting the results as a consequence 
of the behavioural procedures. Exposure to behavioural testing and the FST did produce a functional change in 
the microbiome over a 10-day period. These were relatively minor effects on microbiome composition affecting 
low abundance taxa. Nevertheless, changes in minor members of the microbiome can still influence physiological 
outcomes. For example, the presence of methanogens, which rarely exceed 1% of the microbiome in humans, can 
have an important effect on carbohydrate fermentation by other members of the microbiome through removal 
of H2

37.
Because this study was focussed on rat strain comparisons rather than sex differences, we used only one 

gender of animal. Male rats were used because male WKY can show a greater susceptibility to acute stress than 
females in the OFT38. WKY females can be more immobile in the FST than males39, but this is not always the 
case33. While a more expansive sex-difference analysis would be informative it was beyond the scope of this study. 
Potential differences between male and female rats in their brain neurochemistry and microbiota response to 
stress will be the focus of future studies.

Whole brain was used to obtain a broad picture of whether brain chemistry was altered, which has been useful 
in initial studies40,41. This allowed us to examine the overall macro-physiological changes in brain lipids and polar 
metabolites in response to stress and whether these differ broadly between rat strains. Future studies will look 

Figure 4.  Network analysis showing canonical correlations between taxa and brain lipids for combined WKY 
and SD rat data. Positive correlations are shown in red and negative correlations in blue.
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to measure changes in specific regions of the brain to compare with that of whole brain and thus assess localised 
versus macro changes in brain metabolism.

Associated with an increased anxiety-like behaviour phenotype, WKY rats exhibited a consistent low level 
global alteration in their brain lipid profile in response to an acute stressor. This has not been reported previously 
and was characterized by lower levels of structural neuronal membrane lipids and phospholipids, and increased 
sphingomyelin. An apparent alteration in prominent stress-associated brain lipid profiles absent in SD rats may 
implicate increased brain lipid metabolism as characteristic of a stress-prone physiological response specific to 
WKY rats.

In contrast with the response seen in WKY rats, in SD rats (considered to represent a “normal” stress 
response strain of rat) plasma triglycerides and free fatty acids were elevated in response to stress. However, no 
stress-related changes in plasma lipids were observed in WKY rats. SD rats have been previously been shown 
to have increased plasma total lipid levels in response to acute and chronic stress42. In human clinical studies, 
acute stress has been associated with norepinephrine (NE)-induced lipolysis resulting in plasma lipid changes43. 
Increases in circulating NE can induce lipolysis and release free fatty acids into the bloodstream, which serve as 
a substrate for the re-synthesis of triglycerides and production of low-density lipoprotein cholesterol in the liver 
to fuel the “flight or fight” response43,44. Our results may therefore reflect differences in hormonal changes in 
response to stress between these rat strains, resulting in mobilization of fatty acids from the brain (WKY rats), 
rather than adipose tissue (SD rats).

There were no differing polar metabolites in the brain between stressed and control rats in either strain. There 
was, however, some evidence (albeit weak) that glutamine and tyrosine were elevated in the brain of stressed SD 
rats, suggesting that these contribute to a normal neurochemical stress response. Not surprisingly, dysfunction of 
glutamatergic neurotransmission is increasingly considered to be a core feature of stress-related mental illnesses45.

Plasma levels of glutamic acid, GABA and 3-methoxytyrosine were lower in WKY rats in response to stress, 
despite no change in the brain. The failure to increase plasma and brain tyrosine levels by WKY rats in response to 
stress supports the hypothesis that reduced arousal and behavioural responsivity in WKY rats may be related to 
deficient brain noradrenergic reactivity, thus contributing to their increased susceptibility to stress46.

Together, our data show that these specific strain-dependent changes in brain and plasma metabolites in 
response to stress, particularly brain lipids, may reflect pre-existing metabolomics and microbiota differences 
which would prime the baseline to differential responses to an acute stressor. Strain-dependent changes in neuro-
transmitter and neurotrophin levels in response to chronic stress are also thought to predispose these animals to 
a depressive-like phenotype compared to SD rats32.

As expected, we found that the caecal microbial communities were clearly delineated between SD and WKY 
rats based on the unweighted Unifrac analysis, despite sharing many of the same taxa. Stress was also found to 
impact the function of SD and WKY microbiomes differently. In SD rats, exposure to stress-induced behav-
iour testing had only minor effects on microbiome composition, with changes mainly occurring among low 
relative abundance Proteobacteria, which includes Desulfovibrio. Sulfate metabolism by Desulfovibrio generates 
H2S, a signalling molecule that regulates several physiological responses including inflammation and neuronal 
activity47. While it is unknown if H2S generated by Desulfovibrio plays a significant role in modulating brain 
function, Desulfovibrio abundance has been shown to be associated with the increasing severity of autism in chil-
dren48. In WKY rats, however, exposure to stress shifted the microbiome in a small but consistent manner, with 
changes mainly amongst the Firmicutes, such as Lactococcus and Lactobacillus (members of the Lactobacillales), 
and Roseburia and Ruminococcus (members of the Clostridiales), all of which are lactate, succinate or SCFA pro-
ducers. These bacteria all play a role in carbohydrate fermentation, which is a core activity of the microbiome in 
determining energy and carbon balance in the gut49.

This study also demonstrates that certain bacterial taxa and brain lipids have parallel patterns of relative abun-
dance that are rat strain-specific. In particular, Lactococcus relative abundances were highly correlated with the 
relative proportions of many brain lipids. Notably, Lactococcus was the only genus showing significant change in 
response to acute stress in WKY rats. A rapidly growing body of evidence, particularly in preclinical models of 
anxiety/stress, depression and IBS, has shown a clear link between the gut microbiota and brain and behaviour via 
communication along the microbiota-gut-brain axis1,9,50–59. Another clear pattern that emerged was the high neg-
ative correlation between the relatively abundances of Bacteroides and Parabacteroides and a wide range of brain 
lipids and lipid metabolites. While the physiological significance of this link is unclear, decreased Bacteroides has 
been associated with higher clinical depression and anxiety symptoms in IBS patients60. In contrast, Lactococcus 
positively correlated with 12 of the lipids that decreased with increasing Bacteroides proportions, raising the 
possibility that these two genera may have indirect roles in brain lipid metabolism. Although the role of autoch-
thonous Lactococcus in modulating brain function is unexplored, Lactococcus lactis and other members of the 
Lactobacillales such as Streptococcus thermophilus and Lactobacillus bulgaricus have been shown to improve mood 
in healthy human subjects when consumed as a probiotic milk drink61.

While exposure to stress did not alter concentrations of SCFA and other measured acids in either rat strain, 
the microbiome functional outputs observed in WKY rats suggest that energy and lipid metabolism may play 
a role in modulating gut-brain signalling in this rat strain. Other researchers have shown that SCFAs produced 
by the gut microbiota behave as signalling molecules with downstream neurochemical effects via the gut-brain 
axis1,47. In this case, whole body SCFA turnover analysis may provide more insight62. While SCFA levels did not 
differ in response to stress within strains, it was interesting to note that iso-butyric and iso-valeric concentrations 
were higher in stressed WKY rats compared to stressed SD rats. Our findings are in line with increased levels of 
isobutyric and isovaleric acids observed in patients with gastrointestinal diseases shown to have downstream 
neurological effects, such as celiac disease63 and IBD64, as well as autism spectrum disorder65. Increased levels of 
isovaleric acid in stools were also found to correlate with human depression66.
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A key finding in our study has been a strong trend toward altered lipid metabolism between SD and WKY rats, 
which may, at least in part, explain differences in behaviour between the two rat strains. Supporting this, we also 
found that the greatest predicted functional difference between the SD and WKY microbiomes was the relative 
abundance of bacterial genes involved in lipid and energy metabolism. The microbiome has already been shown 
to alter host lipid metabolism through several mechanisms, including SCFA signalling-induced modification of 
metabolism and insulin sensitivity67, and microbial bile acid metabolism68. It is therefore conceivable that direct 
microbial metabolism of lipids may also have an influence on the host lipid metabolism. Overall, our results 
suggest that the acute stress response in WKY rats involves altered host-microbiota interactions. It is important 
to clarify that not all stress is detrimental. A functional stress response is necessary to avert danger and is critical 
during brain development.

Conclusion
This study is the first to provide comprehensive analyses of the plasma and brain metabolomes, and caecal micro-
biome composition, in response to stress in two rat strains; WKY and SD rats. A key finding from our study has 
been the identification of differential physiological responses to acute stress, particularly with respect to lipid 
metabolism, where SD rats had increased levels of plasma lipids while WKY rats had altered brain lipid pro-
files. Whether brain or gut physiological changes are driving the GBA stress response remains to be determined. 
Intriguingly, this suggests that under the experimental conditions we used, signalling from the gut had more 
impact on the physiological response to acute stress in WKY rats than it did in SD rats. We have presented exam-
ples of features differentiated in response to stress, as well as between rat strains, that suggest lipid profiles are 
a potential biomarker for studying the effect of foods, drugs or behaviour on stress and anxiety, in addition to 
supporting the selection of appropriate rodent models. By comparing a stress prone strain with a normo-anxious 
strain we have been able to explore what a healthy stress response may entail in terms of the microbiota and 
metabolome.

Methods
Animals.  This study was reviewed and approved (application 13501) by the AgResearch Grasslands Animal 
Ethics Committee (Palmerston North, New Zealand) according to the Animal Welfare Act (1999). Twenty four 
male Sprague Dawley (SD) rats and twenty four male Wistar Kyoto (WKY) rats were received from the Animal 
Resources Centre (Canning Vale, WA, Australia) at 8 weeks of age. SD rats are widely used as controls for WKY 
rats3,32,33. Animals were allowed to acclimatize to the facility and were handled daily for 1 week before being used 
in experiments. Animals were housed individually at a constant temperature of 21 °C and maintained under a 
12/12 h light/dark schedule (lights on at 7:00 am). At 10 weeks of age, rats of each strain were randomly assigned 
to one of two treatment groups (n = 12 per group) where one group was subject to behavioural testing while 
the other group was not tested (Supplementary Fig. S5). All rats were fed an adult maintenance diet (AIN-93M; 
OpenStandard Rodent Diet, Research Diets, Inc. New Brunswick, NJ, USA) and water, provided ad libitum. 
Animals were monitored three times weekly for weight, food intake, and General Health Score (1–5; NZ Animal 
Health Care Standard). WKY rats are smaller (~260 g) than SD (~450 g) and eat 18 and 28 g per day, respectively69. 
Behaviourally tested animals were sacrificed immediately following completion of FST experiments. At the end of 
the study the rats were euthanized using carbon dioxide inhalation overdose.

Behavioural testing.  The experiments were performed during the light phase (between 8:00 am and 
12:00 pm). Half the rats underwent behavioural testing which acted as a stressor using the OFT, NOR and FST. 
Rats underwent the OFT (day 21) as described by McKernan et al.54, and NOR testing (day 24) as described by 
Pusceddu et al.70 which included habituation (day 22) and pre-testing (day 23). Behaviour for the OFT and NOR 
was recorded and analysed using EthoVision XT 10 (Noldus, Wageningen, The Netherlands). Blood sampling via 
tail tipping was undertaken immediately prior to testing on Day 2 of the FST (day 32) which was carried out as 
previously described71. Behaviour (time spent swimming, immobile or climbing) and the number of faecal pellets 
produced were manually recorded by an observer blinded to the treatment groups. Rats were removed from the 
testing room immediately after completion of the forced swim test and euthanized.

Sample collection.  Blood samples were taken from behaviourally tested rats just prior to the FST (8–10 am), 
in which our sampling window corresponded with low basal resting cortisosterone levels to provide a baseline 
measure72–74, as well as immediately post-mortem. Plasma from tail tipped blood samples was prepared by filling 
two haematocrit capillary tubes (approximately 3/4 full), sealing the dry end with critoseal® (Leica Microsystems 
GmbH, Wetzlar, Germany) and centrifuged (microhaematocrit centrifugation (microhematocrit centrifuge type 
346, MSE Scientific Instruments, UK) for 5 minutes at 2500 × g. Haematocrit tubes were snapped, and plasma 
expelled into labelled tubes. Tissue samples (brain (whole) and gastrointestinal – ileum, jejunum, caecum and 
colon and their contents) were collected immediately after euthanasia. Intestinal contents were separated from 
their respective tissue while the tissue was washed in cold saline and treated with RNAlater® (Invitrogen) as pre-
viously described75. Post-mortem blood samples were removed by cardiac puncture using a 21-gauge needle and 
syringe pre-rinsed with EDTA, centrifuged at 2000 × g for 5 minutes at r.t. and the plasma removed. All samples 
were snap frozen in liquid nitrogen and stored at −80 °C until use.

Corticosterone ELISA.  Plasma corticosterone levels were measured using a commercial kit (Corticosterone 
ELISA kit, Enzo Life Sciences, Farmingdale, NY, USA) as per the manufacturer’s instructions, and the concen-
tration of each sample was extrapolated from a standard curve. Sensitivity of the assay was 27.0 pg/mL (range 
32–20,000 pg/mL).
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Caecal microbiota.  DNA was extracted from caecal contents using the NucleoSpin Soil kit (Macherey-Nagel 
GmbH, Düren, Germany) according to a previously described method76. The V3-V4 region of the bacterial 
16S rRNA gene was amplified using 16S dual-indexed primers77. Amplicons were sequenced at NZGL Ltd. 
(Palmerston North, New Zealand) using the MiSeq with 2X 250 base PE chemistry. Paired end sequences were 
joined using the join_paired_ends.py script and sequences were quality filtered (q30) using the Qiime 1.8 pipe-
line78. The resulting sequences were chimera checked using the USEARCH method against the Greengenes 
alignment (release GG_13_8), following which chimeric sequences were removed from subsequent analyses. 
Sequences showing 97% or greater similarity were clustered into operational taxonomic units (OTUs) using the 
UCLUST method and representative sequences were assigned taxonomies using the RDP classifier. Common 
taxa across the dataset were determined using the compute_core_microbiome.py script in Qiime. Random forest 
classification was performed using the randomForest package for R79. Predicted metagenome functional clas-
sifications were obtained using PICRUSt80 via the online Galaxy server. Sequence reads are publicly assessible 
from the NCBI Sequence Read Archive under the accession code PRJNA562079 (https://www.ncbi.nlm.nih.gov/
bioproject/PRJNA562079).

Short chain fatty acid (SCFA) analysis.  Caecal contents (200 mg) were prepared in a two-step pro-
cedure as previously described81,82. In the first step, SCFA were extracted into an aqueous solution for Gas 
Chromatography – Flame Ionization Detector (GC-FID) analysis of acetic, butyric, propionic, valeric, iso-valeric, 
iso-butyric and caproic acids. In the second step, an ether extraction was performed followed by derivatisation 
with N-tert-Butyldimethylsilyl-N-methyltrifluoroacetamide (MTBSTFA) for GC analysis of lactic, formic and 
succinic acids. Briefly samples were homogenized in PBS and centrifuged at 21,000 × g for 10 min at 4 °C. The 
supernatant (700 µL) was transferred to a fresh tube and 78 µL of internal standard added. Samples were stored 
at −20 °C overnight, and defrosted the following morning in a RT water bath and centrifuged at 21,000 × g for 
10 min at 4 °C. Supernatants (600 µL) were transferred to GC vials and underwent GC-FID analysis. For GC anal-
ysis, 200 µL of supernatant was combined with 100 µL 37% HCl, 5 µL resazurin dye and 800 µL of ether, shaken 
vigorously, left to settle for 1 min and the top ether layer transferred to a fresh tube. A further 800 µL of ether was 
added to the aqueous extract; samples were treated as before and the top ether layer removed. The pooled ether 
extract (800 µL) was combined with 100 µL of derivatizing agent (MTBSTFA) in GC vials, heated at 80 °C for 
20 min, incubated at RT for 48 h to complete derivatization, then run on a GC mass spectrometer.

Metabolomic analyses.  Extractions were performed using the method of Armirotti, et al.83 which was 
capable of generating extracts for both the HILIC and lipid analyses from a single aliquot of plasma or brain tis-
sue. Briefly, 200 µL plasma or 50 mg of homogenized brain tissue was extracted by bi-phasic liquid–liquid extrac-
tion using a mixture of water/methanol/chloroform/heptane. The upper (aqueous) phase removed (200 µL), dried 
under N2 and reconstituted in 200 µL of 50:50 acetonitrile:water containing 10 µg/mL d2-tyrosine as an internal 
standard for HILIC-MS analysis. Likewise, 200 µL of the organic (lower) phase was dried under N2 and reconsti-
tuted in 200 µL of 2:1 chloroform:methanol (v/v) containing d31-PE internal standard at 10 µg/ml. To verify and/
or maintain data quality within each mode, a QC sample (comprising a pooled extract of a sub-set of samples for 
brain analyses, and a bovine plasma sample for plasma analyses) was also injected once every 10 samples. Plasma 
and brain extracts were analysed through HILIC and lipid LC-MS streams using both positive and negative ioni-
zation modes as previously described84,85.

Metabolites eluting between 3–18 minutes for the HILIC analysis and between 1–11 min for the lipidomics 
analysis were extracted from the LC-MS data by converting the data files to mzXML file format (ProteoWizardTM) 
and performing peak detection, alignment and grouping using XCMS. The resultant peak intensity table was 
subjected to an in-house linear run-order correction normalization and isotope/adduct annotation using respec-
tive R based software. Data corresponding to isotopes and background noise were removed from the final data 
matrix. Feature annotation for HILIC-MS was performed by matching peaks against an in-house library of 
authentic standards run under identical conditions. Where hits were unsuccessful, statistically significant fea-
tures were searched against public domain databases HMDB and METLIN (mass tolerance of 5 ppm). Lipid 
LC-MS annotations were performed by matching the XCMS generated data matrix to lipids identified in the sam-
ples by MS2 spectral matching using LipidSearchTM software (Thermo). Metabolomics data have been deposited 
to the EMBL-EBI MetaboLights database with the identifier MTBLS1192 (https://www.ebi.ac.uk/metabolights/
MTBLS1192).

Statistical analysis.  Behavioural and corticosterone data were analysed by analysis of variance (ANOVA) 
using GenStat® 18 (VSN International Ltd., UK). For microbiota and SCFA data, differences in mean proportions 
of taxa at the family level were analysed using two factor non-parametric permutation ANOVA (2000 permuta-
tions per test) as implemented in the RVAideMemoire package86 in R 3.0.287, with the factors being rat strain and 
whether the rats were subjected to behavioural tests or not. P values < 0.05 were considered significant.

PICRUSt analysis of the predicted bacterial metagenome was performed using the Galaxy web app (http://
huttenhower.sph.harvard.edu/galaxy) using default parameters; operational taxonomic units (OTU) were nor-
malised by 16S rRNA gene copy numbers and KEGG Ortholog abundances were predicted based on OTU 
abundances80.

Hierarchical clustering analysis of predicted metagenome KEGG functions was performed using a Euclidean 
distance matrix and complete hierarchical clustering as implemented by the heatmap.2 function from the gplots 
R package.

Canonical correlation analysis to assess possible associations between microbe and metabolite relative abun-
dances was performed using the splsda function in the mixOmics package for R88.
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Metabolomics data analysis was performed using MetaboAnalyst v3.089 and the statistical software package 
SIMCA (v14.0). Data from the two ionization modes for each of the chromatographic analyses (HILIC and lipid) 
were combined for statistical analysis, log2 transformed and auto-scaled. Univariate and multivariate data anal-
yses were conducted and principal component analysis (PCA) used for dataset overview and to identify poten-
tial run order effects. Fold Change (FC) and t-test analysis of the strains were performed and a false discovery 
rate (FDR) correction utilized to reduce the risk of false positives. MS features with FDR < 0.1 for HILIC and 
FDR < 0.05 for lipid analysis were considered to differ significantly between strains.

Correlation between microbial and metabolite relative abundances were analysed by sparse Partial Least 
Squares (sPLS) regression analysis using the mixOmics package for R90.
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