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Flux balance analysis with or
without molecular crowding fails to
predict two thirds of experimentally
observed epistasis in yeast

Deya Alzoubi, Abdelmoneim Amer Desouki & Martin J. Lercher

Computational predictions of double gene knockout effects by flux balance analysis (FBA) have been
used to characterized genome-wide patterns of epistasis in microorganisms. However, it is unclear how
in silico predictions are related to in vivo epistasis, as FBA predicted only a minority of experimentally
observed genetic interactions between non-essential metabolic genes in yeast. Here, we perform

a detailed comparison of yeast experimental epistasis data to predictions generated with different
constraint-based metabolic modeling algorithms. The tested methods comprise standard FBA; a variant
of MOMA, which was specifically designed to predict fitness effects of non-essential gene knockouts;
and two alternative implementations of FBA with macro-molecular crowding, which account
approximately for enzyme kinetics. The number of interactions uniquely predicted by one method is
typically larger than its overlap with any alternative method. Only 20% of negative and 10% of positive
interactions jointly predicted by all methods are confirmed by the experimental data; almost all unique
predictions appear to be false. More than two thirds of epistatic interactions are undetectable by any

of the tested methods. The low prediction accuracies indicate that the physiology of yeast double
metabolic gene knockouts is dominated by processes not captured by current constraint-based analysis
methods.

Epistasis measures the extent to which the consequences of a mutation in one gene depend on mutations in
another gene'. Epistasis is said to be negative (aggravating) if the double mutant has lower fitness than expected,
i.e., if its fitness is lower than the product of the single-mutant fitnesses; epistasis is called positive (alleviating) if
the double mutant has higher fitness. Understanding the distribution of epistasis is fundamental to our under-
standing of gene function and interaction®*. Epistasis is important for a wide range of theoretical issues in biol-
ogy, including the evolution of sex>®, speciation’, ploidy®, mutation load’, and genetic buffering!’; epistasis is also
fundamental to our understanding othuman disease!'? and drug resistance’®.

Epistasis can be assayed experimentally through the analyis of double gene knockouts'***. However, such
experiments are technically demanding, and the number of possible interactions grows quadratically with
genome size. An attractive alternative to the generation of experimental knockouts for all possible gene combina-
tions is the in silico prediction of double gene knockout effects. One approach towards the computational predic-
tion of epistasis uses machine learning based on various experimentally observed gene and gene pair properties;
Table 1 of ref.>* provides on overview over such predictions.

Here, we will focus instead on prediction methods based on in silico models of gene function, which are
inherently more suited to generate increased biological understanding. Epistasis is a property of functional
links between genes, not of individual genes. Thus, large-scale predictions of epistasis from first principles are
only possible with computational models that account for functional connections between gene products. The
best-studied complex biological system is metabolism. Excellent representations of metabolic networks have been
compiled for several unicellular organisms such as E. coli*® and the baker’s yeast Saccharomyces cerevisiae®®. So far,
all attempts at genome-scale in silico epistasis prediction*’-** have used flux balance analysis (FBA), which maxi-
mizes the yield of biomass production in the wild-type and in the mutants®*, or a variant of FBA that attempts to
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minimize the difference between wild-type and knockout distributions of metabolic reaction rates (minimization
of metabolic adjustment, MOMAY).

Previous in Silico Analyses of Epistasis

Several studies used these simulation methods to perform large-scale characterizations of epistasis in silico. Segré
et al. first used FBA to study the spectrum of epistatic interactions between metabolic genes in S. cerevisiae.
These authors introduced a new concept of epistasis between functional modules rather than between individ-
ual genes, intended to describe functional relationships among metabolic pathways. They found that modules
interact with each other ‘monochromatically; i.e., epistatic interactions between two specific modules are either
largely positive or largely negative?”. Examining the metabolic networks of E. coli and S. cerevisiae, He et al.?®
found negative epistatic interactions largely among nonessential reactions with overlapping functions; in contrast,
positive interactions were found predominantly between reactions without overlapping functions, and these were
frequently essential®®.

Snitkin et al.”’ studied epistatic interactions between yeast gene deletions based on their influence on the reac-
tion rates of individual enzymatic reactions. They found that gene pairs interact incoherently relative to different
phenotypes, and that genes involved in many genetic interactions across multiple phenotypes tend to be highly
expressed, to evolve slowly, and to be associated with human diseases®. Xu et al.** compared epistatic interac-
tions for different alleles of the same gene; alleles of different enzymatic activities were simulated by reducing the
admissible flux (reaction rate) relative to the wild-type by a given percentage. They found that different alleles of
the same gene typically interact with very different gene sets in silico; they argued that the distribution of the sign
of epistasis in their simulations can speed up the purging of deleterious mutations in eukaryotes®. Finally, Barker
et al! studied epistatic relationships between genes in various environments, finding that epistatic interactions
can differ substantially between growth conditions and that the epistasis network structure differs fundamentally
between condition-independent (stable) and condition-dependent interactions®'.

Relationship Between Predicted and Observed Epistasis

While the in silico analyses of epistatic landscapes summarized above purport to fundamentally advance our
understanding of epistasis in nature, it is not clear that in silico and in vivo epistasis are correlated sufficiently on
the genome-scale to allow such conclusions. Synthetic lethality — an extreme case of epistasis — was successfully
predicted for some genes using FBA already in 2007; however, these authors could correctly predict only 7 out
of 29 previously described synthetic lethals, corresponding to a recall of only 24%3~ Two further studies in 2015
compared FBA predictions of synthetic lethality to experimental observations in yeast*® and E. coli*, confirming
that only a minority of observed synthetic lethal interactions can be predicted successfully.

Several experimental platforms for the high-throughput detection of epistasis have been developed, among
them synthetic genetic arrays (SGA)'>?, diploid-based synthetic lethality analyses with microarrays'®'?, syn-
thetic dosage-suppression and lethality screens'*!”18, and epistatic miniarray profiles?*~?2. The most compre-
hensive estimates of epistasis are available for the baker’s yeast Saccharomyces cerevisiae*>*3, obtained through
SGA. Szappanos et al.** were the first to compare quantitative epistasis predictions from FBA and MOMA with
high-throughput experimental data, examining 67,517 pairs of non-essential yeast genes (high-confidence empir-
ical interactions from SGA). They also found that only a minority of empirically observed interactions can be suc-
cessfully predicted. For negative epistatic interactions, at 45% precision (percentage of predicted interactions that
are indeed experimentally observed), they obtained a recall (percentage of observed interactions that are correctly
predicted) of 2.8%. While the recall can be increased to slightly above 4% by lowering the prediction threshold,
this comes at the cost of many false positive predictions, associated with a drastic reduction of precision to below
6%. For positive interactions, Szappanos et al. obtained a recall of 12.9% at a precision of around 10%, which
could not be improved much further by lowering the prediction threshold. Furthermore, the prediction quality
could only be improved marginally by an automated model refinement procedure®®. These results suggest that
the physiological responses of yeast to double gene knockouts are not sufficiently captured by computational
methods based on yield maximization such as FBA and MOMA. A later study that calculated epistasis from a new
“function-loss cost” metric did not result in significantly improved predictions of the same data®.

Constraint-based Modelling Strategies that Might Improve Prediction Accuracy
Why did the methods tested - FBA and MOMA - perform so poorly when predicting epistatic interactions? FBA
captures epistasis based on the maximal biomass yield of the single and double mutants. MOMA assumes that
the redistribution of reaction fluxes relative to the FBA wild-type solution is minimized upon the genetic per-
turbation®”. Both FBA and MOMA predictions ignore the protein cost of enzymatic reactions, which arises from
the necessary investment of cellular currencies, such as ATP and carbon, into enzyme production. Furthermore,
it has been suggested that enzymes and the protein translation apparatus compete for the limited intracellular
concentration space, a suggestion consistent with the observation that total cellular protein concentrations appear
to be approximately constant across conditions*’. In particular the latter constraint, summarized under the term
(macro-) molecular crowding, has been explored in detail in the literature*!~*. Instead of a largely arbitrary con-
straint on the uptake of a limiting nutrient, FBA models with molecular crowding limit cell growth by imposing
a maximal mass concentration of enzymes, which in turn limits the total flux through the reactions the enzymes
catalyze. Note that FBA and related constraint-based models do not consider internal metabolite concentrations
explicitly, and thus FBA with molecular crowding methods calculate the enzyme concentration necessary for a
given reaction flux v as [E] =v/k,g with a constant effective rate constant that is often approximated through the
enzyme turnover number k., *"*.

Could molecular crowding be responsible for epistatic interactions? FBA considers different yields of path-
ways, but pathways also differ in their kinetics, such that the same overall flux may require much more protein
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a. Negative epistasis

b. Positive epistasis E1 keat=1

Figure 1. Illustrative examples of epistatic interactions that arise because of different enzymatic costs of
pathways. (a) Negative epistasis between E2 and E3. (b) Positive epistasis between E2 and E3. The example
assumes equal protein costs for all enzymes.

investment in one pathway compared to an alternative pathway; such differences in pathway costs of fluxes are
believed to be the origin of overflow metabolism***. Accordingly, the fitness effect of a non-essential enzyme
knockout will depend not only on the stoichiometry of the catalyzed reaction (which is what FBA considers), but
also on the enzyme’s kinetics (additionally considered by FBA with molecular crowding).

Two toy examples for positive and negative epistasis are given in Fig. 1. If multiple isoenzymes or pathways can
convert metabolite A into B (Fig. 1a), then FBA will predict that the corresponding single and double knockouts
are all without fitness effect. However, if the isoenzymes and pathways differ in the protein cost per catalyzed flux,
then a double knockout involving the most efficient enzymes will result in a reduced total flux, unless protein
investment into the remaining pathway is increased at the cost of reduced investment into other pathways that
contribute to biomass. The least effective pathway is utilized only in the double knockout, and this will result in
negative epistasis. Positive epistasis may arise, e.g., if two pathways are coupled by a downstream enzyme that
jointly uses the products of both pathways as substrates (Fig. 1b). If there exists a catalytically less efficient alter-
native pathway for each of the two inputs, then the double knockout of the two efficient pathways will result — at
identical protein investment — in a flux that is identical to the lower flux of the two single knockouts.

Previous applications of MOMA? suffer from a second problem. FBA solutions are generally redundant, i.e.,
multiple flux distributions lead to the same biomass yield. Thus, the distance of the MOMA to the FBA flux dis-
tribution may depend strongly on the particular FBA solution returned by the numerical solver of the wild-type
optimization problem. A straightforward possibility to rectify this problem is to use the wild-type flux distribu-
tion returned by parsimonious FBA (pFBA), which attempts to minimize protein investment at a given biomass
yield*® and has been shown to perform well in predicting the effects of single gene knockouts*’.

Here, to test if the poor performance of previous in silico predictions of epistasis®**** can be improved by
correcting the shortcomings discussed above, we compare the double gene knockout data for yeast in ref.** to
epistasis predictions from (i) FBA; (ii) FBA with molecular crowding, using two slightly different algorithms
(MOMENT™ and ccFBA, see Materials and Methods); and (iii) MOMA starting from the pFBA solution for the
wildtype flux distribution.

Materials and Methods

Experimental data. We used a high-confidence subset of S. cerevisiae epistasis data for metabolic genes
identified in Szappanos et al.*. This data was generated using synthetic genetic array (SGA) screens. We excluded
genes deemed to be essential by the metabolic model or blocked in the model. This resulted in 291 negative and
123 positive interactions among 71,994 non-essential gene pairs.

Metabolic models and media. To model S. cerevisiae metabolism, we used the metabolic reconstruction
yeast7.6 (https://sourceforge.net/projects/yeast)*. Following the authors of ref.>, we removed a set of genes from
the metabolic model (CAN1, LYP1, URA3, LEU2, MET17) to mimic the strain background used in the experi-
ments; we also used the same definition of the growth medium as in ref.**, which mimics the experimental con-
ditions®*. The resulting, strain-specific model encompasses 904 metabolic genes associated with 3,326 reactions.

We performed all simulations using sybil, a computer library for efficient modelling of metabolic networks*’ in
R*. Among other methods, sybil implements FBA, pFBA (minimization of total flux, MTF), MOMA, and diverse
methods for genome-scale simulations of genetic perturbations.

Flux balance analysis (FBA). FBA identifies a flux distribution across the metabolic network that maxi-
mizes biomass yield under the constraints given by (i) the stoichiometry of enzymatic and transport reactions and
(ii) lower and upper bounds on individual fluxes. The upper bounds on individual enzymatic fluxes are meant to
reflect maximal enzyme capacity, and hence FBA could in principle also take enzyme kinetics into account; how-
ever, as enzyme capacities are generally unknown, the upper bounds are typically set to a value that is effectively
infinite. Lower bounds on individual enzymatic reactions are set to zero for reactions deemed irreversible, and
are (effectively) set to negative infinity for reversible reactions. Bounds on exchange reactions reflect maximal
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nutrient uptake or excretion rates. To estimate epistasis with FBA, we need to calculate the maximal biomass
production yield of the double gene knockout, v,,, and the two single gene knockouts, v, and v,; in each case, all
fluxes through reactions for which one of the knockouts is essential are forced to zero. We convert the biomass
yield values to fitness estimates by dividing them by the wild-type biomass yield, viy: W;=v,/vy1. The fitness of
the single and double mutants then allows the calculation of epistasis as**:

e =W, — W x W, (1)

Minimization of metabolic adjustment (IMOMA). Minimization Of Metabolic Adjustment (MOMA)
is an extension of FBA for the prediction of flux distributions in gene knockouts. MOMA employs quadratic
programming to identify the closest point (in terms of its Euclidean distance) in the permissible flux space of the
knockout to the wild-type flux vector®’. Previous applications of MOMA to epistasis predictions minimized the
distance to an arbitrary FBA solution returned by the linear solver of the FBA problem?. As FBA flux distribu-
tions are highly degenerate, we instead use the parsimonious FBA (pFBA or minimal total flux, MTF) solution to
the wild-type problem*, which should lead to biologically more relevant results*’. Following previous applica-
tions®’, we minimize the Manhattan rather than Euclidean distance between wild-type and knockout flux distri-
butions, which results in a linear optimization problem (IMOMA). As for FBA, epistasis was then estimated from
the difference between the double knockout fitness and the product of the single knockout fitnesses (Eq. (1)).

Metabolic modelling with enzyme kinetics (MOMENT). MOMENT® is an algorithm for performing
FBA with molecular crowding**2. MOMENT extends FBA by adding a global constraint on the total mass con-
centration (assumed to be proportional to volume concentration) of enzymes:

Zi[Ei]mi <G @

where the sum runs over all enzymes (or enzyme complexes) i, [E;] is the molar concentration of enzyme i per
gram dry weight,m; is the molar mass of the enzyme, and C is an upper limit on the total enzyme mass per gram
dry weight. The limit imposed by Eq. (2) replaces the constraint on nutrient uptake on the rate of biomass pro-
duction. The authors of ref.** set this limit to C=0.27 (g enzymes/gDW) based on a fit between observed and pre-
dicted growth rates, suggesting that metabolic enzymes are responsible for about half of the total protein mass*.
Note, however, that due to the linearity of the biomass production rate in C, C cancels in the ratio of knockout/
wildtype biomass reaction fluxes, and hence its numerical value has no influence on the epistasis predictions
according to Eq. (1). Note that in FBA with molecular crowding, the maximal biomass fluxes vy, v;, v, and v,
represent maximal growth rates rather than yields. As originally published, MOMENT is parameterized only for
E. coli. Here, we use a re-implementation in the ccFBA package that includes a parameterization for S. cerevisiae
(see next subsection).

Cost-constrained FBA (ccFBA). ccFBA® is a general implementation of FBA with molecular crowding
that largely implements the MOMENT algorithm*, but improves on MOMENT by explicitly considering mul-
tifunctional enzymes. ccFBA is implemented in R*® and builds on the sybil package®; it is distributed on CRAN
(https://cran.r-project.org) and has briefly been described in ref.>>. We replaced the iMM904 yeast model dis-
tributed with ccFBA with the yeast 7.6 model adapted to the experimental data (see above). The resulting ccFBA
model contains experimental k., values for 535 enzymes; for the remaining enzymes, we use the median of the
535 known values®!, k4 s = 11.5. The same model and parameters were used for the MOMENT (see previous
subsection). The proportion of biomass devoted to metabolic enzymes was set to C=0.27 as in MOMENT*, and
epistasis was calculated accordingly.

Results and Discussion

Predicted interactions differ substantially between methods. For each pair of non-essential genes
contained in the metabolic model, we calculated Epistasis (Eq. (1)) based on four methods: (i) standard flux
balance analysis®*?¢ (FBA); (ii) a linear version of minimization of metabolic adjustment® that finds the knock-
out flux distribution most similar to the pFBA prediction for the wildtype flux vector (IMOMA); (iii) meta-
bolic modelling with enzyme kinetics*, an implementation of FBA with molecular crowding that approximately
accounts for enzyme kinetics (MOMENT); and (iv) a modified implementation of MOMENT with a more realis-
tic consideration of multifunctional enzymes®*? (ccFBA). To obtain an overview over the differences between the
tested methods, we first classified gene pairs into those showing negative epistasis (€ < —0.0001), positive epistasis
(e>4-0.0001), or no epistasis (|e| < 0.0001).

The Venn diagrams in Fig. 2a,b summarize the sets of gene pairs that show negative and positive epistasis,
respectively, according to the four methods. 46 negative and 121 positive interactions are predicted jointly by all
four methods. The consideration of molecular crowding seems to have a strong effect on the epistasis predictions,
as the results seem to fall into two clusters. 49% of negative and 83% of positive epistasis predictions by FBA are
also predicted by IMOMA, while 60% of negative and 65% of positive interactions predicted by MOMENT are
also predicted by ccFBA; the remaining pairs of methods show much smaller agreement (Fig. 2a,b). The numbers
of interactions predicted uniquely by a single method differ substantially: While FBA predicts only 196 genetic
interactions not predicted by any of the other methods, MOMENT makes 257 unique predictions, ccFBA makes
290 unique predictions, and IMOMA makes 1079 unique predictions.

Epistasis predictions show little overlap with experimentally observed epistasis. The large
numbers of unique predictions of individual methods could potentially indicate that each method captures
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a. Negative Epistasis b. Positive Epistasis
MOMENT IMOMA MOMENT IMOMA
FBA % @ ccFBA FBA Q ¢ ccFBA
c. Confirmed Negative Epistasis d. Confirmed Positive Epistasis
MOMENT IMOMA MOMENT IMOMA

FBA Q o ccFBA FBA Q o ccFBA

Figure 2. Venn diagrams showing the overlap of negative (a,c) and positive (b,d) epistasis predictions by
the four methods. Panels (a) and (b) show total predictions. Panels (c) and (d) show only those predictions
confirmed by the high-confidence set of experimental epistasis estimates.

distinct aspects of physiological responses to the knockouts. To test this possibility, we compared the epistasis
predictions by the three methods to the high-confidence experimental epistasis data set provided by Szappanos et
al.®. Figures 2¢,d show Venn diagrams that compare the numbers of correctly predicted experimentally observed
epistatic interactions between the four metabolic simulation methods. Only a small fraction of the predicted
interactions are confirmed by the data in each case. Not surprisingly, the most reliable predictions are those that
are jointly made by all four simulation methods (9 correct out of 46 joint predictions of negative epistasis, i.e.,
a precision of 9/46 =19.6%; and 12 correct out of 121 joint predictions of positive epistasis, i.e., a precision of
12/121=9.91%). In contrast, only 3 out of 1822 genetic interactions uniquely predicted by one of the four meth-
ods (0.2%) are confirmed by the experiments.

The negative interactions jointly predicted by MOMENT and ccFBA are also confirmed in 24 out of 262
cases (9.2%), indicating that predictions based on the concept of molecular crowding that are robust to changes
in method details tend to be more reliable than those that are not. These predictions include 21 confirmed cases
not predicted by FBA (with a total of 33 confirmed predictions), indicating that combining standard FBA with
MOMENT/ccFBA may improve the recall achievable in FBA predictions compared to FBA alone.

The cutoff of |e| =0.0001 for epistasis used to select the predicted interacting gene pair sets in Fig. 2 was
chosen largely arbitrarily. Figure 3 shows the influence of other cutoffs for the simulated epistasis scores € on
prediction accuracy. Each data point in the main figures shows a combination of recall (the fraction of experi-
mentally observed high-confidence interactions that is predicted in silico) and precision (the fraction of predicted
interactions that is confirmed by experimental data) at a given cutoff |¢| by the method indicated by the colour.
Higher cutoffs mean that only predictions of strong epistasis are deemed reliable, and lead to lower recall and gen-
erally to higher precision; lower cutoffs deem more epistasis predictions reliable and consequently lead to higher
recall but generally lower precision. The data points in the insets (a detail of the receiver operator characteristic,
ROC) represent the same predictions, but report the false positive rate (the fraction of in silico predictions that
are not confirmed by the data) instead of the precision. Higher cutoffs || lead not only to lower recall, but also to
lower false positive rates; lower cutoffs increase both recall and false positive rate. The distance of data points to
the diagonal (which represents random “predictions”) indicate the accuracy of predictions at this cutoff, where
prefect predictions would lie in the top left corner.

For negative interactions, all four methods show a similar relationship between recall and precision (Fig. 3a)
and between recall and false positive rate (Fig. 3a, inset). For positive interactions, these relationships are similar
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Figure 3. The accuracy of the four prediction methods for (a) negative and (b) positive epistatic interactions.
The outer panels show precision (fraction of predictions that are confirmed by the experimental data) vs. recall
(fraction of experimentally observed interactions that are predicted correctly), while the insets show a detail
of the receiver operator characteristic (ROC) curve, tracing the dependence of recall on the false positive
prediction rate (FPR =1 - specificity, the fraction of predicted epistasis cases that are not confirmed by the
experimental data).

between FBA and IMOMA on one hand and between the methods accounting for molecular crowding on the
other. If accepting precision values below 10%, MOMENT and ccFBA achieve higher recall values than the two
alternative methods (Fig. 3b).

Importantly, even with the most generous cutoffs, the highest recall reachable by any of the methods is at or
below 33%. Thus, two thirds of experimentally observed epistatic interactions are not detectable by any of the
constraint-based methods tested, regardless of how many false positives we are willing to accept. To achieve
recall values above 20%, we have to accept false positive rates of more than 8% for negative and 2% for positive
interactions; given the high number of comparisons made (71,994 in the dataset used here), this means that true
predictions of epistasis are drowned in a sea of false predictions. At a more reasonable false positive rate of 1%,
the highest achievable recall values are around 12% for negative interactions and 19% for positive interactions.

Prediction accuracy is equally low for synthetic lethals. To predict epistasis scores for viable double
mutants, we need to calculate fitness values quantitatively for the single and double knockouts. It is conceivable
that the underwhelming performance of constraint-based methods to predict genetic interactions (Figs 2, 3) is
due to this requirement of quantitative predictions; indeed, a previous study showed that quantitative predictions
of non-lethal gene knockout fitness values correlate only weakly with experimental observations®. In contrast,
the strength of constraint-based methods may lie more in qualitative predictions: FBA has been demonstrated
to accurately predict gene essentiality, i.e., genes whose knockout is lethal®**°. The likely reason is that knockout
lethality often arises from the inability to produce a biomass component without the knocked out reaction, i.e.,
from an effect of the knockout on metabolic network topology rather than on kinetics, regulation, or biomass
yield. Thus, it might be reasonable to expect that constraint-based methods also perform well when predicting
synthetic lethals, i.e., gene pairs where the single mutants are viable but the double mutant is not. In disagree-
ment with this expectation, previous studies showed recall values below 25% for the FBA prediction of synthetic
lethals®***8. However, these observations were based on the analysis of small numbers of experimentally confirmed
synthetic lethals drawn from diverse studies, and thus it seems advisable to compare model predictions of syn-
thetic lethality to a systematic, genome-wide screen of metabolic genes.

To identify pairs of synthetic lethal genes in the raw data from ref., we selected non-essential gene pairs
with experimentally confirmed negative epistasis (€ < —0.08, see ref.?*) and with very low double mutant fitness
(f<0.2). Only 146 out of a total of 207,060 non-essential gene pairs represented in the model and assayed by
Szappanos et al.** were labeled as synthetic lethal according to this definition.

When using the same cutoffs (¢ < —0.08 and < 0.2) for the computational epistasis predictions, we recover
only 4 (FBA), 4 (IMOMA), 0 (ccFBA), and 0 (MOMENT), respectively, of the experimentally confirmed synthetic
lethal pairs. This corresponds to recall values below 3%. For FBA, IMOMA, and MOMENT, recall cannot be
improved by choosing less stringent cutoffs, as long as we require negative epistasis. For ccFBA, we can obtain 6
true positive predictions if we relax the double mutant fitness cutoff to f< 0.55 while requiring negative epistasis
(e <—0.0001). These findings confirm the earlier results on smaller datasets of synthetic lethals*>*: constrained
based methods appear no better at predicting synthetic lethality than at predicting epistasis in general.
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Conclusions

While the incorporation of a constraint for molecular crowding in MOMENT and ccFBA added a small number
of correct epistasis predictions to those obtained using standard FBA and IMOMA, the most important conclu-
sion that can be drawn from the above analyses is a sobering one: We still fail to predict two thirds of experimen-
tally observed epistatic interactions, regardless of the constraint-based method and the cutoffs used. Thus, neither
the inclusion of molecular crowding in MOMENT and ccFBA nor the use of a more realistic wild-type flux
distribution in IMOMA led to a substantial improvement over the previously reported failure of FBA to predict a
majority of experimentally observed interactions™.

The essence of FBA with molecular crowding, as implemented in MOMENT and ccFBA, is the incorporation
of a tradeoff: the expression of one pathway reduces the cellular resources available for other pathways. This inter-
dependence between pathways in terms of available resources may underlie at least some epistatic interactions,
and may hence contribute to explaining why these methods were able to expand the set of correctly predicted
interactions (Fig. 2). Both methods, which assume enzyme turnover rates that are independent of metabolite
concentrations, provide only rough approximations of the cellular constraints related to enzyme kinetics. Their
approximate nature may be reflected in the higher reliability of epistasis predictions made jointly by both meth-
ods. It is conceivable that a substantial fraction of observed epistatic interactions can only be understood through
a more detailed consideration of reaction kinetics and the associated cellular investment into enzymes. In this
context, we need to emphasize that the yeast model employed here contains known enzyme turnover numbers
(k) for only 535 out of 4,594 protein-associated reactions, and it is conceivable that an improved parameteri-
zation may lead to improved prediction accuracy. However, none of the tested methods could correctly predict
synthetic lethal interactions, which in most cases probably arise from changes in network topology rather than
from enzyme kinetics; this failure suggests that the problem is more fundamental.

A second potential explanation for the observed underperformance of constraint-based methods is the
influence of regulatory feedbacks. Regulatory interactions evolved in the ancestors of the wild-type strain as
responses to environmental conditions. Changes in metabolite concentrations resulting from the knockouts
may be mis-interpreted by the cell’s regulatory system as environmental cues, and may thus lead to regulatory
responses that cause suboptimal metabolic network usage. Such “inappropriate” regulatory responses might lead
to large discrepancies between mutant physiology and predictions by optimization-based methods ignorant of
regulatory circuits.

If true, the hypothesis advanced in the last paragraph has important implications not only for the utilization
of constraint-based methods to predict experimentally observed epistasis, but also for the biological interpre-
tation of double knockout mutant physiology. If the observed effects of double knockouts are in large part due
to regulatory responses, they may provide little information on the interaction of the gene products in wildtype

physiology.

Data Availability

The data summarized in Figs 2 and 3 (Dataset 1) and the synthetic lethal data (Dataset 2) are provided as Supple-
mentary Datasets. The empirical data, the modified yeast7.6 metabolic model, and the turnover numbers (k)
and molecular weights used as input to MOMENT and ccFBA can be found on github at https://github.com/
deyazoubi/Epistasis-; an overview over the individual files is given in the Readme file.
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