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Multi-Modal Haptic Feedback for 
Grip Force Reduction in Robotic 
Surgery
Ahmad Abiri   1,2, Jake Pensa1,2, Anna Tao1, Ji Ma2, Yen-Yi Juo3, Syed J. Askari1,2, James Bisley   4, 
Jacob Rosen2, Erik P. Dutson1,3 & Warren S. Grundfest1,2

Minimally invasive robotic surgery allows for many advantages over traditional surgical procedures, but 
the loss of force feedback combined with a potential for strong grasping forces can result in excessive 
tissue damage. Single modality haptic feedback systems have been designed and tested in an attempt 
to diminish grasping forces, but the results still fall short of natural performance. A multi-modal 
pneumatic feedback system was designed to allow for tactile, kinesthetic, and vibrotactile feedback, 
with the aims of more closely imitating natural touch and further improving the effectiveness of HFS in 
robotic surgical applications and tasks such as tissue grasping and manipulation. Testing of the multi-
modal system yielded very promising results with an average force reduction of nearly 50% between 
the no feedback and hybrid (tactile and kinesthetic) trials (p < 1.0E-16). The multi-modal system 
demonstrated an increased reduction over single modality feedback solutions and indicated that the 
system can help users achieve average grip forces closer to those normally possible with the human 
hand.

Since the introduction of the first robotic surgical systems in 1985, the field of surgical robotics has gone through 
many changes with newer systems demonstrating increased ease of operations as well as decreased operative 
times compared with typical laparoscopic surgery1. Benefits of robotic surgery over conventional laparoscopic 
surgery include motion scaling for finer motion control, stereoscopic vision, increased dexterity, and additional 
degrees of freedom in motion2–6. However, these benefits have also come at a cost. Compared to conventional 
open surgery and even laparoscopic surgery, robotic procedures suffer from a complete loss of haptic feedback. 
The loss of haptic feedback coupled with the inherent ability of robotic surgical systems to apply strong compres-
sive and shear forces, have led to increased risk of tissue damage, reduced performance, and increased number of 
mistakes7–10. Ultimately, these risks translate to clinical outcomes, meaning, greater tissue damage, more pain, and 
longer recovery times for the patient11–14. As robotic surgery gains popularity, it becomes imperative that haptic 
feedback systems (HFS) become a standard feature of commercially available surgical robotic systems.

In the past decade, there have been significant changes to the field of haptics and numerous haptic feedback 
solutions have been investigated for surgical robotics13,15–19. More primitive force feedback implementations have 
been included as part of some of the more modern surgical robotic systems17,20. Kinesthetic force feedback (KFF) 
has been perhaps the most comprehensively researched area of haptics21–25 because of its relative ease of integra-
tion with the master controls of surgical robots. However, haptics is not limited to kinesthetic force feedback. In 
fact, the sense of touch in humans involves the synergistic activation of mechanoreceptors both in the skin (i.e. 
tactile feedback) and in the muscles (i.e. kinesthetic force feedback)23. Some research groups have focused on 
tactile feedback as an alternative to force feedback, targeting activation of mechanoreceptors in the fingertips 
through pneumatic tactile feedback26 and/or vibrotactile feedback27–29. Studies have shown that these feedback 
solutions can significantly impact the performance of surgeons during the procedure30–32 and reduce tissue dam-
age10,12,16,33. More recently, some systems have attempted development of multi-modal HFS by coupling thermal 
feedback with tactile feedback34,35. However, no significant investigations have been conducted to evaluate impact 
of such solutions in MIS applications.
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Despite extensive research in the field of haptics, current feedback technologies are far from replicating the 
natural sense of touch that a surgeon receives in conventional open and even laparoscopic surgery. One reason 
for this is that none of these systems attempted to restore the synergistic behavior that takes place when various 
mechanoreceptors in the skin and muscles simultaneously become activated in real touch. In fact, nearly all 
haptic feedback systems have targeted only a single modality of feedback. The perception of feedback is therefore 
hindered because the brain does not receive signals from all the sensory pathways normally involved in the sense 
of touch.

A multi-modal haptic feedback system refers to a HFS that seeks to sense and convey more than one aspect 
of touch. By targeting multiple classes of mechanoreceptors in the skin and muscles, and conveying both tac-
tile and proprioceptive information, multi-modal HFS engenders the promise of a more natural and complete 
HFS, one that hopes to bring haptics one step closer to real touch. Due to the engineering challenges that arise 
from attempting to integrate multiple sensing and feedback modalities while still maintaining small footprints 
necessary for application in surgery, multi-modal HFS has not been extensively studied. In more recent years, 
some attempts have been made on the development of bi-modal haptic feedback systems for surgical applica-
tions15,33,36–38, however, conclusive outcomes have not yet been achieved.

The use of haptic feedback for reduction of tissue damage in robotic tasks involving average forces generated 
during grasping and manipulation of soft tissue has previously been extensively studied26. Despite evidence that 
both tactile and kinesthetic feedback are effective at reducing forces applied to the tissue12,39–41, the effects of 
combining both tactile and kinesthetic feedback into one system have not been evaluated11. We hypothesize that 
a multi-modal HFS, which can target both mechanoreceptors in the skin and the muscles and provide simultane-
ous tactile and kinesthetic force feedback, can be more effective in reducing excessive grip forces during robotic 
surgical tasks.

Results
The goal of haptic feedback systems is to restore the sense of touch available when performing tasks with human 
hands. Figure 1 shows the results of a benchmark study, in which the average grip force when 6 subjects per-
formed two-handed peg-transfers with their own hands, was compared to when 15 subjects performed the task 
without any feedback on the da Vinci robot (data from Fig. 2A). These data showed that average grip force when 
performing a peg-transfer with a human hand was a mere 0.88N with a standard deviation of 0.15N. On the other 
hand, the same task performed using the da Vinci system without HFS, resulted in grip forces averaging 2.78N 
(std. dev. 0.96N).

Bi-Modal Pneumatic Kinesthetic-Tactile HFS.  The results from the experiments conducted using the 
pneumatic variation of the kinesthetic force feedback system show (Fig. 2A) that the average grip force is sig-
nificantly lower (ANOVA42, p-value (p) = 2.4E-9, Degrees of freedom (Df) = 3, F-statistic (F) = 24.59) when 
feedback is provided. Compared to the no feedback condition, average forces were lower when tactile feedback 
(Tukey43, p = 0.017), kinesthetic feedback (Tukey43, p = 1.66E-6) or hybrid feedback (Tukey43, p < 1.0E-16) are 
provided. The bi-modal kinesthetic-tactile HFS also performs better than both tactile-only (Tukey43, p = 5.64E-8) 
and kinesthetic-only (Tukey43, p = 0.0027) feedback conditions.

With regards to the peak grip force, significant difference was also observed between the groups (ANOVA42, 
p = 0.0007, Df = 3, F = 6.876). While no significant improvement can be seen between the tactile feedback and the 
No Feedback condition, both kinesthetic (Tukey43, p = 0.0008) and hybrid HFS (Tukey43, p = 0.0001) conditions 
display a significant reduction in peak grip force compared to when no feedback was present.

Figure 1.  Comparison of Average Grip Force during a peg-transfer task. Task performed using human hands 
and when performed using da Vinci robotic surgical system without HFS: (A) Data from a 6-subject two-
handed peg transfer performed using human hands is compared against data from the no feedback trial in the 
hybrid HFS study (Figs 2A and 3). (B) Two-handed peg transfer using the da Vinci IS1200 robotic surgical 
system. (C) Two-handed peg-transfer performed using human hands with force sensors installed on one finger.
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Figure 2.  Evaluation of performance under different feedback conditions. (A) Comparison of Average Grip-
Force, Peak Grip Force, and Number of Faults under different feedback conditions when utilizing the da Vinci 
IS1200 for peg transfer tasks. (B) Comparison of Average Grip Force and Peak Grip Force between No Feedback 
and Kinesthetic-Tactile Feedback condition during a porcine bowel run in novice subjects. Pie chart showing 
the inter-subject variation in this study. (C) Comparison of Average Grip Force and Peak Grip Force between 
No Feedback and Kinesthetic-Tactile Feedback condition during a porcine bowel run in expert subjects. Pie 
chart showing the inter-subject variation in this study.

Figure 3.  Comparison of Average and Peak Grip Force in a peg transfer study using Bi-Modal and Tri-Modal 
HFS. The average (and std. dev.) grip force for peg-transfer using human hands (from Fig. 1A) can be seen in 
green.
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The number of faults (Fig. 2A), i.e. the number of times the subject dropped the peg, appears to be significantly 
different among the groups as well (ANOVA42, p = 0.005, Df = 3, Chi-Square Statistic (χ2) = 12.702). While there 
are no significant differences between no feedback and the feedback conditions, a higher number of faults is 
observed when hybrid HFS was activated, compared to the tactile feedback group (Tukey43, p = 0.012).

The results from the peg transfer studies show the clear benefits of providing haptic feedback in reducing grip 
force. All feedback modalities performed significantly better than the no feedback condition. Most importantly, 
there is also a clear indication that the multi-modal kinesthetic-tactile feedback system is significantly better than 
both single-modality feedback solutions, benefiting from the synergistic relationship from the activation of mech-
anoreceptors in the skin and muscle. This leads to a more natural sense of touch, allowing the subjects utilizing 
multi-modal HFS to apply forces nearly 50% less than when no feedback is provided.

Ex-Vivo Evaluation of Bi-Modal Kinesthetic-Tactile HFS.  The ex-vivo bowel run experiments were 
designed with the goal of allowing comparison against the single modality tactile feedback system demonstrated 
in our previous work26. The results of the ex-vivo study in novice subjects (Fig. 2B) show a significant reduction in 
average grip force (T-test44, p = 0.00025, Df = 9, T-Statistic (T) = 5.827) and peak grip force (T-test, p = 0.00024, 
Df = 9, T = 5.861) in the hand that received feedback from the bi-modal HFS.

Looking at the inter-subject variation (Fig. 2B), it can be clearly seen that with regards to both average and 
peak grip-force, nearly all novice subjects benefited from the presence of the bi-modal kinesthetic-tactile HFS. 
These results clearly highlight the advantage of the newly developed multi-modal HFS over the traditional 
single-modality implementations26. While these previous studies showed large inter-subject variation and lim-
ited conclusive evidence as to the benefits of tactile feedback, the results of the ex-vivo bowel run (Fig. 2B) clearly 
indicate the consistent benefits provided by the multi-modal HFS.26. While these previous studies showed large 
inter-subject variation and limited conclusive evidence as to the benefits of tactile feedback, the results of the 
ex-vivo bowel run (B) clearly indicate the consistent benefits provided by the multi-modal HFS.

In expert surgeons, the same trend followed (Fig. 2C) with the hand receiving feedback showing a significant 
reduction in average grip force (Wilcoxon45, p = 0.0234, V = 2). No significant difference was observed in peak 
grip force (T-test44, p = 0.677, Df = 7, T = 0.434) and the number of faults for expert surgeons. Looking at the 
inter-subject variation, most subjects benefited from the presence of HFS, though the impact was less apparent 
than in novices.

The effectiveness of the bi-modal kinesthetic-tactile HFS warranted further study of the multi-modal HFS, 
utilizing vibration to help reduce excessive peak grip forces.

Tri-Modal HFS.  The results of the study based on the tri-modal HFS show (Fig. 3) a significant reduction 
in average grip force when the tri-modal HFS is used compared to the bi-modal kinesthetic-tactile feedback for 
novice subjects using the da Vinci surgical system (T-test44, p = 0.00039, Df = 9, T = 5.473). The same pattern 
followed with the peak grip force where the tri-modal feedback system showed a lower peak grip force com-
pared to the bi-modal HFS (T-test44, p = 0.0049, Df = 9, T = 3.702). Figure 3 also shows the average grip force for 
peg-transfers using human hands (data from Fig. 1A) in green overlaid on top of the data for this study as a point 
of comparison.

Discussions
Robotic surgical systems have long suffered from a lack of comprehensive haptic feedback solutions and this lim-
itation has had significant impact on the adoption of surgical robots and in clinical outcomes7–10,14,16. Research in 
areas of haptic feedback for surgical robotics has been abundant, with recent implementations of single-modality 
feedback solutions showing improvements in outcomes of robotic tasks7,10. This investigation aimed to expand 
beyond single modality feedback technologies and study the potential benefits of a multi-modal feedback solution 
over traditional uni-modal haptic feedback systems.

The results of the experiments using the multi-modal HFS clearly highlight the benefit of multi-modal feed-
back over single modality feedback solutions. The observed improvements confirm that great benefits can be 
gained by targeting multiple mechanoreceptors in the skin and muscles simultaneously. This synergistic activa-
tion leads to a more natural sense of touch, allowing subjects to perform the task with forces nearly 50% lower 
than when no feedback is present (Fig. 2A).

An interesting observation from the study that is worth discussing is the larger number of faults (i.e. peg 
drops) in the bi-modal HFS compared to the tactile-only condition (p = 0.012). Based on the large standard 
error mean, it is clear that there is also significant variation among subjects. The reason for this variation is in fact 
due to the way the pneumatic kinesthetic feedback functions. The high pressures used for higher feedback levels 
makes compressing the grasper at the surgeon’s console quite challenging due to increased resistance. When this 
resistance is coupled with a high tactile feedback level, it appears to result in the subject suddenly relaxing their 
hold on the graspers, and consequently often dropping the peg. This variation is more of a learned behavior most 
likely caused by a lack of experience with the feedback system. Even though training with the haptic feedback 
system can eventually eliminate this behavior (as we observed in a series of follow up bench tests), the correct way 
to ultimately deal with this issue is to develop an adaptable feedback system. Such a feedback system could learn 
from the user’s behavior and automatically lower the pressure levels to help reduce grasper resistance and hence 
the number of peg drops.

Beyond the peg-transfer experiments, the results of the ex-vivo studies help to highlight the benefits of 
multi-modal HFS in more life-like surgical conditions. As expected, the bi-modal HFS reduced applied grip force 
in both novices and experts. However, the results also showed that such a feedback system can have a much more 
significant impact on the less experienced novices. In fact, novices significantly benefited from the presence of 
feedback with regards to the applied peak grip force. On the other hand, for surgeons, the applied peak grip force 
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was approximately 4N, with or without feedback. That is on par with the peak grip force in novices after feedback 
was provided. These results help highlight the importance of training and how expert robotic surgeons have 
learned to compensate for the lack of feedback through the use of visual cues and overall experience. Although 
experienced surgeons did not reduce peak grip force when receiving feedback, the reduction in average grip force 
is indicative of their extensive training in robotic surgery. The improvement solely in average grip force and not 
peak grip force for experienced surgeons reflects their prior training in reducing applied forces and completion of 
tasks using solely visual cues. Whereas novice subjects lacking extensive experience with robotic systems, lack the 
proper skills to complete surgical tasks with or without feedback, resulting in the greater room for improvement 
in average grip force and peak grip force. Having said that, the average grip force data for expert surgeons under 
the no feedback conditions show that there is still room for improvement. That is, even for experienced surgeons, 
the applied average and peak forces without HFS are still high enough to induce tissue damage, as prior studies 
found that average forces as low as 1.25N are able to induce sites of tissue damage with number of sites increasing 
with greater applied force46, making the multi-modal HFS valuable even for expert robotic surgeons due to the 
evidence of average force reduction.

Even with the bi-modal kinesthetic-tactile HFS, peak grip forces which lead to significant tissue damage 
remain an issue. The underlying issues are the lack of training and the initial grasping action from novices that 
involves completely closing the console’s grasper with maximal force. While additional training can help reduce 
these peak forces, an alternative approach was to utilize vibrotactile feedback as a warning system which quickly 
activates a negative feedback response in the brain. The results clearly show that tri-modal HFS performs even 
more effectively than bi-modal HFS. This further confirms the initial hypothesis that controlled recruitment of 
additional mechanoreceptors can lead to further improvements in effectiveness of HFS.

The overlaid data from the peg-transfers performed by human hands also tells an interesting story (Fig. 3). 
While the sensors installed on one finger may have slightly hindered the subject’s sense of touch, the data 
still served as a good first level benchmark for average grip force. These data clearly highlight how close the 
multi-modal haptic feedback system has come to achieving what may be considered the ideal grip force. Of 
course, peak grip forces are still significantly higher, even with the haptic feedback system, showing that there is 
room for further investigation and optimization of multi-modal HFS in robotic surgery.

Materials and Methods
Multi-Modal HFS System Architecture.  The multi-modal HFS architecture was designed to allow sig-
nificant flexibility in the way sensor data could be mapped to activation of feedback actuators. The goal was to 
develop a low latency HFS that could be easily reconfigured for application in various robotic surgical tasks with-
out requiring any reprogramming or redesign of the sensor boards and/or control boards. An overview of this 
system architecture can be seen in Fig. 4.

In this design, a software engine (i.e. Haptics Manager) is developed using C# and the Net framework for 
use as the central processing unit in the multi-modal HFS (see Supplemental Materials Section A). The sensor 
board and control board functionalities are thereby simplified. The sensor board (Fig. 4B) would thus be respon-
sible only for transmitting raw sensor data to the Haptics Manager software, using a ESP8266 WiFi module 
programmed for UART-to-TCP passthrough data transmission. The control board also relies on the same com-
munication modality for receiving control packets from the Haptics Manager software. All logic and control 
decisions are made in the Haptic Manager software. The software handles filtering of sensor data, deciding what 
actuation modality and level setting should be invoked in response to the current sensor values. A control packet 
is then created with the target actuation levels and sent to the control board which activates the appropriate feed-
back modality at the actuators mounted to the console graspers.

Force Sensing.  Because of the small size of incisions in Minimally Invasive Surgery, robotic and laparoscopic 
instruments are generally designed to be able to move through trocars with diameters less than 12 mm. This 
means that any sensor that is designed to be installed on either the end effector or on the shaft of the tool must be 
significantly smaller than 12 mm wide (Fig. 4A). Furthermore, the range of forces applied by different instruments 
can vary significantly, from 0–5N for instruments such as the da Vinci Cadiere forceps to more than 20N for the 
da Vinci Prograsp forceps. To meet the necessary requirements, normal force sensing is achieved through com-
mercially available Tekscan FlexiForce piezoresistive sensors.

Tactile Feedback.  Two types of tactile feedback modalities are investigated for targeting mechanoreceptors 
in the skin of the fingertips. Normal force pneumatic tactile feedback was provided using a multiplexed, 5-level 
solenoid valve array. Controlling the activation of each solenoid valve using analog switches allows for 5 distinct 
pressure outputs to actuators in contact with the operator’s fingertips. This technology has previously been dis-
cussed in the literature and evaluated as an effective method for reducing grip forces in robotic surgery26. An 
alternative, depressed-membrane feedback actuator design was used to reduce the impact of sensory adaptation31 
and allow for installation of vibration motors which provide vibrotactile feedback (Fig. 4D)31.

Kinesthetic Force Feedback.  Kinesthesia and proprioception are often interchangeably used in the lit-
erature to refer to the awareness of the position and movement of the limbs and the muscles. Proprioception is 
more strongly linked to the feedback mechanisms within the neuromuscular system, as it involves the process of 
sending information about the movement of the body to the brain in order to make proper adjustments to muscle 
movements. Proprioceptive Feedback, or as it is more commonly known, Kinesthetic Force Feedback (KFF), is 
therefore designed to trigger activation of mechanoreceptors in the muscles, particularly the Golgi tendon organ 
(GTO). The GTO is responsible for measuring tension in the muscles and sending this sensory information to the 
brain to help create a sense of resistance50.

https://doi.org/10.1038/s41598-019-40821-1


6Scientific Reports |          (2019) 9:5016  | https://doi.org/10.1038/s41598-019-40821-1

www.nature.com/scientificreportswww.nature.com/scientificreports/

Conventional implementations of KFF often rely on motors installed on the joints of the robotic controls to 
provide feedback. This approach, particularly for grasping applications, can be susceptible to a jerking phenome-
non which results from the interaction of KFF with human reflex responses (see Supplemental Materials Section B).  
A pneumatic kinesthetic force feedback system was developed as an alternative, aiming to provide a more natural 
sense of kinesthesia. This solution relied on the placement of a pneumatic tube between the graspers of the master 
console.

The increase in air pressure (0–19 PSI) inside the tube would lead to constriction of the grasper’s ability to 
close, hence resisting the grasping action. The higher the pressure inside the tube, the more the grasper would 
resist being closed, indicative of stronger kinesthetic feedback.

One of the disadvantages of the motor-based kinesthetic feedback design is its dependency on modifications 
to the robotic console. The pneumatic feedback was instead designed as an add-on solution with compatibility 
in mind. The 3D printed pneumatic actuators, which already supported vibration feedback, were modified even 
further to allow installation of the kinesthetic feedback system directly on the same actuator (Fig. 4F).

In order to control the air pressure for this kinesthetic feedback system, it was necessary to investigate an alter-
native pressure regulation system compared to the one in use for the normal force tactile feedback. The reason for 
this change from the quantized levels of our previous tactile feedback system46 was the lack of scalability. With the 
utilization of the multiplexed solenoid valve array, each additional pressure level, for each actuator, required one 
additional solenoid valve. For this reason, providing a pressure control system that would simulate continuous 
pressure regulation would require an extremely large number of solenoid valves, a design which, due to cost and 
complexity of the system, would not be practical. A more compact pressure regulation system with a high number 
of pressure levels (i.e. simulating continuous pressure regulation), was critical for two reasons: (1) large pressure 
changes can reduce user performance, particularly in a kinesthetic feedback where sudden changes in feedback 
can result in the user dropping the peg, and (2) a user-based, adaptive feedback requires pressure levels to be 
variable and changeable electronically.

Previous research had investigated the possibility of utilizing electro-pneumatic pressure regulators. However, 
these systems generally have slow response times and produce significant vibration during pressure changes46. 
To resolve these issues, a dual-valve continuous pressure regulation system was developed that would provide 
continuous pressure regulation with low latency.

The dual-valve pressure regulation technology relied on an Asco Sentronic D electro-pneumatic valve placed 
in series with a SMC solenoid valve. The Sentronic D valve utilizes a direct acting proportional coil to control out-
put pressure. The benefit of this type of electro-pneumatic valve is its stable pressure output. The stable response, 
however, comes at the expense of system response times. System response time can be reduced, but reducing the 

Figure 4.  Multi-Modal HFS system architecture, Average component delays marked in milliseconds. (A) 
Sensors mounted on da Vinci instruments. Da Vinci Cadiere grasper measuring 5 mm × 14 mm shown on the 
left. Cadiere graspers with pressure sensors installed on the top right and 12 mm Trocar47–49 on the bottom 
right. (B) Sensor board. (C) Haptics Manager Software Architecture. (D) CAD model of 3D-printed depressed 
membrane tactile actuator and the tactile feedback actuator mounted on da Vinci controls. (E) Multi-Modal 
HFS Control hardware. (F) Dual-Valve pressure regulation system for use with the modified 3D-printed 
actuators (w/pneumatic tube for providing kinesthetic force feedback).
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response time comes at the expense of large pressure overshoots when pressure levels are being changed. The 
Sentronic D’s output pressure is controlled by providing a voltage of 0–10 V to its analog control pin.

This large pressure overshoot could not be allowed to reach the pneumatic tubing. To resolve this issue, a 
dual-input solenoid valve was placed in series after the Sentronic D valve (Fig. 4F). The solenoid valve, when in 
the off position, would allow air flow from the first input to its output. When turned on, the solenoid valve would 
allow air flow from the second input to its output. The haptic feedback controller was then programmed to change 
the solenoid valve to its on position right before changing the pressure of the Sentronic D valve. By feeding the 
output of the solenoid valve back to its second input port, the system would maintain the output pressure until 
the Sentronic D’s output pressure had stabilized. At that time, the solenoid valve would be turned off, and the new 
pressure would flow to the actuators.

The Sentronic D valve has a built-in controller which can be programmed using Asco’s data acquisition soft-
ware. By modifying various control parameters of the valve, a stable pressure output was achieved while also 
reducing the total response time of the dual-value system to <70 ms (Average: 65 ms, Std. Dev.: 7.5 ms, Max: 
67 ms, Min: 50 ms).

Grip-Force Reduction Studies: Experimental Methods for Evaluation of Hybrid HFS.  All meth-
ods were previously approved by the Institutional Review Board at UCLA and carried out in accordance with 
relevant university guidelines and regulations. Per approved IRB protocol, informed consent was obtained from 
all subjects.

Evaluation of Bi-Modal Pneumatic Kinesthetic-Tactile HFS.  These experiments targeted the eval-
uation of a hybrid kinesthetic-tactile HFS using the pneumatic implementation of KFF on the da Vinci IS 1200 
surgical system. The control system for the pneumatic kinesthetic-tactile hybrid HFS was implemented by con-
figuring the logic engine of the Haptics Manager software to utilize the dual-value continuous pressure regulators 
as a means of changing the pressure in the pneumatic tube responsible for providing kinesthetic force feedback 
(Fig. 5A).

A total of 15 novice subjects with little to no experience with robotic surgery were recruited to perform single 
handed peg-transfer tasks using a da Vinci IS1200 surgical system. Subjects were given a 2-minute training period 
prior to the start of the study to familiarize themselves with the robotic system. This training period was sufficient 
in most cases since the use of clutch, camera and most other complex da Vinci operations were not allowed. In 
order to eliminate any bias toward either hand, nearly half (7) of the subjects received feedback on the right hand 
while the remaining subjects (8) received feedback on the left hand. All subjects were right handed. Each subject 
was asked to perform four peg transfers per trial. To eliminate any bias towards the position in which pegs may be 
dropped, if the subject dropped the peg, the proctor would quickly reset the peg to its original position.

For this study, a FlexiForce A201 sensor was installed on da Vinci Fenestrated Bipolar forceps. Each subject 
performed the peg transfer tasks four separate times as part of four trials, with each trial performed under dif-
ferent feedback conditions: (1) No Feedback (2) Normal Force Tactile Feedback (3) Pneumatic Kinesthetic Force 
Feedback (4) Hybrid Kinesthetic-Tactile Feedback.

During the trial, the number of faults (i.e. number of times the subject dropped the peg), time-to-completion, 
and the grip force were recorded. Statistical analysis of average grip force was performed using Repeated Measures 
ANOVA42 after a Log2 transform was used to meet the normality assumption. Repeated Measures ANOVA42 was 
also used for analysis of peak grip force. Statistical analysis of the number of faults was conducted using Ordinal 
Repeated Measures ANOVA. Follow up post-hoc analysis using Tukey correction43 were performed when p-value 
was less than 0.05.

Figure 5.  Grip Force reduction studies. (A) Control System for a Bi-Modal Pneumatic Kinesthetic Tactile HFS. 
(B) HFS Ex-Vivo porcine large intestine handled using da Vinci IS1200 Cadiere forceps. (C) Control system for 
a Tri-Modal HFS.
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Ex-Vivo Evaluation of Bi-Modal Kinesthetic-Tactile HFS.  In order to evaluate the bi-modal 
kinesthetic-tactile HFS under conditions more representative of real-world surgical applications, an ex-vivo study 
was designed. Previous in-vivo work on tactile feedback systems have shown that there is a clear correlation 
between applied grip force and the number of damaged tissue sites46. Since the correlation of applied grip force 
with tissue damage already exists, it is therefore possible to rely on ex-vivo experiments for evaluation of the 
kinesthetic-tactile HFS.

These experiments relied on the same control system as the previous pneumatic kinesthetic-tactile HFS. 
FlexiForce A201 sensors were installed on two da Vinci Cadiere forceps. Feedback actuators were installed on 
both left and right controls of the da Vinci system console. Only one hand however received feedback throughout 
the trial. This experimental design choice allowed one hand to act as a control for the other. To eliminate any bias 
toward either hand, half of the subjects performed the task with feedback on one hand and half with feedback on 
the other.

Subjects were asked to run a porcine bowel, approximately 30 cm in length (Fig. 5B). Each subject performed 
the task only once. For this investigation, two groups of subjects were recruited. The first study was performed by 
recruiting 10 novice subjects with little to no experience with robotic surgery. The second group of subjects were 
expert robotic surgeons recruited from Ronald Reagan Hospital at the University of California, Los Angeles. A 
total of 8 expert surgeons were recruited for participation in this study.

For all subjects, applied grip force was recorded throughout the study. For expert subjects, the number of times 
the surgeon dropped the tissue with either hand was also recorded to determine any impact of the hybrid HFS on 
proper handling of the tissue. This parameter (number of faults) was not recorded and analyzed for novices. This 
experimental design choice was made because of the difficulty that many novice subjects experienced picking up 
and handling the bowel tissue. This lack of experience and the non-homogeneity of the tissue made this param-
eter too variable in novices to be valuable without requiring a very large number of subjects to be recruited. For 
novice subjects, the study controlled for utilization of the clutch30 by prohibiting subjects from using the clutch 
operation on the da Vinci. The proctor instead adjusted the controls such that no visual-perceptual mismatch51 
was present and subjects could perform the tasks without requiring access to the clutch and camera operations.

Statistical analysis for any one of the measured metrics (ex. force, faults, etc.) was performed using a standard 
student’s paired t-test44 when normality assumption was met, and a non-parametric, paired Wilcoxon Signed 
Rank test45 when the data were not normally distributed.

Evaluation of a Tri-Modal HFS.  A tri-modal haptic feedback system was utilized to provide a third modal-
ity of feedback when applied forces moved beyond a certain threshold. Building upon previous understanding 
of the effectiveness of vibrotactile feedback as a warning system30, these experiments aimed to determine the 
potential benefits of a tri-modal HFS over the previously tested bi-modal kinesthetic-tactile feedback system in 
reducing average and peak grip forces in robotic minimally invasive surgery tasks.

The control system for a tri-modal feedback system was implemented by configuring the logic engine of the 
Haptics Manager software (Fig. 5C).

A total of 10 subjects were recruited to perform a two-handed peg transfer task using a da Vinci IS1200 sur-
gical system. Two Cadiere forceps were installed with FlexiForce A201 normal force sensors. Subjects received 
bi-modal kinesthetic-tactile feedback on one hand and tri-modal feedback on the other. The tri-modal feedback 
rules were the same as the bi-modal ones with the difference that vibration feedback was provided beyond level 
3 of normal force tactile feedback (2N). A more intense vibration was provided beyond level 4 of normal force 
feedback (3N). To eliminate bias towards either hand, the hand receiving tri-modal feedback was switched for 
half of the subjects.

For all subjects, the study controlled for utilization of the clutch by prohibiting subjects from using the clutch 
operation on the da Vinci. The proctor instead adjusted the controls such that no visual-perceptual mismatch was 
present and subjects could perform the tasks without requiring access to the clutch operation.

Subjects were asked to perform four peg transfers. In each transfer, the subject would pick up the peg on one 
side of the field with the arm closest to the peg, pass it to the other arm, and then place it back down on the other 
side of the field. The applied grip force and the number of peg drops with each hand was recorded throughout the 
trial. Statistical analysis was performed using a standard Student’s paired t-test44 when normality assumption was 
met and a Wilcoxon Signed Rank test45 when the data were not normally distributed.

To allow a qualitative comparison of the system with the normal sensory feedback system of the human hand, 
6 subjects were asked to perform the same peg-transfer with their own hands (thumb and index finger only) 
with the sensors used in the study installed on their index fingers. The force values during 10 consecutive peg 
two-handed peg transfers were used to calculate the average grip force when performing this task using normal 
human senses.
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