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Comprehensive and Systematic 
Analysis of Gene Expression 
Patterns Associated with Body 
Mass Index
Paule V. Joseph   1, Rosario B. Jaime-Lara1, Yupeng Wang3, Lichen Xiang2 & 
Wendy A. Henderson   2

Both genetic and environmental factors are suggested to influence overweight and obesity risks. 
Although individual loci and genes have been frequently shown to be associated with body mass 
index (BMI), the overall interaction of these genes and their role in BMI remains underexplored. Data 
were collected in 90 healthy, predominately Caucasian participants (51% female) with a mean age of 
26.00 ± 9.02 years. Whole blood samples were assayed by Affymetrix GeneChip Human Genome U133 
Plus 2.0 Array. We integrated and analyzed the clinical and microarray gene expression data from those 
individuals to understand various systematic gene expression patterns underlying BMI. Conventional 
differential expression analysis identified seven genes RBM20, SEPT12, AX748233, SLC30A3, WTIP, 
CASP10, and OR12D3 associated with BMI. Weight gene co-expression network analysis among 4,647 
expressed genes identified two gene modules associated with BMI. These two modules, with different 
extents of gene connectivity, are enriched for catabolic and muscle system processes respectively, and 
tend to be regulated by zinc finger transcription factors. A total of 246 hub genes were converted to 
non-hub genes, and 286 non-hub genes were converted to hub genes between normal and overweight 
individuals, revealing the network dynamics underlying BMI. A total of 28 three-way gene interactions 
were identified, suggesting the existence of high-order gene expression patterns underlying BMI. Our 
study demonstrated a variety of systematic gene expression patterns associated with BMI and thus 
provided novel understanding regarding the genetic factors for overweight and obesity risks on system 
levels.

Obesity, defined as a body mass index (BMI) greater than 30 kg/m2, is an increasingly prevalent public health 
concern worldwide. Obesity is associated with several health problems including diabetes, cardiovascular disease, 
and cancer that increase morbidity and mortality1–3. Thus, thousands of studies have been conducted to identify 
the biological mechanisms underlying obesity in order to identify potential causes of the disease and find meth-
ods to mitigate its burden.

Genetics methods exploring biological mechanisms of obesity have utilized multiple molecular methods/tech-
niques including single-gene mutations, transgenic and knockout mouse models, quantitative trait loci (QTL) 
mapping, association mapping, and gene expression signatures4–7. Recently, several genome-wide association 
studies (GWAS) have identified single-nucleotide polymorphisms (SNPs) associated with obesity4,8–11, among 
which 97 genetic loci were associated with BMI and 49 loci were associated when waist-to-hip ratio was adjusted 
for BMI8,10. Although these studies have helped identify individual mutations and loci associated with BMI, the 
relevant biological function of these genetic variants is not fully understood.
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Leveraging regulatory relationships in system-level gene expression data can highlight biological pathways 
implicated in obesity and offer further insights into the biological function of these genetic variants. Recent stud-
ies have demonstrated that whole-blood transcriptome profiles are valid biological data for weight status and 
thus provide a more parsimonious method to investigate the functional genomics of obesity, wherein both genes 
and pathways are included12–15. To this end, we generated and integrated gene expression data of venous blood 
samples and clinical data for 90 individuals. As a convention and validation, we utilized differential expression 
analysis to detect individual genes responsible for obesity risk. Then, we studied system-level gene expression 
patterns. We used Weighted Gene Co-expression Network Analysis (WGCNA) to detect gene modules (groups of 
co-expressed genes) that could potentially interact to mediate increases in weight. We utilized gene connectivity 
analysis to understand network property changes associated with overweight risks. Lastly, we applied three-way 
gene interaction analysis to depict the sophisticated gene relationships that may contribute to increased weight. 
Together this study provides a better understanding of genetic factors in overweight and obese phenotypes 
through the study of networks, pathways, interactions, and regulation of weight-related genes.

Materials and Methods
Design and setting.  The study was approved by the Institutional Review Board and the Office of Human 
Subjects Research at the National Institutes of Health (NIH). Data from participants in a natural history protocol 
(Clinicaltrial.gov #NCT00824941) conducted at the Hatfield Clinical Research Center, NIH were included. All 
research activities were performed in accordance with relevant guidelines and regulations. The exclusion criteria 
of the parent outpatient study included individuals with any known organic disease (e.g., endocrine, gastrointes-
tinal, pulmonary, renal, neurologic, or gynecological pathology). Underweight participants were also excluded. 
Normal weight, overweight, and obese participants were eligible for inclusion in the study. Participants provided 
written informed consent during outpatient visits from February 2009 to July 2017. Anthropometric measures 
(height and weight) and blood samples were collected from fasting participants during the same visit.

Sample demographics and clinical variables.  This study included healthy participants (n = 90) from 
the parent study (predominately Caucasian, 51% female, mean age 26.00 ± 9.02 years). Detailed baseline demo-
graphic characteristics were noted previously16. In this study, we divided participants into three genetic-ancestry 
categories: Caucasian (n = 46), African American (n = 23) and other (n = 21), where Asian and other ethnic 
groups were categorized as “other”.

Clinical data were collected from the Clinical Research Information System. Weight was measured in triplicate 
and then averaged; height was measured in duplicate and then averaged. The average height and weight were used 
to determine BMI, calculated as weight in kilograms divided by height in meters squared. A trained registered 
nurse completed whole-body air displacement plethysmography (BOD PODTM), which determines body fat per-
cent, on all patients. Intra-abdominal height, a measure from the highest abdominal point to the spine in centim-
eters while the patient is supine, was calculated via ultrasound. Intra-abdominal height was measured without 
applying pressure to the ultrasound probe. Venous blood samples were sent to the Department of Laboratory 
Medicine for evaluation of routine cardiovascular laboratory values including fasting glucose, total cholesterol, 
triglycerides, high density lipoprotein (HDL), low density lipoprotein (LDL), and serum insulin. There were a 
total of nine missing values in the clinical trait data. Missing values were excluded from related statistics.

Classification of weight status.  We classified weight-status for each person as “normal” weight or “over-
weight.” We found that the three ethnic groups of this study had very different median BMIs (Caucasian: 24.83; 
African American: 29.51; and other: 23.46). If we used the conventional criteria of BMI greater than 25 to define 
overweight, population structures were very different between normal and overweight groups (Supplementary 
Fig. S1), which could cause differential expression analysis to be confounded by ethnic differences. Thus, we used 
ethnic-specific BMI cutoffs, which were the median BMI of each ethnic group, to define overweight. The cohort 
was thus divided into 43 normal weight and 41 overweight individuals that had very similar population structures 
(Supplementary Fig. S1). Table 1 shows comparisons of demographic and clinical characteristics between normal 
weight and overweight individuals.

RNA isolation, amplification, microarray data processing, and annotation.  Details on meth-
ods were published in detail previously16. In short, blood samples were collected in PAXgeneTM RNA (Qiagen, 
Valencia, CA). Total RNA was extracted and purified using an RNA PAXgene kit (Qiagen, Valencia, CA). 
Samples in which total RNA passed quality control criteria were used for microarray. All samples were assayed 
by Affymetrix GeneChip Human Genome U133 Plus 2.0 Array. Quality control and data preprocessing were 
performed as previously noted16. Then, microarray expression data were normalized using quantile normali-
zation. Principal Component Analysis (PCA) indicated that batch effects existed between the two batches 
(Supplementary Fig. S2). Therefore, the Combat software17 was implemented to remove the batch effects in the 
microarray expression data. PCA indicated that batch effects had been successfully removed (Supplementary 
Fig. S2).

Sample size estimation.  The sample size needed to perform differential expression analysis was evaluated 
using the SSPA Bioconductor package18,19. Twenty samples (10 normal and 10 overweight samples) were ran-
domly selected from the cohort to estimate power versus sample size.

Differential expression analysis.  Differential expression analysis between normal weight and overweight 
individuals was performed using the Limma Bioconductor package20.
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Evaluation of expressed genes.  A total of 13,276 genes were ranked according to their average expression 
levels. Top ranked genes were more likely to be expressed. According to a study on gene expression profiles, over 
91 human and mouse tissues, 30~40% genes, were estimated to be expressed in any tissue21. In this study, we 
assumed that 35% (4,647) genes were expressed.

Constructing gene co-expression networks.  Gene co-expression networks were constructed using 
the WGCNA package22. The 4,647 expressed genes over the 84 individuals were included in the analysis. The 
scale-free property of the network was visualized (Supplementary Fig. S3). We chose a soft power of 6, which 
was the lowest power for which the scale-free topology fit index curve flattens out upon reaching a high value. 
Then, one-step network construction and module detection were performed, with the following parameters: 
TOMType = “unsigned”, minModuleSize = 10, reassign Threshold = 0, and mergeCutHeight = 0.25. The hierar-
chical clustering dendrogram was then successfully generated (Supplementary Fig. S4).

Computing gene connectivity.  Topology similarity23 was used to measure the similarity between gene 
expression profiles. We used the WGCNA package to generate the topological matrix for the 4,647 expressed 
genes. To compute within-module gene connectivity, 99% percentile of the topology overlap matrix11 based on 
the 4,647 expressed genes was computed and used as the cutoff for determining whether two genes are connected. 
Note that within-module gene connectivity reflects how a gene is connected to other genes within the module, 
while it is possible that that gene is also connected to several external genes.

To compute gene connectivity changes between normal and overweight gene networks, we first computed 
TOMs based on the 4,647 expressed genes within normal and overweight gene networks respectively. Then, the 
99% percentile of the TOM was computed in each network and used as the cutoff to define gene connection in 
that network. All 4,647 expressed genes were included to compute gene connectivity (connection to itself was 
excluded). Assuming that a gene’s connectivity is C1 in network 1 and C2 in network 2, change of gene connectiv-
ity between the two networks is defined as:

∆ =
−

+ +
C C C

C C s
2 1

2 1

where s is a pseudo count of gene connectivity, which is 45.47, the average gene connectivity in this study.

Functional properties of BMI-associated modules.  Functional enrichment analysis was performed 
using the GOStats Bioconductor package24. Only over-representation was assessed via the hypergeometric test. 
To evaluate enrichment of differentially expressed genes, all 13,276 genes were used as the genomic background. 
To evaluate enrichment of co-expression gene modules, the 4,647 expressed genes were used as the genomic 
background. P-values were adjusted by the BH approach25.

Canonical pathway analyses were generated through the use of IPA (QIAGEN Inc., https://www.qiagenbi-
oinformatics.com/products/ingenuity-pathway-analysis)26 on 157 genes within the “black” module and 35 

Clinical parameter

Normal weight Overweight

FDR-adjusted 
P-valueMean

Standard 
deviation Mean

Standard 
deviation

Height 168.58 8.42 172.64 10.11 0.0945

Weight 63.60 9.66 91.33 20.83 2.01 × 10−9

BMI 22.32 2.50 30.53 5.96 1.28 × 10−9

Body fat 23.22 9.16 32.68 10.85 2.92 × 10−4

Cortisol 11.49 5.03 9.49 3.51 0.0787

Insulin 5.87 3.53 10.36 11.13 0.0456

Glucose 86.77 12.91 89.12 8.33 0.375

Cholesterol 157.16 29.46 173.17 25.32 0.0271

Triglycerides 82.28 40.06 106.66 80.96 0.154

HDL 53.72 10.59 50.98 13.41 0.374

LDL 87.05 24.15 102.33 26.14 0.0271

CRP 1.63 2.34 2.73 3.81 0.188

ESR 7.57 6.51 9.93 8.55 0.242

HgA1C 5.30 0.35 5.38 0.35 0.374

IgG 1209.81 263.07 1174.15 217.92 0.525

IgA 193.09 68.24 215.56 81.14 0.244

IgM 112.84 53.03 107.20 57.76 0.643

IgE 169.63 355.64 388.70 1529.08 0.415

Intra-abdominal fat 8.35 1.53 10.96 2.37 2.01 × 10−6

Systolic 115.86 13.13 123.15 11.52 0.0271

Diastolic 69.49 6.48 74.07 11.93 0.0784

Table 1.  Comparison of clinical characteristics between normal weight and overweight individuals.
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genes within the lightcyan module. These networks received a score based on the number of genes involved in 
a network. Top networks and their network functions were also analyzed for each module. As a complimentary 
approach to IPA, we used Search Tool for the Retrieval of Interacting Genes/Proteins (STRING)27 to examine 
predicted protein-protein interactions (PPIs). We inputted the 157 genes in the “black” module and the 35 genes 
in the lightcyan module (same genes inputted into IPA). The genes within each module were mapped into PPI 
networks.

Regulatory motif analysis.  Over-represented transcription factor binding sites (TFBS) and TFBS fami-
lies in DNA sequences of gene co-expression modules were identified using the oPOSSUM-3 web server28. The 
4,647 expressed genes were used as the background genes. JASPAR core profiles (i.e., all vertebrate profiles) were 
used, with a minimum specificity of 8 bits. TFBS search parameters were set as: conservation cutoff: 0.60; matrix 
score threshold: 85%; amount of upstream/downstream sequence: 2000/2000; number of results to return: top 20 
results; sorted by Z-score.

Three-way gene interaction analysis.  Three-way gene expression analysis was performed using the 
xSyn software29. The cutoff of tree height was set to 0.02. The 4,647 expressed genes were sorted in descending 
order of conditional entropy with weight status. The top 100 genes were selected for detection of three-way gene 
interactions.

Ethics approval and consent to participate.  The protocol was approved by the Institutional Review 
Board at the National Institutes of Health. Clinicaltrial.gov # NCT00824941.

Accession numbers.  Microarray data can be found on Gene Expression Omnibus (GEO) under accession 
number GSE109597.

Results
Study data.  This nested case-controlled analysis included ancestrally diverse (46 Caucasians, 23 African 
Americans, and 21 from other ancestral groups) participants were recruited to a natural history proto-
col (Clinicaltrial.gov #NCT00824941) conducted at the National Institutes of Health (NIH) Hatfield Clinical 
Research Center. Fasting biological samples and questionnaires were collected from outpatient participants.

A total of 21 clinical variables were assessed, including height, weight, BMI, body fat, cortisol level, insulin 
level, glucose level, cholesterol level, triglycerides level, high-density lipoprotein (HDL), low-density lipoproteins 
(LDL), level of C-reactive protein (CRP), erythrocyte sedimentation rate (ESR), Hemoglobin A1c (HbA1c), IgG, 
IgA, IgM, IgE, Intra-Abdominal Fat (IAF), and systolic and diastolic blood pressure. Missing clinical data were 
imputed. In this study, obesity risk was approximated by Body Mass Index (BMI).

Whole-blood samples of the 90 participants were assayed for genome-wide expression profiles using the 
Human Genome U133 Plus 2.0 microarray (Affymetrix, Santa Clara, CA). After removing outlier samples 
(see Methods), we kept 84 samples for analysis. Expression profiles of 13,276 genes were then generated (see 
Methods). Potential batch effects were assessed and corrected (see Methods). Distributions of gene expression 
levels indicated that outlier samples did not exist (Supplementary Fig. S5). We further assessed whether microar-
ray data could be significantly affected by gender, geographic ancestry, or age through PCA, and found that the 
first and second principal components were not significantly correlated with gender, race, or age, while the third 
principal component was significantly correlated only with gender (Supplementary Fig. S6 and Table S1). This 
analysis indicates that for most (if not all) of the analyzed genes, gender, race, nor age affect gene expression levels.

Differential expression analysis.  We asked whether there are differential expressed (DE) genes between 
normal and overweight individuals. To this end, we first assessed whether a total of 84 individuals were sufficient 
for detecting DE genes. We used randomly selected 20 samples to draw a plot between power and sample size in 
each group (Fig. S7), which suggested that with 84 samples available, power is expected to be around 0.55. This 
power was very modest, and thus we decided to use all samples from different races rather than samples from 
a single ancestral group for the DE analysis. To ensure that potential DE genes reflected different weight phe-
notypes rather than population structures, 43 normal weight and 41 overweight individuals, with very similar 
population structures, were distinguished by a special approach relying on genetic-ancestry specific BMI cutoffs 
(see Methods).

To avoid a decrease in statistical power, we considered that it was not necessary to include gender, race, or 
age as covariates of DE analysis, because including more variables would reduce power for the same sample size, 
or more samples would be needed to reach the same power. There may be several genes whose expression levels 
were associated with gender, race, or age. However, if the overall variables required adjustment, we would expect 
that they would be significantly associated with the first or second principal component of the microarray data, 
however, we have shown that none were associated in the previous section (Supplementary Fig. S6 and Table S1). 
Then, we assessed whether weight status was a major variable affecting the microarray data. We found weight 
status was not associated with the first or second principal component of the microarray data (Supplementary 
Fig. S8, p-values: 0.27 or 0.64, F-test). Next, we used the q-value software15, a more sensitive approach, to assess 
DE genes between normal and overweight individuals. The default plot of the q-value software (Fig. 1) shows that 
there is a two-fold density peak within the smallest p-value range (i.e., <0,04), suggesting that there are indeed 
DE genes. However, the q-value curve goes up quickly in that range, confirming a modest power. Equally speak-
ing, although the number of DE genes was estimated at 13,276 × (1–0.804) = 2602, it was difficult to accurately 
detect them due to high False Discovery Rate (FDR).

Next, we used the LIMMA software to identify DE genes between normal and overweight individu-
als. The model matrix defined the weight status as the only factor variable, in addition to the intercept. With 
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a FDR-adjusted p-value cutoff of 0.1, seven genes were found to be differentially expressed, RBM20, SEPT12, 
AX748233, SLC30A3, WTIP, CASP10, and OR12D3 (Table 2). A volcano plot is provided to display significance 
versus fold-changes (Supplementary Fig. S9).

Genetic variants of RBM20 are associated with dilated cardiomyopathy such as heart failure with preserved 
ejection fraction both in humans and in animal models30,31. Mutations of RBM20 gene are known to cause cardi-
omyopathies because RBM20 regulates circular RNA production from the Titin (TTN) gene31,32. Several studies 
have documented how individuals with obesity are at higher risk of developing cardiovascular disease27,33. This 
finding suggests that those with obesity may have an increased expression of RBM20 that increases their risk for 
cardiovascular disease.

SEPT12 encodes for Septin 12, plays a role including cytokinesis, exocytosis, and membrane dynamics. 
SEPT12 is involved in Alzheimer’s disease (AD) related networks, and mutations of this gene have been associated 
with infertility in men34,35. Studies have increasingly pointed to obesity and associated comorbidities as potential 
contributors to AD pathophysiology, suggesting that higher BMI and obesity are linked to cognitive decline, 
brain atrophy, reduced white matter and integrity of the blood-brain barrier, and elevated risk for late-onset AD36. 
Likewise, obesity has been shown to impact male fertility function and molecular composition37.

WTIP is transcribed into Wilms tumor 1 protein (WTIP), which is a scaffold protein that is involved in mul-
tiple cellular processes including cytoskeletal organization, cell differentiation, and proliferation38. The WTIP 
molecule plays an important role in kidney-cell remodeling39. Modulation of WTIP can lead to the kidney-cell 
scarring (e.g., focal segmental glomerulosclerosis) that is characteristic in diabetes mellitus40,41. Thus, alterations 
to WTIP may be associated with obesity associated comorbidities, including diabetes42.

CASP10 encodes a protein from the caspase family that is involved in cell apoptosis and survival43. Sequential 
activation of caspases is an important regulation step within the execution phase of cell apoptosis. Alterations in 
DNA methylation of the CASP10 gene have been found in pancreatic B cells of people with diabetes mellitus44,45. 
Polymorphisms and mutations in this gene are also associated with different types of cancer46. This suggests that 
both genetic and epigenetic modifications of the CASP10 gene may have an important translation implication in 
diabetes and cancer, which are common comorbid conditions associated with obesity.

Lastly, Olfactory receptor family 12 subfamily D member 3 (OR12D3) is a gene that codes for proteins involved 
in sensory perception of smell. The olfactory receptor proteins are members of a large family of G-protein-coupled 

Figure 1.  P-value distribution shown with local FDR and q-value levels. P-values were generated by the limma 
software, and then fed into the qvalue software.

Gene Probe_set
Logarithm of 
fold change

Average 
expression level

FDR-adjusted 
p-value

RBM20 238763_at 0.457 4.58 7.68 × 10−2

SEP12 230947_at −0.150 5.82 7.68 × 10−2

AX748233 1557267_s_at 0.513 3.90 7.68 × 10−2

SLC30A3 207035_at −0.143 6.46 7.68 × 10−2

WTIP 227411_at −0.160 6.30 7.68 × 10−2

CASP10 205467_at 0.155 9.79 7.68 × 10−2

OR12D3 221431_s_at −0.145 4.52 8.51 × 10−2

Table 2.  Differential expressed genes between normal and overweight individuals.
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receptors (GPCR) arising from single coding-exon genes. Olfactory receptors share transmembrane domain 
structures with many neurotransmitter and hormone receptors to recognize and G protein-mediated transduce 
odorant signals47. The OR12D3 gene has been associated with several carcinomas such as stomach cancer, endo-
metrial cancer, and liver cancer48. Together these differentially expressed genes encode proteins involved in cel-
lular regulation whose mutations are associated with disease processes that are often associated with obesity, 
including cancer and cardiovascular disease.

Weighted Gene Co-expression Network Analysis (WGCNA).  Diseases such as obesity can result from 
dysregulation of gene networks. To more comprehensively understand the gene expression mechanisms under-
lying weight status, we conducted Weighted Gene Co-expression Network Analysis (WGCNA). To reduce noise 
in the networks, we selected 35% (4,647) top expressed genes for analysis. The gene co-expression networks 
were constructed, resulting in 21 gene modules (Fig. 2A). The sizes of these gene modules range from 13 to 
1218 genes, with a median size of 103 genes. We further related these gene modules to the 21 clinical variables. 
Interestingly, we identified two gene modules responsible for the weight, BMI, systolic and diastolic traits - the 
“black” and “lightcyan” modules (Fig. 2A). The “black” and “lightcyan” modules have 157 and 35 genes respec-
tively. (Supplementary Table S2). We found that in these modules, gene module memberships are highly corre-
lated with gene significance for BMI (Fig. 2B), which enabled us to further prioritize these genes according to 
gene module memberships (Supplementary Table S2). Note that it appears that the “lightyellow” module is nega-
tively correlated with BMI. However, this module has only 18 genes, and there is no correlation between module 
memberships and gene significance. Thus, we believed that this negative correlation may not be real.

Functional properties of BMI-associated modules.  Next, we investigated the functional characteristics 
of these two BMI-associated gene modules. Within the “black” module, we found multiple groups of genes coding 
for biological functions. The top gene (the most interconnected gene) found in the WGCA “black” module was 
BCL2L1 (B-cell lymphoma-2-like protein 1) (Supplementary Table 2). The BCL2 (B-cell lymphoma-2) family 
of genes are known to play a major role in apoptosis, and their levels are correlated with BMI and inflamma-
tion49. The proapoptotic state found in obesity is correlated with insulin signaling, suggesting it can play a role in 
insulin resistance50. Furthermore, the BCL2 family proteins have the potential to affect multiple mechanisms of 
cardiac damage, including ischemia, calcium dysregulation, and oxidative stress via apoptotic changes51. This is 
consistent with the biological function of genes within the black module (e.g., BCL2L1, EPOR, BNIP3L, BRAF, 
and GADD45A). These genes regulate cellular response to stress, and dysregulation of this important biological 
function may result in the inflammation observed in obesity, diabetes, cardiovascular disease, and cancer52. Other 
groups of genes within the “black” module (e.g., BCL2L1 SKP1, FBX09, USP12, and RNF4) also participate in cel-
lular catabolism, which if disrupted (as is seen in our high BMI group), can have pathological metabolic sequelae 
that are observed across the above-mentioned comorbid conditions and cancer.

Another salient group of genes (i.e., EPOR, BCL2L1, FBXO7, SCNA, APP, PINK1) within the “black” module 
have been associated with neuron apoptotic processes. In animal studies, beta-amyloid peptides such as APP 
(amyloid beta precursor protein) was shown to enhance SNCA (∝-synuclein) accumulation leading to neu-
ronal deficits in a transgenic mouse model linking neurodegenerative diseases such as Alzheimer’s disease and 
Parkinson’s disease53. In addition, FBX07 immunoreactivity in ∝-synuclein have been associated with Parkinson’s 
disease and multiple system atrophy54. A recent study showed that loss of PINK1 (PTEN-induced putative 
kinase 1 (PINK1), a regulatory protein that is highly expressed in the brain) inhibits apoptosis by upregulating 
α-synuclein in inflammation-sensitized mouse brains suggesting that loss of PINK1 may play a novel protective 
role of inflammation in the brain55. There is ample evidence in both animal and human studies demonstrating 
that obesity is a risk factor for Alzheimer’s Disease, suggesting that the chronic low-grade systemic inflammation 
seen in obesity leads to neuroinflammation56–58. However, the association of Parkinson’s disease-risk and obesity 
remains debatable59,60, warranting more research.

The top gene within the “lightcyan” module was the SPARC (secreted protein acid and rich in cysteine) gene. 
This gene modulates tissue physiology and alters cell-ECM interaction, cell proliferation, and cell migration61. Its 
role in regulating wound healing, angiogenesis, tumorogenesis, and inflammation is consistent with its positive 
correlation to diabetes and cardiovascular disease61. Other genes within the “lightcyan” module, which inter-
act with SPARC to modulate wound healing, include PPKAR2B (protein kinase cAMP type II subunit beta), 
TREML1 (triggering receptor expressed on myeloid cell like 1), and vinculin. Mutations in these genes may also 
lead to vascular disease, cardiomyopathy, and dementia/neurodegeneration62,63, respectively. Thus, both of the 
most interconnected genes of the “black” and “lightcyan” modules and other genes within these two models are 
known to play a key role in obesity and other pathogenic processes leading to diabetes, cardiovascular disease, 
cancer, and neurodegeneration.

We also performed GO biological process and KEGG pathway enrichment analysis using the Gostat soft-
ware24, with a p-value cutoff of 0.01. The results (Supplementary Table S3) show that the “black” module is mainly 
enriched for catabolic processes and Wnt signaling pathway, while the “lightcyan” module is mainly enriched for 
muscular system, cell migration/motility and vasculature development. Analysis of top 20 over-representative 
transcription factor binding sites (Supplementary Table S4) suggested that only four transcription factors – FEV, 
HLF, RREB1 and ZNF354C – were shared between the two gene modules, however, zinc finger transcription 
factors are the major family in both gene modules.

IPA identified significant networks in the “black” and “lightcyan” modules (Fig. 3A,B)26. We identified eleven 
gene networks in the black module, which had scores between 2 to 47. Gene networks in the “black” module 
had associated network functions including cell morphology, cancer, inflammatory responses, and neurological 
disease. Top canonical pathways included iron homeostasis, nuclear factor (erythroid-derived 2) NRF2-mediated 
Oxidative Stress Response, and glutamine biosynthesis. Four gene networks were found in the “lightcyan” module 
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with scores of 40, 19, 14, and 1. Gene networks in the “lightcyan” module were associated with cancer, cell-to-cell 
signaling, cellular morphology, and smooth muscle. Top canonical pathways included breast cancer regulation 
endocytosis signaling, integrin signaling, tight-junction signaling, Sertoli cell junction, Integrin-linked kinase 
signaling, and clathrin-mediated endocytosis signaling.

Figure 2.  Detection of gene modules associated with clinical traits. (A) Matrix of gene module-trait 
relationships. Each matrix element contains a correlation value between a gene module’s eigenvector 
(y-axis) and a clinical trait (x-axis) and its corresponding P-value and is colored according to the correlation. 
Explanation of the traits: BMI: body mass index, BF: body fat, IAF: intra-abdominal fat. (B) Module 
memberships are significantly correlated with gene significance for BMI in “black” and “lightcyan” modules.
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The “black” module analysis found 150 modes, 165 edges, and a PPI enrichment value of <1.0e-16. The pro-
teins that were closely associated with other proteins included, RNF41, RNF14, SKP1, UBE2H, and NS FBXO9. 
These proteins are known to be associated with pathways including regulation mitophagy, TOR signaling, and 
ubiquitin-dependent catabolic processes (Fig. 4A). The “lightcyan” PPI had 33 nodes, 15 edges, and a PPI enrich-
ment value of 6.6e-05. Proteins with high PPIs included, ITGB5, MYLK, and VCL. These proteins are involved in 
antigen processing and presentation of exogenous peptides, virus receptor activity, aorta smooth muscle tissue 
morphogenesis, and platelet aggregation (Fig. 4B).

Gene connectivity analysis.  Gene connectivity measures the number of genes that a gene is connected 
to. Hub genes are frequently believed to be more functionally important than peripheral genes. Here we adopted 
a customized approach to determine whether two genes were connected – their topology similarity should be 
greater than 0.99 quartile of topology overlap matrix (see Methods). We computed the within-module gene 
connectivity for the “black” and “lightcyan” modules. Visualization of gene connectivity (Fig. 5) suggests that 
the genes in the “black” module are more inter-connected than the “lightcyan” module. Only 40% of the 35 

Figure 3.  Gene coexpression networks in BMI-associated modules. Every node depicts a gene and lines 
represent a coexpression relationship. (A) Gene coexpression networks of the “black” module. (B) Gene 
coexpression networks of the lightcyan module. The figure was generated through the use of IPA (QIAGEN Inc., 
https://www.qiagenbio-informatics.com/products/ingenuity-pathway-analysis).

Figure 4.  Protein-protein interactions in BMI-associated modules. Each node denotes a gene and each line 
indicates a protein-protein interaction. (A) Protein-protein interactions in the “black” module. (B) Protein-
protein interactions in the lightcyan module.

https://doi.org/10.1038/s41598-019-43881-5
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genes in the “lightcyan” module are interconnected, while 66% are interconnected in the “black” module. We 
further sorted the genes within these two modules by importance according to gene connectivity (Supplementary 
Table S5). This ranking is similar to that of the gene module membership.

Next, we evaluated potential gene connectivity changes between normal and overweight individuals. Genes 
that are converted from hub to peripheral genes or from peripheral genes to hub genes are more likely to perform 
important roles in development of obesity. Weighted gene co-expression networks within normal and overweight 
individuals respectively were constructed based on the 4,647 expressed genes. Then, we used 0.99 quantile of 
topology overlap matrix to define the two genes’ connection in normal and overweight networks respectively. 
Subsequently, we applied a formula to compute gene connectivity changes (see Methods). We then used gene con-
nectivity change >0.5 to define nonhub genes being converted to hub genes in overweight individuals, and gene 
connectivity change <−0.5 to define hub genes being converted to nonhub genes in overweight individuals. We 
identified 246 hub genes that were converted to nonhub genes and 286 nonhub genes that were converted to hub 
genes in overweight individuals (Supplementary Table S6). However, functional significance analysis indicated 
that there was no enriched GO biological process term in these genes. This analysis suggests that a considerable 
number of genes are differentially connected between normal and overweight individuals, shedding some light 
on the network dynamics underlying human weight.

Three-way gene interaction analysis.  We investigated whether there were more sophisticated gene 
expression patterns underlying human weight. To this end, we considered three-way gene interactions, defined 
as two gene expression profiles being clustered in different space locations. These highly synergistic genes would 
be under the control of a third gene (i.e., gene X)29 and could have differential expression or outlier differential 
expression associated with weight status. We utilized the xSyn software for this analysis. We computed the top 
100 genes with the highest conditional entropy. We then searched the 100 genes for gene pairs with synergy 
greater than 0.9. Lastly, we assessed whether any gene pairs associations could be attributed to a third control 
gene. We identified a total of 28 three-way gene interactions (Supplementary Table S7). We then randomly chose 
a three-way gene interaction for visualization (Fig. 6). This analysis suggests complicated high-order gene inter-
actions that may contribute to the genetic mechanisms affecting human weight.

Discussion
Gene expression data can offer key information for understanding the genetic mechanisms underlying increases 
in body weight and obesity. In this study we identified 7 differentially expressed genes, RBM20, SEPT12, 
AX748233, SLC30A3, WTIP, CASP10, and OR12D3. These genes code for proteins that play an important biolog-
ical function, including cellular apoptosis, cytoskeletal organization, and olfaction. Alteration of these genes can 
result in pathological processes leading to diabetes, cardiovascular disease, cancer, or dementia. We found that 

Figure 5.  Network visualization of the gene modules associated with weight traits. Each node denotes a gene, 
and each line indicates that two genes have a topology similarity greater than 0.99 quantile. Note that genes not 
connected based on our criteria are not displayed.
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three (AX748233, CASP10, and OR12D3) out of the seven DE genes can be found to be differentially expressed 
under different weight status in external data (Supplemental Fig. S10). It is well known that the repeatability of 
microarray experiments is low due to different experimental designs, protocols, population structures, systematic 
errors, etc.64. However, this also suggests that new experiments are still desired to achieve deep understanding 
of the genetic mechanisms for body weight and obesity. A combination of DE analysis and a variety of network 
analyses were not performed previously, so this study has provided many new insights.

Genes and protein interactions identified through IPA and STRING also contributed to the investigation of 
the role of these genes in gene networks and biological processes. Genes and protein networks within the “black” 
module were involved in cellular regulatory processes, and many were associated with tumor formation and mul-
tiple forms of cancer. Further supporting previously identified sub-networks of genes associated with cancer and 
cellular proliferation through network modelling65. Genes in the lightcyan module were associated with cellular 
and tissue structure, cancer, and cardiovascular biological processes. This suggests that BMI-associated genes 
closely interact in gene networks that are involved in the pathologic pathways of comorbid conditions (i.e., can-
cer and cardiovascular disease) that have been linked to obesity. These data are in line with previously discussed 
functions of differentially expressed genes in overweight/obese individuals. Further research should determine 
the relationship, directionality, and interaction of these obesity-related genes with cardiovascular disease and 
cancer-related genes.

Hybrid approaches that incorporate both genetic expression and enrichment analyses offer further insight 
into the functional significance of genes within complex biological pathways. Previous studies implemented lim-
ited analysis approaches. Based on differential expression and enrichment analyses, we found that the expression 
of seven genes was significantly correlated with body weight, some of which were previously reported in another 
study14. In addition, another study found that “ribosome,” “apoptosis,” and “oxidative phosphorylation” pathways 
were associated with obesity and were identified as pathway-specific predictors for obesity66.

Hybrid approaches with more advanced enrichment analyses provide a more complete understanding of the 
functional significance of genes. A recent study by implemented hybrid approaches using differential expression 
and enrichment analyses13 reported 32 genes and 3 pathways associated with BMI. They emphasized enrichment 
of NF-kappa B pathways in the 32 DE genes. However, only 2 (6.3%) DE genes were related to NF-kappa B path-
ways, and therefore the role of NF-kappa B pathways is not fully understood. Using WGCNA analysis, they iden-
tified a module of 68 genes associated with BMI. Those genes were thought to be related to a variety of biological 
processes, while each biological process contained only two or three genes (≤4.4%).

In the current study, we incorporated a robust hybrid method that identified more relationships between 
genes and their function within catabolic processes. We found that up to 43 (27.4%) of the 157 genes in the 
“black” module were related to catabolic processes (compared to ≤4.4% found by Wang et al.13. Thus, our study 
offers a more complete understanding of the functional role of differentially expressed genes in metabolic pro-
cesses. Since it is well established that metabolic processes play a role in increased weight and obesity10,67,68, this 
information is key in identifying potential contributors to overweight and obese phenotypes.

In this study, we demonstrated that complex high-order gene interactions could also play a role in the genetic 
mechanisms underlying overweight and obese phenotypes. To our knowledge, this is the first paper to show 
high-order gene interactions in overweight and obese phenotypes. With improvement of computation capac-
ity and development of intelligent approaches, high-order interactions will be investigated more frequently and 
successfully, providing new avenues toward fully understanding the genetics of increased weight and obesity. 
Although, a comprehensive analysis of microarray data was conducted in this study, gene expression is only one 
layer of genetic information. We previously showed that the combination of gene expression and SNP data could 

Figure 6.  Visualization of a 3-way gene interaction underlying the microarray data. “.” represents 
downregulation of gene X whereas “+” represents upregulation of gene X. Clusters tend to be filled with the 
same status of gene X, and thus, an optimal synergy is achieved. The gene X shows differential expression 
between downregulation and upregulation statuses.
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generate relatively better outcomes for predicting BMI16. Thus, future studies should integrate multiple layers of 
genetic and epigenetic data to better understand the role of genes and environmental factors in predicting risk for 
increased weight and obesity.

Future research should also re-examine gene co-expression of BMI-related genes across different tissues. In 
the current study, blood was collected to extract gene expression data. Although studies suggest there is com-
parability of genomic information derived from blood samples compared to other tissues, the correspondence 
between peripheral blood and tissues of interest is not fully understood69,70. A recent review of gene-expression 
across obesity relevant tissues found diverse BMI-related genes across tissues and tissue specific patterns70. Thus, 
studies utilizing animal tissue and human tissue (from existing tissue banks) are needed to examine the gene 
co-expression patterns identified in this study across other metabolic and obesity-related tissues. This would offer 
a more complete understanding of the functional role of genes and may help identify target tissues to study and 
treat obesity.

Conclusions
In this study, we integrated gene expression and clinical data of 90 healthy individuals to investigate the genetic 
mechanisms of overweight and obesity. A variety of computational approaches were applied to generate compre-
hensive and systematic gene expression insights into human weight. We identified seven differentially expressed 
genes associated with BMI. Using WGCNA, we found two modules significantly associated with BMI. The two 
modules displayed different connectivity and functional significance features and were frequently regulated by 
zinc finger family transcription factors. The major module was enriched for catabolic genes, which is consistent 
with other studies highlighting the roles of metabolic genes in the etiology of overweight and obesity. We also 
profiled the genes switching hub status between normal and overweight individuals, as well as three-way gene 
interactions associated with weight status. Our analyses have generated comprehensive and systematic insights 
into gene expression mechanisms underlying BMI and have highlighted complex high-order interactions that 
should be further explored in in future studies.

Data Availability
Dataset available in supplement. Additional data available upon request from senior author hendersw@mail.nih.
gov upon request.
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