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Investigating the effect of clinical 
history before electrocardiogram 
interpretation on the visual 
behavior and interpretation 
accuracy of clinicians
Alan Davies   , Simon Harper   , Markel Vigo    & Caroline Jay   

We examine the impact of the presentation of a patient’s clinical history on subsequent visual appraisal 
and interpretation accuracy of electrocardiograms (ECGs). Healthcare-practitioners (N = 31) skilled 
in 12-lead ECG interpretation took part in a repeated-measures experiment with counterbalancing 
viewing 9 ECGs on a computer screen in two separate conditions: with/without an associated patient-
history. A Hellinger-distance calculation was applied using a permutation test to eye-movement 
transitions at two granularity levels: between the ECG leads, and between smaller grid-cells, whose size 
was determined via data-driven clustering of the fixation points. Findings indicate that presentation of 
clinical-history does affect accuracy of interpretation in one ECG. Visual-behavior differed as a function 
of both history presentation and accuracy when considering transitions between the data-driven 
grid units (using a fine granularity, and able to show attention to parts of the waveform). Differences 
in visual-behavior at waveform level demonstrate an influence of patient-history and expertise that 
are not detected at the lead level. Visual-behaviour differs according to whether a patient-history is 
presented, and whether a clinician provides an accurate interpretation. This difference is evident in how 
the waveform itself is viewed, and is less present at the coarse granularity of visual transitions between 
leads. To understand how clinicians interpret ECGs, and potentially other medical images, visual 
transitions should be considered at a fine level of granularity, determined in a data-driven fashion.

The electrocardiogram (ECG) is a common test used in many areas of clinical practice, with over 300 million 
ECGs carried out per year in Europe1. Failure to correctly interpret an ECG can lead to an incorrect medical 
diagnosis and subsequent administration of inappropriate (or no) treatment1,2. The ECG displays waves of elec-
trical activity resulting from the depolarization and repolarization of cells in the myocardium3. The 12-lead ECG 
represents this signal data in 12 different channels, called ‘leads’. Automated/computerized methods that are used 
to generate a clinical interpretation have been shown to be less accurate than humans4, despite ongoing improve-
ments in automated interpretation since their inception in the 1960’s5. As a result of this, many cardiology organi-
zations, such as the American College of Cardiology and the American Heart Association counsel against the use 
of computer interpretation of ECGs without expert human oversight6. An incorrect computerized interpretation 
is more likely to be accepted by over-readers than primary readers. This may result from not having direct access 
to the patient, or other relevant clinical information, such as the patient’s clinical history7. Clinical mismanage-
ment, including potentially dangerous or inappropriate treatment has occurred when less experienced practition-
ers fail to identify interpretation errors and accept automated diagnostic information without question4.

Current research in the medical domain is considering approaches to enhance human accuracy, rather than 
supersede it with technology. Such methods keep the human ‘in-the-loop’, and promise to enhance human and 
machine interaction by leveraging the advantages of both paradigms. Observation of visual behaviour via eye 
tracking, which provides an objective means of assessing perception, cognition and performance, is a useful tool 
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in linking human and machine interpretation. Methods include machine learning analysis combining human 
gaze information with image content to enhance breast imaging diagnostics8.

Eye-tracking has previously been applied to medical images (such as x-rays and mammograms) to under-
stand how they are viewed by both experts and novices9–11. Eye-tracking has also more recently been used to 
gain insights into differences between the visual behavior of experts and novices, and those making correct and 
incorrect interpretations as they view ECGs12–14.

An eye-tracking study by Wood et al.13 also explored the effect of including clinical history with some of the 
ECGs as they were viewed by experts (consultant emergency medics, n = 10) and novices (final year medical 
students, n = 10). Sixteen ECGs were used with clinical histories provided for half (n = 8) of the ECGs. No time 
limit was imposed during the study. Areas of Interest were defined around leads that 2 clinicians believed to be 
the most important leads for interpreting the condition presented for each ECG. Findings suggest that the clinical 
history had no significant effect on ECG abnormality detection. The study did not however present each ECG 
with and without the associated clinical history, so the results may have been affected by confounding factors, 
such as learning effect/fatigue which are acknowledged by the authors.

In this paper we explore whether presenting clinical history affects interpretation accuracy and visual behav-
ior, addressing some of the limitations of the study carried out by Wood et al.13. We analyse visual transition 
behaviour at a coarse level of granularity (between leads) and at a finer level of granularity, between units of 
a grid whose size is determined in a data-driven fashion, via clustering of the gaze data. The results show that 
transitions between units of the grid vary significantly according to both history presentation and interpretation 
accuracy, but no difference is detected when considering visual transitions between leads. This indicates that the 
differences in visual behaviour occur in how people view the morphology of the waveform, rather than how they 
make comparisons between leads. Although we do not see a difference in interpretation accuracy according to 
history presentation, the fact that significant differences in fine-grained visual behaviour are detected indicates 
that presenting history does make a difference to how people interpret ECGs, and that to understand its effects 
via observation of visual behaviour, it is important to use a method that captures within-lead transitions, as well 
as between-lead transitions.

Objective
The aim of the study was to examine the effect of clinical history on subsequent ECG interpretation accuracy 
and visual transition behavior. The ECG stimulus was segmented into areas of interest (AOIs) for performing the 
transition analysis in two ways. An AOI was mapped onto each ECG lead in a top-down fashion; this is contrasted 
with a data-driven, bottom-up segmentation method that uses clustering to determine the size of grid cells that 
serve as AOIs. We explore how these different approaches affect our ability to understand the effects of history 
and accuracy on visual behavior.

Materials and Methods
Study design.  A within-subjects (repeated measures) experimental design was used. Participants (N = 31) 
were shown nine different 12-lead ECGs (Table 1) in arbitrary sequence in two conditions: with a preceding 
brief history of the presenting complaint (Table 2); or alone with no history. The sequence of the presentation 
of the ECGs was not randomized, in order to keep the history associated with the correct subsequent ECG. 
Counterbalancing was used to determine which way the stimuli were presented (i.e. with history first or last). 
Participants wrote their interpretation on an answer sheet. No time limit was imposed, allowing participants as 
much time as required to make an interpretation. The type of clinical case history and level of detail we provide 
is similar in nature to other training materials and level of information available in real life clinical scenarios. In 
training materials, on-line examples and books etc. a brief patient history is often added to accompany the pre-
sented ECG. An example of this can be seen in15.

“ECG 87: A 30-year-old man, who had had brief episodes of palpitations for at least 10 years, was seen during an 
attack in the A&E department and this is his ECG. What is the rhythm, and what would you do immediately, and in 
the long term?” (Hampton, 2003, p173).

Participants.  Thirty one participants (males = 13, females = 18, Mdn age = 28, SD = 8.1) were recruited from 
hospitals and universities in the North West and West of England by word of mouth, using “snowball” sampling. 
All of the participant’s self-identified as having received some training in ECG interpretation, and/or carried out 
ECG interpretation as part of their clinical role. Informed consent was obtained from all participants, and ethical 

• Anterolateral ST-segment elevation MI

• Left bundle branch block

• Lateral ST-segment elevation MI

• Atrial fibrillation

• Right bundle branch block

• Inferior ST-segment MI with atrial fibrillation

• Anterior ST-segment elevation MI

• High lateral ST-segment elevation MI

• Inferolateral ST-segment elevation MI

Table 1.  ECGs used in experiment.
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approval was obtained from the University of Manchester Research Ethics Committee (CS65e). All methods were 
performed in accordance with the relevant guidelines and regulations. Five main categories of role were defined 
as: physiologists/technicians (n = 16), doctors (n = 2), nurses (n = 2), students (n = 7) and other (n = 4). Figure 1 
summarizes these categories, along with their experience and sex.

The main forms of training in ECG interpretation received by participants included lectures/seminars, work-
shops and being taught on the job by colleagues. 9.7% of participants (n = 3) received just 1–5 hours of train-
ing, juxtaposed to this the same number of participants (n = 3) had over 100 hours of training. The rest of the 

Anterolateral STEMI: 31 year old male. Heavy cocaine use. 
30 seconds of severe chest pain. Pain free at present

LBBB: 65 year old male. Smoker. Sweaty. Vomiting. Discomfort in 
jaw and shoulders

Lateral STEMI: 67 year old female. Previous PCI (Percutaneous 
Coronary Intervention) several years previous. Central chest pain 
approximately 1 hour in duration

Atrial fibrillation: 78 year old male. Palpitations on and off for 2 
days. Presented with syncope

RBBB: 35 year old female. Recent long haul flight. Sharp stabbing 
chest pain and shortness of breath

Inferior STEMI and AF: 80 year old male. Resus. Return of 
spontaneous circulation after x2 DC cardioversion

Anterior STEMI: 40 year old male with sudden pressure to chest and 
very clammy. 30 minutes from symptom onset

High lateral STEMI: 47 year old male. Acute central chest pain 
worsening in waiting room. Radiating to right shoulder

Inferolateral STEMI: 91 year old female with shortness of breath. 
Close to collapse. Sweating and mild chest discomfort

Table 2.  ECG and associated clinical history (history of presenting complaint.

Figure 1.  Participants’ roles and years of experience.
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participants were somewhere between: n = 6 (19%), [6–10 hours]; n = 1 (3%), [11–20 hours]; n = 5 (16%), [21–
30 hours], n = 12 (39%) [>30 hours].

Stimuli.  The ECGs were selected from anonymized patients (Table 1), predominantly suffering from myocar-
dial infarctions (heart attacks). The ECGs were provided by a local hospital A&E department, following verifica-
tion of diagnosis. A summary of the associated medical histories concerning the patients’ presenting complaint 
was also provided anonymously. A number of other conditions were added as discriminators, in order to provide 
enough variety to prevent participants from assuming all the stimuli were representative of myocardial infarctions 
(MIs). The MIs were chosen as they require visual examination of specific leads, or combinations of leads in order 
to make a correct interpretation, thusly providing some ground truth from medical training literature as to where 
participants should look in order to make a correct interpretation.

Method.  A Tobii X2-60 eye-tracker and Tobii studio software version 3.2.0 were used with the I-VT fixation 
filter (default settings) to capture participants gaze data. Participants sat comfortably in a quiet room at a distance 
of ≈60 cm as per manufacturer’s recommendations. Using a within-subject design, each participant viewed all 9 
ECGs twice, once with the associated clinical history and once without. Counterbalancing was used to alter the 
presentation sequence to show either the ECGs with history first or last. This was done to reduce the potential 
impact of confounding factors, such as learning effect and fatigue on participants.

Eye-tracking metrics (fixation duration and count) across the whole of each ECG were compared between the 
two groups (history and no-history), along with the overall and per-group accuracy of interpretation. These met-
rics are used as proxies for attention (fixation count) and increased cognitive load (fixation duration). Accuracy 
of interpretation was determined by comparing the answers given with the ground-truth of the condition, and 
was scored as being either correct or incorrect. In order to be ‘correct’ an answer of clinical quality was required, 
for example the condition Atrial Fibrillation (AF) would need to be (AF, or atrial fibrillation) not arrhythmia or 
SVT. Common variations of conditions and acronyms were also accepted as correct (i.e. left bundle branch or 
LBBB). Two visual transition analyses were carried out: one at the level of the leads, where AOIs were applied by 
the researcher; the other using a data-driven bottom-up approach to determine the size of cells for a grid with the 
grid cells serving as AOIs. Figure 2 shows a ‘gaze plot’ from a single participant. The participants’ scanpath can 
be seen represented in sequence by number, with the circle indicating a fixation. The larger the circle, the greater 
the fixation duration.

For assessing lead transitions, AOIs were created using Tobii studio software and mapped onto each of the 
ECG leads by the researcher. The bottom up approach applied the Density-based spatial clustering of applications 
with noise (DBSCAN) algorithm16 to cluster visual fixations. A grid was applied to the stimulus, the dimensions 
of whose cells were derived from the optimal diameter obtained from the DBSCAN algorithm17.

For both methods of stimulus segmentation (lead and grid), the frequency of visual transitions was deter-
mined (within and between the leads or grid cells) for the two conditions (saw history first and did not see history 
first). The two transition matrices representing the two conditions were converted into Markov chains, and simi-
larity was determined by calculating the Hellinger distance between them (Equation 1) as a measure of difference 
between the probability distributions. Additional comparison groups were generated by shuffling participants 
from the two groups of interest into additional equally sized groups 10,000 times with a permutation test in order 
to generate enough sampling data to compare against the initial result. A distribution was created of the Hellinger 

Figure 2.  A representative scanpath from a single participant (16F) showing attention focused around the 
anterior leads of an ECG displaying features of an anterior STEMI.
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distance from each sub-group comparison, which was then compared with the distance between the initial groups 
of interest17.

The same procedure was used to determine whether there was a difference in visual behaviour as a function of 
accuracy. As accuracy could not be determined in advance, the groups were created on a post hoc basis for each 
stimulus in each condition.
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Equation 1: Hellinger distance for discrete probability distributions.

Results
We report the results of the participants’ overall accuracy as a function of history presentation, followed by the 
fixation duration and count metrics. Finally, we present the results of the visual transition permutation tests. 
Where multiple statistical tests were carried out, the generally more conservative Bonferroni correction was used 
to control for type I error rate18. All analysis presented was carried out using the R project for statistical comput-
ing version 3.1.119.

Accuracy.  The average interpretation accuracy across all ECGs (Figure. 3 left) for all participants was 64% 
(SD = 27). Figure 3 (right) shows the overall accuracy for the two groups (history and no-history). Participant 
2 (P2M) failed to correctly interpret any of the ECGs in either condition (Participant 2 - the only non-clinical 
participant did not have a clinical role in ECG interpretation but identified that they did interpret ECGs as part of 
their role as a medical scientist). The proportion of correct and incorrect results (Wilcoxon test) was not signifi-
cantly different between the history and no-history groups (V = 84.5, p = 0.720).

When examining the results on a per-ECG basis using a McNemar’s chi-squared for repeated measures data 
(Table 3), a difference between the history and no-history group can be seen in the LBBB stimuli. The history for 

Figure 3.  (left) Boxplot of overall percentage accuracy (all participants), (right) accuracy per group (outliers 
labeled).

ECG χ2 p-value

Anterolateral STEMI 6.533 0.010

LBBB 8.533 0.003*

Lateral STEMI 0.037 0.847

AF 7 0.008

RBBB 3.125 0.077

Inferior STEMI + AF 0.862 0.353

Anterior STEMI 0.571 0.449

High lateral STEMI 4.8 0.449

Inferolateral STEMI 5.121 0.023

Table 3.  Results of McNemar’s chi-squared test per ECG on accuracy of interpretation between history and no-
history groups. Note: DF = 1, *p < 0.005 (Bonferroni correction).

https://doi.org/10.1038/s41598-019-47830-0
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this ECG - “65 year old male. Smoker. Sweaty. Vomiting. Discomfort in jaw and shoulders”, describes a potential 
acute coronary syndrome. And LBBB in the presence of chest pain should be treated as a medical emergency3.

Fixation duration.  Mean fixation duration – the average length of a single fixation – can be used as a proxy 
for cognitive load, where longer fixations indicate increased cognitive load20. The mean fixation duration did not 
differ significantly between the two groups when compared with a Wilcoxon test with Bonferroni correction 
(α = 0.005) (Figure. 4 and Table 4), suggesting that the presence of clinical history had no significant impact on 
the cognitive load entailed in interpreting the ECG.

Fixation count.  A Wilcoxon test with Bonferroni correction (α = 0.005) was also carried out on the fre-
quency of fixations (fixation count) for the history and no-history conditions. No significant differences were 
found between the conditions in any of the ECGs (Figure. 5 and Table 4).

Permutation tests.  In order to determine if the differences in transitional behavior represent real differ-
ences between the groups, permutation tests were used to see if there was something “special” about the initial 
group differences when compared to the differences in groups generated at random with a permutation test. 
When comparing visual transitions in the history and no history conditions (Table 5), we see that significant dif-
ferences are detected when using the grid cells as AOIs, but not the leads. The largest noticeable differences were 

Figure 4.  Mean fixation duration for both conditions per ECG (error bars = SE).

ECG

Fixation Count Fixation duration

V p-value V p-value

LBBB 230.5 0.786 241 0.871

Lateral STEMI 219.5 0.974 194 0.440

AF 230.5 0.786 183 0.318

RBBB 292.5 0.220 274 0.404

Inferior STEMI + AF 323 0.063 307 0.129

Anterior STEMI 280 0.179 231 0.983

High lateral STEMI 311.5 0.043 303 0.151

Inferolateral STEMI 275 0.387 247 0.776

Anterolateral STEMI 274 0.398 234 0.983

Table 4.  Results of Wilcoxon tests, comparing fixation count and duration between the history and no-history 
groups. Note: Bonferroni correction α = 0.005.
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seen in the subgroup analysis that compared accuracy sub-groups between the primary history and no-history 
groups. This was the case for:

•	 correct and incorrect
•	 correct and correct
•	 incorrect and incorrect

between the group that saw history first and the group that saw history last (Appendix).
When looking at the lead transitions, the lowest p value (0.2) can be seen for the Right Bundle Branch (RBBB) 

condition as shown in Figure. 6. Further to history and no-history a sub-group analysis was carried out compar-
ing accuracy sub groups to the primary history and no-history groups (see appendix). Differences can be seen 
between the accuracy groups in most conditions. One condition, RBBB in the sub-group analysis (Appendix) 
shows differences in accuracy in both the top-down (Hd = 0.67, p = 0.06) and bottom-up groups (Hd = 0.81, 
p < 0.001). This stimulus also had a clinical history especially evocative of a pulmonary embolism (PE). When 
considering the differences based on accuracy of interpretation alone (Table 6), greater differences (Hd) and 
smaller p-values can be seen between correct and incorrect participants using the grid method. A significant dif-
ference (p < 0.05) can be seen in the Anterior ST-segment Elevation Myocardial Infarction (STEMI) suggesting 
that regardless of history there was a greater difference in visual transitional behaviour between the correct and 
incorrect groups for this condition.

Figure 5.  Mean fixation count for both conditions per ECG (error bars = SE).

ECG

Lead AOI Grid cell AOI

M (SD) d Hd p-value M (SD) d Hd p-value

Anterolateral STEMI 0.45 (0.02) 0.1 0.12 0.578 0.8 (0.01) 4.1 0.83 <0.001

Inferolateral STEMI 0.5 (0.02) 0.2 0.13 0.860 0.8 (0.01) 8.6 0.90 <0.001

High lateral STEMI 0.5 (0.02) 0.1 0.14 0.702 0.5 (0.01) 23.4 0.68 <0.001

Anterior STEMI 0.4 (0.02) 1.0 0.12 0.557 0.8 (0.11) 13.5 0.91 <0.001

Inferior STEMI/AF 0.4 (0.02) 0.4 0.13 0.729 0.8 (0.01) 10.2 0.94 <0.001

RBBB 0.5 (0.02) 0.5 0.16 0.188 0.8 (0.01) 9.0 0.89 <0.001

Atrial fibrillation 0.5 (0.02) 0.01 0.16 0.811 0.5 (0.01) 24.1 0.66 <0.001

Lateral STEMI 0.4 (0.03) 0.8 0.13 0.627 0.8 (0.01) 10.7 0.89 <0.001

LBBB 0.5 (0.03) 1.6 0.16 0.553 0.8 (0.01) 7.1 0.86 <0.001

Table 5.  Results of Hellinger Distance calculation permutation test (10,000 permutations) for the lead and grid 
cell AOIs per ECG (history/no-history). Note: Hd = Hellinger distance, AOI = Area Of Interest.
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Discussion
We set out to examine the effect of clinical history on both accuracy of interpretation and visual behavior. Did the 
way people viewed the ECG subsequently change because of the inclusion or exclusion of a patient’s clinical his-
tory? Further to this we explored the impact of using AOIs at two levels of granularity. Researcher-defined AOIs 
were mapped onto the ECG leads. These leads represent different separate semantic areas that contain views of the 
heart’s electrical activity based on the direction of the electrical impulses in relation to the position of the surface 
electrodes3,21. We contrasted this with a bottom-up data-driven method for segregation of the stimulus space into 
different AOIs. In all cases the grid cell dimensions were smaller than the lead level AOIs. Certain ECG leads can 
be of more or less importance in making a correct interpretation depending on the underlying condition. ECG 
literature and training texts regularly cite different leads as being the best locations to view morphological changes 
associated with specific pathology3,21. To this end the STEMI (ST-elevation myocardial infarction) conditions 
are of particular relevance, as cross referencing changes to the ST-segment of the ECG waveform in certain lead 
territories is necessary to distinguish a STEMI from other differential diagnosis involving ST-elevation, such as 
pericarditis21. Knowledge from ECG training material and clinical practice also highlights the need to potentially 
cross-reference leads, but additionally also cross-reference individual components of the ECG waveform within a 
lead itself. This requires the study and comparison of different waveform components, such as the various waves, 
intervals and segments. Which part of the waveform that pathological morphological changes occur in depends 
on the underlying condition itself3. Without making an arbitrary decision about which sub-components of the 
waveform to focus on, it becomes practically infeasible to map all parts of potential interest for subsequent analy-
sis. To overcome arbitrary selection, we introduced a grid method to segregate the stimulus space based on values 
from a clustering algorithm.

This suggests that for these stimuli - details within the leads were more significant in terms of identifying 
visual behavior differences between the history and no-history groups. Clustering has been used to segregate 
stimuli in previous work22,23. Previous approaches have however created AOIs that differ in size and/or overlap 
making direct comparison of the regions difficult or inappropriate.

Medical history provides useful information about the underlying medical condition. Previous work has 
identified that an increased level of rhythm assessment can be accounted for by having prior knowledge of the 
patient7, making this a useful factor to consider when examining interpretation accuracy. The effect of clinical 
history on accuracy is still debatable with some studies determining an effect, i.e. Hatala et al.24, who found a 

Figure 6.  Lead transition matrices for the RBBB condition. (Left) saw history then ECG, (right) saw ECG alone 
(normalized by max value).

ECG

Lead AOI Grid cell AOI Group sizes

M (SD) d Hd p-value M (SD) d Hd p-value 1 (n) 2 (n)

Anterolateral STEMI 0.5 (0.05) 0.03 0.52 0.444 0.8 (0.02) 0.7 0.78 0.261 22 6

Inferolateral STEMI 0.5 (0.03) 0.5 0.55 0.286 0.8 (0.01) 0.8 0.81 0.216 21 7

High lateral STEMI 0.5 (0.03) 1.0 0.48 0.836 0.5 (0.01) 0.3 0.49 0.347 9 19

Anterior STEMI 0.4 (0.02) 0.5 0.39 0.286 0.8 (0.01) 2.4 0.79 0.010* 16 12

Inferior STEMI/AF 0.4 (0.02) 1.7 0.40 0.965 0.9 (0.01) 1.4 0.87 0.070 15 12

RBBB 0.5 (0.03) 0.9 0.47 0.812 0.8 (0.01) 0.004 0.80 0.502 18 10

Atrial fibrillation 0.5 (0.03) 0.5 0.52 0.654 0.5 (0.01) 1.5 0.46 0.938 21 7

Lateral STEMI 0.4 (0.03) 1.6 0.37 0.955 0.8 (0.01) 2.0 0.77 0.973 14 14

LBBB 0.5 (0.03) 0.3 0.54 0.360 0.8 (0.01) 0.9 0.79 0.183 20 7

Table 6.  Results of Hellinger Distance calculation permutation test (10,000 permutations) based on accuracy of 
interpretation per ECG. NOTE: *p < 0.05, Hd = Hellinger distance, AOI = Area Of Interest.
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4–12% improvement in accuracy with clinical history and Wood et al.13 who found no difference. Some of the 
variation in these findings could relate to the strength of association between know symptoms and certain con-
ditions. An example can be seen in the sub group analysis of the RBBB condition in the study presented in this 
paper with a clinical history that is very suggestive of a pulmonary embolism secondary to a deep vein thrombosis 
(DVT). Without this history a RBBB pattern is all that can be discerned from the ECG alone. Of the 11 times PE 
was stated or queried as a possible interpretation, only one participant referred to a possible PE in the no-history 
group, with the other 10 participants all being in the group that saw the history. This suggests that at least in this 
case the clinical history was highly suggestive of a specific pathology. This could also be a sign of confirmation 
bias, with practitioners seeking confirmatory information to back up their initial diagnosis25.

The commonly used eye-tracking metrics (such as fixation duration/count) that are used as proxies of behav-
ior20 did not detect any significant differences between the conditions in terms of the average length of time they 
were fixated on or the number of fixations made.

The systematic application of history to all conditions, and presenting them both with and without the history 
has overcome some of the limitations of the study carried out by Wood et al.13. The grid method of AOI gener-
ation allows for examination of visual behavior at a finer level of granularity than the lead-based analysis due to 
the increased number of AOIs generated. There may be several grid cells inside a single lead, making the analysis 
sensitive to within-lead transitions in this case. It is possible that the grid generated could have been larger than 
the lead. In this case it could be entire regions, or combinations of leads that would be captured.

The clinical history does appear to have an impact on ECG interpretation accuracy in some cases and on visual 
transitions between leads. One reason why this effect is not more widespread, despite the stimuli being primarily 
representative of myocardial infarctions that would require lead comparisons is that the bottom-up saliency of 
the STEMI conditions overrides the vaguer top-down knowledge provided by the histories describing chest pain 
(Table 2). In contrast to this, interpretation accuracy and visual behavior are both affected at the level of the wave-
form morphology. This indicated that at the level of the waveform participants react differently on a cognitive and 
perceptual level. This also makes some sense from a clinical perspective, as a history of chest pain may prompt 
visual analysis of the ST-segment within leads.

The implications of this are that visual analysis of the waveform components is influenced by the clinical 
history provided and does impact the way the waveform is subsequently perceived. This implies that regardless 
of the need to cross reference leads the cross-referencing of the waveform components themselves is of more 
importance for accuracy of interpretation.

From a clinical standpoint, practitioners are trained to look for morphological changes in the waveform itself, 
and so intra-lead transitions that are not detected when analyzing transitions at the level of the lead are more 
relevant and discriminatory of accuracy. This suggests that the level of granularity that is best for analyzing differ-
ences in visual behavior is one that considers behavior within leads, as well as between them, which is supported 
by clinical training courses and texts that teach practitioners to look at the components of the waveform and 
compare them.

Limitations
There were several limitations present in the study. By not restricting the time for each task, in order not to rush 
people and make them behave in an atypical way to how they would normally when interpreting an ECG, we are 
unable to account for any variance in accuracy due to differing time spent on interpretation. Another limitation 
is the sample used. As it is not always possible to recruit sufficient numbers of highly trained individuals, such as 
consultant cardiologists due to various constraints, the sample selected for this study necessitated using individ-
uals from a wide variety of clinical backgrounds, this conceivably has some impact on their approach to interpre-
tation based on their differing training and professional backgrounds. Finally, the different group sizes generated 
when comparing accuracy (as we cannot know in advance who will make a correct or incorrect interpretation per 
ECG) makes direct comparisons challenging and such results should be interpreted with some caution.

Conclusions
These approaches represent a different perspective, where computational techniques can be leveraged to support 
human interpretation and enhance human expertise, allowing the human to make the final decision. As such it 
appears that the examination of human expertise as a means to improve interpretation holds some promise in 
enhancing performance. As ECG interpretation is both a cognitive and visual process, the use of eye-tracking 
was examined as a possible methodology to extract such expertise from human interpreters. Findings indicate 
that clinical history in the form of history of presenting complaint does impact on accuracy and visual transitions 
in some cases at lead level. In contrast history has a greater cognitive and perceptual impact at the level of the 
waveform, changing how people react to the ECG presented. When considering accuracy, we again see greater 
differences in transition behavior at the level of the waveform, than the lead. Future analysis of eye-movements 
relating to ECG analysis should consider within lead visual behavior at the level of the waveform components.

Data Availability
Data and analysis code available from: https://github.com/IAM-lab/clinical-history.
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