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Echo State Networks with Self-
Normalizing Activations on the 
Hyper-Sphere
Pietro Verzelli1, Cesare Alippi1,2 & Lorenzo Livi   3,4

Among the various architectures of Recurrent Neural Networks, Echo State Networks (ESNs) emerged 
due to their simplified and inexpensive training procedure. These networks are known to be sensitive 
to the setting of hyper-parameters, which critically affect their behavior. Results show that their 
performance is usually maximized in a narrow region of hyper-parameter space called edge of criticality. 
Finding such a region requires searching in hyper-parameter space in a sensible way: hyper-parameter 
configurations marginally outside such a region might yield networks exhibiting fully developed chaos, 
hence producing unreliable computations. The performance gain due to optimizing hyper-parameters 
can be studied by considering the memory–nonlinearity trade-off, i.e., the fact that increasing the 
nonlinear behavior of the network degrades its ability to remember past inputs, and vice-versa. In this 
paper, we propose a model of ESNs that eliminates critical dependence on hyper-parameters, resulting 
in networks that provably cannot enter a chaotic regime and, at the same time, denotes nonlinear 
behavior in phase space characterized by a large memory of past inputs, comparable to the one of 
linear networks. Our contribution is supported by experiments corroborating our theoretical findings, 
showing that the proposed model displays dynamics that are rich-enough to approximate many 
common nonlinear systems used for benchmarking.

Although the use of Recurrent Neural Networks (RNNs) in machine learning is boosting, also as effective build-
ing blocks for deep learning architectures, a comprehensive understanding of their working principles is still 
missing1,2. Of particular relevance are Echo State Networks (ESNs), introduced by Jaeger3 and independently by 
Maass et al.4 under the name of LSM, which emerge from RNNs due to their training simplicity. The basic idea 
behind ESNs is to create a randomly connected recurrent network, called reservoir, and feed it with a signal so 
that the network will encode the underlying dynamics in its internal states. The desired – task dependent – output 
is then generated by a readout layer (usually linear) trained to match the states with the desired outputs. Despite 
the simplified training protocol, ESNs are universal function approximators5 and have shown to be effective in 
many relevant tasks6–12.

These networks are known to be sensitive to the setting of hyper-parameters like the SR, the input scaling and 
the sparseness degree3, which critically affect their behavior and, hence, the performance at task. Fine tuning of 
hyper-parameters requires cross-validation or ad-hoc criteria for selecting the best-performing configuration. 
Experimental evidence and some results from the theory show that ESNs performance is usually maximized in 
correspondence of a very narrow region in hyper-parameter space called Edge of Criticality (EoC)13–20. However, 
we comment that beyond such a region ESNs behave chaotically, resulting in useless and unreliable computations. 
At the same time, it is everything but trivial configuring the hyper-parameters to lie on the EoC still granting a 
non-chaotic behavior. A very important property for ESNs is the Echo State Property (ESP), which basically 
asserts that their behavior should depend on the signal driving the network only, regardless of its initial con-
ditions21. Despite being at the foundation of theoretical results5, the ESP in its original formulation raises some 
issues, mainly because it does not account for multi-stability and is not tightly linked with properties of the spe-
cific input signal driving the network21–23.
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In this context, the analysis of the memory capacity (as measured by the ability of the network to reconstruct 
or remember past inputs) of input-driven systems plays a fundamental role in the study of ESNs24–27. In particular, 
it is known that ESNs are characterized by a memory–nonlinearity trade-off28–30, in the sense that introducing 
nonlinear dynamics in the network degrades memory capacity. Moreover, it has been recently shown that opti-
mizing memory capacity does not necessarily lead to networks with higher prediction performance31.

In this paper, we propose an ESN model that eliminates critical dependence on hyper-parameters, resulting 
in models that cannot enter a chaotic regime. In addition to this major outcome, such networks denote nonlinear 
behavior in phase space characterized by a large memory of past inputs: the proposed model generates dynamics 
that are rich-enough to approximate nonlinear systems typically used as benchmarks. Our contribution is based 
on a nonlinear activation function that normalizes neuron activations on a hyper-sphere. We show that the spec-
tral radius of the reservoir, which is the most important hyper-parameter for controlling the ESN behavior, plays 
a marginal role in influencing the stability of the proposed model, although it has an impact on the capability of 
the network to memorize past inputs. Our theoretical analysis demonstrates that this property derives from the 
impossibility for the system to display a chaotic behavior: in fact, the maximum Lyapunov exponent is always null. 
An interpretation of this very important outcome is that the network always operates on the EoC, regardless of the 
setting chosen for its hyper-parameters. We tested the memory of our model on a series of benchmark time-series, 
showing that its performance for memorization tasks is comparable with that exposed by linear networks. We also 
explored the memory–nonlinearity trade–off following30, showing that our model outperforms networks with 
linear and hyperbolical activations when both memory and nonlinearity are required by the task at hand.

Results
Echo state networks.  An ESN without output feedback connections is defined as:

= +−a x sW W (1a)k k k1 in

φ=x a( ) (1b)k k

=y xW (1c)k kout

where ∈xk
N  is the system state at time-step k, N is the number of hidden neurons composing the network 

reservoir, and ∈ ×W N N  is the connection matrix of the reservoir. The signal value at time k, ∈sk
Nin, is pro-

cessed by the input-to-reservoir matrix W N N
in

in∈ × . The activation function φ usually takes the form of the 
hyperbolic tangent function, for which the network is a universal function approximator5. Also linear networks 
(i.e., when φ is the identity) are commonly studied, both for the proven impact on applications and the very inter-
esting results that can be derived in closed-form24,25,27,31,32. Other activation functions have been proposed in the 
neural networks literature, including those that normalize the activation values on a closed hyper-surface33 and 
those based on non-parametric estimation via composition of kernel functions34.

The output y Nout∈  is generated by the matrix Wout, whose weights are learned: generally by ridge regression 
or lasso3,35 but also with online training mechanisms36. In ESNs, the training phase does not affect the dynamics 
of the system, which are de facto task-independent. It follows that once a suitable reservoir rich in dynamics is 
generated, the same reservoir may serve to perform different tasks. A schematic representation of and ESN in 
depicted in Fig. 1

Self-normalizing activation function.  Here, we propose a new model for ESNs characterized by the use 
of a particular self-normalizing activation function that provides important features to the resulting network. 
Notably, the proposed activation function allows the network to exhibit nonlinear behaviors and, at the same 
time, provides memory properties similar to those observed for linear networks. This superior memory capacity 
is linked to the fact that the network never displays a chaotic behavior: we will show that the maximum Lyapunov 

sk yk
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Figure 1.  Schematic representation of an ESN with a 4-dimensional input, a mono-dimensional output and 
=N 7 neurons in the reservoir. Fixed connections are drawn using continuous lines while dashed lines 

represent connections that are learned.
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exponent is always zero, implying that the network operates on the EoC. The proposed activation function guar-
antees that the SR of the reservoir matrix (whose value is used as a control parameter) can vary in a wide range 
without affecting the network stability.

The proposed self-normalizing activation function is

a x sW W (2a)k k k1 in= +−

=x a
a

r
(2b)k

k

k

and leaves the readout (1c) unaltered. The normalization in Eq. 2b projects the network pre-activation ak onto an 
(N − 1)-dimensional hyper-sphere S R= ∈ =− p p r: { , }r

N N1  of radius r. Figure 2 illustrates the normalization 
operator applied to the state. Note that the operation (2b) is not element-wise like most of activation functions as 
its effect is global, meaning that a neuron’s activation value depends on all other values.

Universal function approximation property.  The fact that recurrent neural networks are universal func-
tion approximators has been proven in previous works37,38 and some results on the universality of reservoir-based 
computation are given in4,39. Recently, Grigoryeva and Ortega5 proved that ESNs share the same property. Here, 
we show that the universal function approximation property also holds for the proposed ESNs model (2). To this 
end, we define a squashing function as a map f : [ 1, 1]→ −  that is non decreasing and saturating, i.e., 

= ±→±∞ f xlim ( ) 1x . We note that φ =x xx( ): /i i  can be intended as a squashing function for each ith compo-
nent. In the same work5, the authors show that an ESN in the form (1) is a universal function approximator pro-
vided it satisfies the contractivity condition: φ φ− ≤ −x x x x( ) ( )1 2 1 2  for each x1 and x2, when φ is a squashing 
function. Jaeger and Haas3 showed that this condition is sufficient to grant the ESP, implying that ESNs are uni-
versal approximators.

We prove in the Methods section that (2) grants the contractivity condition, provided that:

σ ≥ +W W s
r

( ) 1 (3)min
in max

where σ W( )min  is the smallest singular value of matrix W and smax  denotes the largest norm associated to an 
input. Equation 3 results in a sufficient yet not necessary condition that may be understood as requiring that the 
input will never be strong enough to contrast the expansive dynamics of the system, leading the network state 
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Figure 2.  Example of the behavior of the proposed model in a 2-dimensional scenario. The blue lines represent 
the linear update step of Eq. (2a), while the dashed lines denote the projection of Eq. (2b). The red lines 
represent the actual steps performed by the system. Note that condition (3) accounts for the fact that the linear 
step must never bring the system state inside the hyper-sphere.
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inside the hyper-sphere of radius r. In fact, unless the signal is explicitly designed for violating such a condition, 
it will very likely not bring the system inside the hyper-sphere as long as the norm of W is large enough compared 
to the signal variance.

Network state dynamics: the autonomous case.  We now discuss the network state dynamics in the 
autonomous case, i.e., in the absence of input. This allows us to prove why the network cannot be chaotic.

From now on, we assume r = 1 as this does not affect the dynamics, provided that condition (3) is satisfied. 
From (2), the system state dynamics in the autonomous case reads:

x x
x
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By iterating this procedure, one obtains:

x x x
x

W
W

: ( )
(6)n

n
n

n0
0

0
φ= =

where x0 is the initial state. This implies that, for the autonomous case, a system evolving for n time-steps coin-
cides with updating the state by performing n matrix multiplications and projecting the outcome only at the end.

It is worth to comment that this holds also if matrix W changes over time. In fact, let W W n: ( )n =  be W at time 
time n. Then, the evolution of the dynamical system reads:

φ= =
…
…

−

−
x x

x
x W W W W

W W W W
: ( )

(7)n
n n n

n n
0

1 2 1 0

1 2 1 0

Furthermore, note that a system described by matrix W and a system characterized by ′ =W aW  coincide. In 
turn, this implies that the SR of the matrix does not alter the dynamics in the autonomous case.

Edge of criticality.  When tuning the hyper-parameters of ESNs, one usually tries to bring the system close to 
the EoC, since it is in that region that their performance is optimal14. This can be explained by the fact that, when 
operating in that regime, the system introduces rich dynamics without denoting chaotic behavior.

Here, we show that the proposed recurrent model (2) cannot enter a chaotic regime. Notably, we prove that, 
when the number of neurons in the network is large, the maximum (local) Lyapunov exponent cannot be positive, 
hence neglecting the possibility to introduce a chaotic behavior. To this end, we determine the Jacobian matrix of 
(2b) and then show that, since its spectral radius tends to 1, the maximum LLE must be null. The Jacobian matrix 
of (2b) reads:

∑φ
φ

=
∂

∂
=

∂

∂
∂
∂

=

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

−

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x
a a
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W a a
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ij
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l
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j

l

l
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ij i j
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where the time index k is omitted to ease the notation. We observe that, asymptotically for large networks 
(n → ∞), we have that →aa / 0i  for each i, meaning that the Jacobian matrix reduces to x xJ W W( ) /= . As 
we are considering the case with =r 1, we know that x 1= .

This allows us to approximate the norm of W with its SR ρ ρ= W( ),

ρ
≈ ≈ .

x
J W

W
W

(9)

Under this approximation (9), the largest eigenvalue of J must be 1 as the SR ρ is the largest absolute value 
among the eigenvalues of W. We thus characterize the global behavior of (2b) by considering the maximum 
LLE14, which is defined as:

n
: lim 1 log

(10)n k

n

k∏ ρΛ =








→∞

where kρ  is the spectral radius of the Jacobian at time-step k. Equation 10 implies that Λ = 0 as n → ∞, hence 
proving our claim.

In order to demonstrate that 0Λ =  holds also for networks with a finite number N of neurons in the recurrent 
layer, we numerically compute the maximum LLE by considering the Jacobian in (8). The results are displayed in 
Fig. 3. Figure 3 panel (a) shows the average value of the maximum LLE with the related standard deviation 
obtained for different values of SR. Results show that the LLE is not significantly different from zero. In Fig. 3 
panel (b), instead, we show the Lyapunov spectrum of a network with N = 100 neurons in the recurrent layer, 
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obtained for different SR values. Again, our results show that the maximum LLE of (2b) is zero for finite-size 
networks, regardless of the values chosen for the SR.

Network state dynamics: input-driven case.  Let us define the “effective input” contributing to the neu-
ron activation as u sW: in= . Accordingly, Eq. 2a takes on the following form:

a x uW , (11)k k k1= +−

where uk operates as a time-dependent bias vector. Let us define the normalization factor as:

x uN W , (12)k k k1= +−

Then, as shown in the Methods section, the state at time-step n can be written as:

x x uM M
(13)n

n

k

n
n k

k
( ,0)

0
1

( , )∑= +
=

where

M W
N

:
(14)

n k
n k

l k
n

l

( , ) =
∏

.
−

=

By looking at (13), it is possible to note that each uk is multiplied by a time-dependent matrix, i.e., the net-
work’s final state xn is obtained as a linear combination of all previous inputs.

Memory of past inputs.  Here, we analyze the ability of the proposed model (2) to retain memory of past 
inputs in the state. In order to perform such analysis, we define a measure of network’s memory that quantifies 
the impact of past inputs on current state xn. Our proposal shares similarities with a memory measure called 
Fisher memory, first proposed by Ganguli et al.27 and then further developed in24,32. However, our measure can 
be easily applied also to non-linear networks like the one Eq. 2 proposed here, justifying the analysis discussed 
in the following.

Considering one time-step in the past, we have:

x x uW
N N

1
(15)n

n
n

n
n1= +−

All past history of the signal is processed in xn−1. Note that (15) keeps the same form for every n. Going back-
ward in time one more step, we obtain:

x x u uW
N

W
N N N

1 1
(16)

n
n n

n
n

n
n

n
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1

1=
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


+





+
−

−
−

−

As x x x 1n n n1 2= = =− − , we see that there is a sort of recursive structure in this procedure, where 
each incoming input is summed to the current state and then their sum is normalized. This is a key feature of the 
proposed architecture. In fact, it guarantees that each input will have an impact on the state, since the norm of the 
activations will not be too big or too small, because of the normalization. We now express this idea in a more 
formal way.

Figure 3.  Panel (a) shows LLEs for different value of the SR. Each point in the plot represents the mean of 10 
different realizations, using a network with N 500=  neurons. In panel (b) examples of the Lyapunov spectrum 
for different 100-dimensional networks are plotted. The Lyapunov exponents are ordered by decreasing 
magnitude. Note that the largest exponent is always zero.
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The norm of (14) can be written as



ρ=
∏

≈
∏=

− −

=

−M
N

W
N

1 1
(17)

n k

l k
n

l

n k n k

l k
n

l

n k( , ) 1

where the approximation holds thanks to the Gelfand’s formulaa. If the input is null, we expect each Nl to be of the 
order of ρ as x 1l = . So we write:

x uN W (18)l l l l1 ρ δ= + = +−

where δl denotes the impact of the l-th input on the l-th normalization factor. Its presence is due to the fact that 
without any input Nl would be approximately equal to ρ, while the input modifies the state and so the normaliza-
tion value will be modified accordingly. The value δl is introduced to account for this fact: Nl:δ ρ= − .

If we assume that each input produces a similar effect on the state (i.e. δ δ=l  for every l), we finally obtain:

ρ
ρ δ

≈
+

−

−
M

( ) (19)
n k

n k

n k
( , )

We note that such assumption is reasonable for inputs that are symmetrically distributed around a mean 
value with relatively small variance, e.g. for Gaussian or uniformly distributed inputs (as demonstrated by our 
results). However, our argument might not hold for all types of inputs and a more detailed analysis is left as future 
research.

We define the memory of the network k n( )|α  as the influence of input at time k on the network state at time n. 
More formally, having defined α ρ δ=: /  (since (19) only depends on this ratio), we use (19) to define the memory as:

k n( ):
1

1 1
1 (20)

n k n kα
α α

| =

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 +


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 =
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

−
+



α

− −



Equation 20 goes to 0 (i.e., no impact of the input on the states) as α → 0 and tends to 1 for α → ∞, implying 
that for an infinitely large SR the network perfectly remembers its past inputs, regardless of their occurrence in the 
past. Note that (20) does not depend on k and n individually, but only on their difference (elapsed time): the larger 
the difference, the lower the value of  k n( )|α , meaning that far away inputs have less impact on the current state.

Memory loss.  By using (20), we define the memory loss between state xn and xm of the signal at time-step k 
(with m n k> >  and τ= +m n ) as follows:

α
α
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  

For very large values of α, we have  k m n( , ) 0∆ | → , meaning that in our model (2b) larger spectral radii 
eliminate memory losses of past inputs. Now, we want to assess if inputs in the far past have higher/lower impact 
on the state more than recent inputs. To this end, we selected > >n k l and defined = −k n a and l n b= − , 
leading to b a 0> >  and b a δ= + . Define:

k l n n a n n a n( , ) ( ) ( )

( 1) ( 1)

( 1)
1

( 1)

1 1
1

1 1 1
1

0
(22)

a

a

a

a

a

a

a

   δ

α
α

α
α

α
α

α
α

α α

∆ | = − | − − − |

=
+

−
+

=
+






−
+






=




−
+










−





−
+










≥

δ

δ

δ

δ

δ

+

+

We have that δ∆ − − − | = −δ α→∞ +( )n a n a nlim ( , ) 1
a1

1
 , showing how the impact of an input that is 

infinitely far in the past is not null compared with one that is only < ∞a  steps behind the current state. This 
implies that the proposed network is able to preserve in the network state (partial) information from all inputs 
observed so far.

aThe Gelfand’s formula40 states that for any matrix norm ρ(A) = limk→∞ Ak k
1

|| || .
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Linear networks.  In order to assess the memory of linear models, we perform the same analysis for linear RNNs 
(i.e., =x an n) by using the definitions given in the previous section. In this case, an expression for the memory 
can be obtained straightforwardly and reads:

ρ| = − k n( ): (23)L
n k

It is worth noting that there is no dependency on δ and, therefore, on the input. Just like before, we have the 
memory loss of the signal at time-step k between state xn and xm, as:

τ

ρ ρ

∆ | = | − |
= | + − |

= − ≤τ −

  
 

k m n k m k n
k n k n

( , ) ( ) ( )
( ) ( )

( 1) 0 (24)

L L L

L L
n k

where we set > >m n k and τ= +m n . As before, we also discuss the case of two different inputs observed 
before time-step n. By selecting time instances n k l> > , k n a= −  and = −l n b, we have > >b a 0 allowing 
us to write δ= +b a . As such:

  k l n k n l n( , ) ( ) ( ) (1 ) 0 (25)L L L
aρ ρ∆ | = | − | = − ≥ .δ

We see that in both (24) and (25) the memory loss tends to zero as the spectral radius tends to one, which is 
the critical point for linear systems. So, according to our analysis, linear networks should maximize their ability to 
remember past inputs when their SR in close to one and, moreover, their memory should be the same disregard-
ing the particular signal they are dealing with. We will see in the next section that both these claims are confirmed 
by our simulations.

Hyperbolic tangent.  We now extend the analysis to standard ESNs, i.e., those using a tanh activation function. 
Define : tanhφ =  (applied element-wise). Then, for generic scalars a and b, when b 1| |   the following approxi-
mation holds:

a b a b
a b

a b( ) ( ) ( )
1 ( ) ( )

( ) ( )
(26)

φ φ φ
φ φ

φ φ+ =
+

+
≈ +

When a is the state and b is the input, our approximation can be understood as a small-input approximation41. 
Then, the state-update reads:

x x u
x u

x u
x u u

W
W
W W u
W W W

( )
( ) ( )
( ( )) ( )
( ( )) ( ( )) ( ) (27)

n n n

n n

n n n

n n n

1

1

2 1

2 1

φ
φ φ
φ φ φ
φ φ φ φ φ

= +
≈ +
= + +
≈ + +

−

−

− −

− −

Thus, applying the same argument used in the previous cases, it is possible to write:

∑

φ φ φ

φ

= + + +

=

ρ ρ ρ

ρ

−

=

−

x u u u

u

S S S

S

( ( ) ) ( ( )) ( ( ))

( ( ))
(28)

n n n
n

k

n
n k

k

(0) (1)
1

( )
0

0

( )



where we defined:

S ( ): ( ( ( )))
(29)

n

n

( )

times
� ������� ��������ξ φ ρ φ ρ φ ξ= ⋅ … ⋅ρ

We see that, differently from the previous cases, the final state xn is a sum of nonlinear functions of the signal 
uk. Each signal element uk is encoded in the network state by first multiplying it by ρ and then passing the out-
come through the nonlinearity φ ⋅( ). This implies that, for networks equipped with hyperbolic tangent function, 
larger spectral radii favour the forgetting of inputs (as we are in the non-linear region of φ ⋅( )). On the other hand, 
for small spectral radii the network operates in the linear regime of the hyperbolic tangent and the network 
behaves like in the linear case.

A plot depicting the decay of the memory of input at time-step k for all three cases described above is shown in 
Fig. 4. The trends demonstrate that, in all cases, the decay is consistent with our theoretical predictions.

Performance on memory tasks.  We now perform experiments to assess the ability of the proposed model 
to reproduce inputs seen in the past, meaning that the desired output at time-step k is = τ−y uk k , where τ ranges 
from 0 to 100. We compare our model with a linear network and a network with hyperbolic tangent (tanh) acti-
vation functions. We use fixed, but reasonable hyper-parameters for all networks, since in this case we are only 
interested in analyzing the network behavior on different tasks. In particular, we selected hyper-parameters that 
worked well in all cases taken into account; in preliminary experiments, we noted that different values did not 
result in substantial (qualitative) changes of the results. The number of neuron N is fixed to 1000 for all models. 
For linear and nonlinear networks, the input scaling (a constant scaling factor of the input signal) is fixed to 1 and 
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the SR equals ρ = .0 95. For the proposed model (2), the input scaling is chosen to be 0.01, while the SR is 15ρ = . 
For the sake of simplicity, in what follows we refer to ESNs resulting from the use of (2) as “spherical reservoir”.

To evaluate the performance of the network, we use the accuracy metric defined as γ = −max {1 NRMSE, 0}, 
where the NRMSE is defined as:

=
〈 − 〉

〈 − 〈 〉 〉
.

ˆy y
y y

NRMSE:
(30)

k k

k k

2

2

Here, yk̂ denotes the computed output and 〈⋅〉 represents the time average over all time-steps taken into 
account. In the following, we report the accuracy γ while varying τ in the past for various benchmark tasks. Each 
result in the plot is computed using the average over 20 runs with different network initializations. The networks 
are trained on a data set of length =L 5000train  and the associated performance is evaluated using a test set of 
length =L 2000test . The shaded area represents the standard deviation. All the considered signals were normal-
ized to have unit variance.

White noise.  In this task, the network is fed with white noise uniformly distributed in the −[ 1, 1] interval. 
Results are shown in Fig. 5, panel (a). We note that networks using the spherical reservoir have a performance 
comparable with linear networks, while tanh networks do not correctly reconstruct the signal when k exceeds 20. 
It is worth highlighting the similarity of the plots shown here with our theoretical predictions about the memory 
(Eqs (20), (23) and (28)) shown in Fig. 4.

Multiple superimposed oscillators.  The network is fed with Multiple Superimposed Oscillators MSO with 3 
incommensurable frequencies:

= . + . + .u k k k k( ) sin(0 2 ) sin(0 311 ) sin(0 42 ) (31)

Results are shown in Fig. 5, panel (b). This task is difficult because of the multiple time scales characterizing 
the inputs3. We note the performance of the linear and the spherical reservoirs are again similar and both outper-
form the network using the hyperbolic tangent. The accuracy peak when k 60≈  is due to the fact that the auto-
correlation of the signal reaches its maximum value at that time-step.

Lorenz series.  The Lorenz system is a popular mathematical model, originally developed to describe atmos-
pheric convection.

x y x
y x z y
z xy z

( ),
( ) ,

(32)







σ
ρ

β









= −
= − −
= − .

It is well-known that this system is chaotic when σ = 10, 8
3

β =  and ρ = 28. We simulated the system with 
these parameters and then fed the network with the x coordinate only. Results are shown in Fig. 5, panel (c). Also 
in this case, while the accuracy for spherical and linear networks does not seem to be affected by k, the perfor-
mance of networks using the tanh activation dramatically decreases when k is large. This stresses the fact that 
non-linear networks are significantly penalized when they are requested to memorize past inputs.

Mackley-Glass system.  The Mackley-Glass system is given by the following delayed differential equation:

Figure 4.  Decay of the memory in the cases associated with expressions (20), (23) and (28). In all cases, the 
decay is consistent with the predictions. The memory for the hyperbolic tangent is estimated assuming a signal 
of magnitude 1.
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β α λ
λ

= − +
−

+ −
x t x t x t

x t
( ) ( ) ( )

1 ( ) (33)

In our experiments, we simulated the system using standard parameters, that is, λ = 17, 0 2α = .  and 0 1β = . . 
Results are shown in Fig. 5, panel (d). Note that in this case the performance of the network with spherical 

Figure 5.  Results of the experiments on memory for different benchmarks. Panel (a) displays the white noise 
memorization task, (b) the MSO, (c) the x-coordinate of the Lorenz system, (d) the Mackey-Glass series and 
(e) the Santa Fe laser dataset. As described in the legend (f), different line types account for results obtained 
on training and test data. The shaded areas represent the standard deviations, computed using 20 different 
realization for each point.

https://doi.org/10.1038/s41598-019-50158-4


1 0Scientific Reports |         (2019) 9:13887  | https://doi.org/10.1038/s41598-019-50158-4

www.nature.com/scientificreportswww.nature.com/scientificreports/

reservoir is comparable with the one obtained using the hyperbolic tangent and both of them are outperformed 
by the linear networks.

Santa Fe laser dataset.  The Santa Fe laser dataset is a chaotic time series obtained from laser experiments. The 
results are shown in Fig. 5, panel (e). Also in this case the hyperbolic tangent networks do not manage to remem-
ber the signal, while the other systems show the usual behavior.

Memory/Non-Linearity Trade-Off.  Here, we evaluate the capability of the network to deal with tasks char-
acterized by tunable memory and non-linearity features30. The network is fed with a signal where the uks are 
univariate random variables drawn from a uniform distribution in [ 1, 1]− . The network is then trained to recon-

Figure 7.  Results for the hyperbolic tangent activation function. The network performs as expected: the error 
grows with the memory required to solve the task. The choice of the spectral radius displays a pattern, where 
larger SRs are preferred when more memory is required. The scaling factor tends to be small for almost every 
configuration.

Figure 6.  Comparison of the network prediction the memory–nonlinearity task for 2 5ν = .  and 10τ = . The 
hyper-parameters of the networks are the same used to generate Fig. 5. Here the accuracy values are 

0 12tanhγ = . , 0 63sphericalγ = .  and 0 61linearγ = . .

https://doi.org/10.1038/s41598-019-50158-4


1 1Scientific Reports |         (2019) 9:13887  | https://doi.org/10.1038/s41598-019-50158-4

www.nature.com/scientificreportswww.nature.com/scientificreports/

struct the desired output of ν= ⋅ τ−y usin( )k k . We see that τ accounts for the memory required to correctly solve 
the task, while ν controls the amount non-linearity involved in the computation. For each configuration of τ and 
ν  chosen in suitable ranges, we run a grid search on the range of admissible values of SR and input scaling. 

Figure 8.  Performance of linear networks. We note that τ seems to have no significant effect on the 
performance. In fact, we note very large errors when the nonlinearity of the task is high. The choice of the 
scaling factor and of the spectral radius shows a really weak tendency to certain values, indicating that the 
performance is only weakly influenced by the hyper-parameters.

Figure 9.  Performance of the proposed model. We see that the network performs reasonably well for all the 
tasks displaying only a weak dependency on the memory. Moreover the spectral radius does not to play any 
role in the network performance. The choice of the scaling factor denotes similar patterns with the hyperbolic 
tangent case.
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Notably, we considered 20 equally-spaced values of the SR and for the input scaling. For networks using hyper-
bolic tangent, the SR varies in .[0 2, 3]; [0 2, 1 5]. .  for linear networks, and .[0 2, 10] for networks with spherical 
reservoir. The input scaling always ranges in [0 01, 2]. b. We then choose the hyper-parameters configuration that 
minimizes (30) on a training set of length =L 500train  and then assess the error on a test set with =L 200test .

In Figs 7, 8 and 9, we show the NRMSE for the task described above for different values of ν and τ, and the ranges 
of the input scaling factor and the spectral radius which performed best for the hyperbolic tangent, linear and spher-
ical activation function, respectively. The results of our simulations agree with those reported in30 and, most impor-
tantly, confirm our theoretical prediction: the proposed model possess memory of past inputs that is comparable 
with the one of linear networks but, at the same time, it is also able to perform nonlinear computations. This explains 
why the proposed model denotes the best performance when the task requires both memory and nonlinearity, i.e., 
when both τ and ν are large. Predictions obtained for a specific instance of this task requiring both features are given 
in Fig.  6, showing how the proposed model outperforms the competitors. In order to explore the 
memory-nonlinearity relationship we followed the experimental design proposed in30: our goal is to study the mem-
ory property of the proposed model and not to develop a model specifically designed to maximize the compromise 
between memory and nonlinearity. The reader interested in models that aim at explicitly tackling the memory–non-
linearity problem may refer to recently-developed hybrid systems30,42 which try to deal with the memory–nonline-
arity trade–off by combining, in different ways, linear and non-linear units so that the network can exploit a 
combination of them according to the problem at hand. These approaches introduce new hyper-parameters which, 
basically, allow to control the memory–nonlinearity trade–off. Future works will investigate such a trade–off.

Discussion
In this work, we studied the properties of ESNs equipped with an activation function that projects at each 
time-step the network state on a hyper-sphere. The proposed activation function is global, contrarily to most acti-
vation functions used in the literature, meaning that the activation value of a neuron depends on the activations of 
all other neurons in the recurrent layer. Here, we first proved that the proposed model is a universal approximator 
just like regular ESNs and gave sufficient conditions to support this claim. Our theoretical analysis shows that the 
behavior of the resulting network is never chaotic, regardless of the setting of the main hyper-parameters affecting 
its behavior in phase space. This claim was supported both analytically and experimentally by showing that the 
maximun Lyapunov exponent is always zero, implying that the proposed model always operates on the EoCs. This 
leads to networks which are (globally) stable for any hyper-parameter configurations, regardless of the particular 
input signal driving the network, hence solving stability problems that might affect ESNs.
The proposed activation function allows the model to display a memory capacity comparable with the one 
of linear ESNs, but its intrinsic nonlinearity makes it capable to deal with tasks for which rich dynamics are 
required. To support this claim, we developed a novel theoretical framework to analyze the memory of the net-
work. By taking inspiration from the Fisher memory proposed by Ganguli et al.27, we focused on quantifying 
how much past inputs are encoded in future network states. The developed theoretical framework allowed us 
to account for the nonlinearity of the proposed model and predicted a memory capacity comparable with the 
one of linear ESNs. This theoretical prediction was validated experimentally by studying the behavior of the 
memory loss using white noise as inputs as well as well-known benchmarks used in the literature. Finally, we 
experimentally verified that the proposed model offers an optimal balance of nonlinearity and memory, show-
ing that it outperforms both linear and ESNs with tanh activation functions in those tasks where both features 
are required at the same time.

Methods
Contractivity condition.  The universal approximation property, as exhaustively discussed in5, can be 
proved for an ESN of the form (1b) provided that it has the ESP. To prove the ESP, it is sufficient to show that the 
network has the contractivity condition, i.e., that for each x and y in the domain of the activation function φ, it 
must be true that:

φ φ− ≤ −x x yy( ) ( ) (34)

Let us introduce the the notation ˆ =x x x: /  and y y y: /ˆ = . Taking the square of the norm, one gets:

ˆ ˆ ˆ ˆx y x y x
y

y
x

x yr r( ) ( ) (2 2( )) 2
(35)
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where a · b is the scalar product between two vectors and the inequality + ≥ 2a
b

b
a

 follows from the fact that 
a b a b ab( ) 2 02 2 2− = + − >  for all >a b, 0. Now, we assume >x y r,  and show that:

� �������� ��������

⋅





+ − ⋅





≤





+ − ⋅





= + − ⋅

= −

⋅

ˆ ˆ ˆ ˆ

ˆ ˆ

x
y

y
x

x y x y x
y

y
x

x y

x y x y x y

x y

r 2 2

2( )( )

(36)
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bThis choice of exploring large values of SR for the hyperspherical case is motivated by the fact that condition Eq. 3 must be satisfied in order for the net-
work to work properly: choosing a large SR will also lead to larger σmin(W), as discussed in the ‘Universal function approximation property’ section.
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proving the contractivity condition (34).
We see that the only condition needed is x y r, > , which means that the linear part of the update (2a) 

must map states outside the hyper-sphere of radius r. Finally, by applying properties of norms, we observe that:

σ⋅ + ⋅ ≥ ⋅ − ⋅ ≥ −x s x s sW W W W W r W( ) (37)k in k k in k min in max

and asking this to be larger than r results in the condition (3).

Input-driven dynamics.  Here we show how to derive (13). Consider a dynamical system evolving according 
to (2): if we explicitly expand the first steps from the initial state x0 we obtain:
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So that the general case can be written as:
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and in a more compact form as follows:
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and N0 = 1.
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