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Body-limb coordination mechanism 
underlying speed-dependent gait 
transitions in sea roaches
Takeshi Kano, Yoshihito Ikeshita, Akira Fukuhara & Akio Ishiguro

The sea roach is an isopod with 14 legs; owing to its many degrees of freedom and coordination thereof, 
it can walk rapidly on rough terrain. Although there likely exists a remarkable decentralized control 
mechanism that facilitates fast and adaptive locomotion of sea roaches, it still remains elusive. To 
address this issue, we performed behavioural experiments and revealed that sea roaches often change 
their gait patterns depending on the locomotion speed. We suggest that the bending of the body 
trunk in the pitch direction is essential for the gait transitions, and we propose a decentralized control 
mechanism for body-limb coordination. We demonstrate this with a sea-roach-like robot whose gait 
transition is achieved by the proposed mechanism. This mechanism has some points in common with 
control mechanisms proposed for other legged animals. Thus, our findings will help unveil the common 
principle of legged locomotion and aid the design of multi-legged robots that move like animals.

The sea roach has attracted considerable research attention because first, it exhibits astoundingly agile locomo-
tion while adapting to unstructured environments in real time; it can walk distances of more than 10 times its 
body length per second (see Results Section). Second, studying sea roaches, which have 14 legs, helps understand 
how control mechanisms of animals with a small number of legs (e.g., quadrupeds and hexapods) are related to 
those with a larger number of legs (e.g., myriapods) and helps to elucidate a common principle underlying legged 
locomotion. Thus, understanding the control mechanism of locomotion in sea roaches will provide a basis for 
establishing a systematic design method for multi-legged robots that can move fast and adapt their locomotion 
to various environments.

Autonomous decentralized control is likely a key concept for understanding the fast and adaptive nature of 
locomotion in sea roaches. In fact, results of several studies indicate that animal locomotion is based on auton-
omous decentralized control mechanisms, such as biochemical oscillators in true slime molds1 or distributed 
neural networks termed central pattern generators (CPGs) in numerous animals2,3. Moreover, the neural network 
structure of sea roaches4 is similar to that of insects and myriapods5. However, the core of a decentralized control 
mechanism of locomotion in sea roaches is still largely unclear.

In this study, we report a novel behavioural finding that provides important insights in the decentralized 
control mechanism of locomotion in sea roaches. Specifically, we found that sea roaches frequently change their 
gait patterns depending on the locomotion speed. Speed-dependent gait transition phenomena are well known 
in other legged animals such as quadrupeds6 and hexapods7, yet in the case of sea roaches, it has been unclear 
whether gait patterns depend on locomotion speed8,9.

Furthermore, we explored the essential decentralized control mechanism for speed-dependent gait transition 
in sea roaches using a synthetic approach10–12. Assuming that this gait transition is caused by pitch bending of 
the body trunk, we propose a decentralized control model based on body-limb coordination. We developed a 
sea-roach-like robot to reproduce speed-dependent gait transitions using the proposed control mechanism. We 
also discuss the similarity of the proposed control mechanism and control mechanisms in quadruped, hexapod, 
and myriapod locomotion, which we proposed in previous studies13–15, and suggest a common principle under-
lying legged locomotion.
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Results
Behavioural Experiments.  We observed the locomotion of eight intact sea roaches (Ligia cinerascens) 
along a lane to assess the locomotion velocity and phase relationships between the legs (see Methods section). 
Representative photographs of one sea roach’s locomotion in two representative trials are shown in Fig. 1b and c  
(video clips are provided in the Supplementary Movies 1–4), and the corresponding gait diagrams are shown in 
Fig. 1d and e, respectively. Moreover, we measured the bending angle of the dorsal surface by analysing video 
clips (Supplementary Movies 2 and 4), and the results are shown in Fig. 1d and e. We found that the leg density 
waves propagated from the tail to the head in both cases. The left and right legs are in anti-phase in Fig. 1b and d 
but are in phase in Fig. 1c and e. Higher velocity was observed when legs were in phase (Fig. 1c and e, 8.54 ×body 
length/s, on average) than when in anti-phase (Fig. 1b and d, 2.64 ×body length/s, on average). The sea roach 
bent its body trunk to move effectively when in phase, whereas such body trunk bending was not observed when 
in anti-phase.

The relationship between gait patterns and the locomotion velocity of all experiments are shown in Fig. 1f 
(the full dataset is provided in Supplementary Data 1). Locomotion velocity was significantly higher when in 
phase than when in anti-phase (p < 0.01). It is also found that most sea roaches exhibited both the in-phase 
and anti-phase patterns, whereas a few sea roaches (sea roach 1 and 4) exhibited only the anti-phase pattern. 
Furthermore, we observed the body trunk bending in the pitch direction several times when left and right legs 
were in phase.

In summary, sea roaches (Ligia cinerascens) frequently change their gait patterns depending on the locomo-
tion speed, which was not found in previous works8,9. The bending of the body trunk during fast locomotion 
suggests that this mechanism likely plays a role in gait transition.

Model.  The model was based on the results of the behavioural experiments. The body consisted of seven seg-
ments (schematic is shown in Fig. 2a). In each segment, legs attached on each side of the body trunk could move 
in forward–backward and upward–downward directions. A phase oscillator was incorporated in each leg. The 
target positions of the leg tips of the i th leg on the right and left sides were controlled based on the oscillator 
phases φi

r and φi
l, respectively. Specifically, the legs tended to be in the swing and stance phases when the oscilla-

tor phase was between 0 and π, and between π and 2π, respectively (Fig. 2b). A force sensor attached at the tip of 
the leg detected the axial component of the ground reaction force. Pitch joints were implemented between the 
segments. The target angle of the pitch joint connecting the i th and (i + 1) th segment, θ +i 1/2, was variable.

Figure 1.  Sea roaches change their gait patterns depending on the locomotion speed. (a) Photograph of a sea 
roach (Ligia cinerascens). (b) Side and top view of a sea roach during low speed locomotion. (c) Side and top 
view of a sea roach during high speed locomotion. Yellow arrows indicate the parts where the body trunk bends 
in the pitch direction. (d) and (e) Gait diagrams corresponding to (b) and (c), respectively, are shown at the 
top. Left and right legs are indicated by L and R, respectively, and the legs are numbered from the head. Colour 
bars indicate the stance phase. The bending angles of the body trunk at several points are shown at the bottom. 
Bending to the dorsal side was assumed positive. Colours of the curves correspond to the colours shown in the 
schematic of a sea roach on the left. (f) Comparison of the locomotion velocity between the anti-phase and in-
phase cases. Bars indicate means and standard deviations (*p < 0.01, Welch test).
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The behavioural experiments suggested that as locomotion speed increased, the body trunk tended to bend in 
the pitch direction, which likely affected the phase relationship between left and right legs. Thus, the coordination 
between the pitch bending of the body and the leg movements is likely a key factor for reproducing the findings 
of the behavioural experiments. Hence, we hypothesized that sensory information from the legs is fed back into 
the body trunk as well as into the legs themselves, and sensory information from the body trunk is fed back into 
the legs (Fig. 2c). Accordingly, the time evolution of the oscillator phases and the target angles of the pitch joints 
at the body trunk are described as follows:

φ ω= + +





=










 f f p
r
l
: right leg
: left leg

,
(1)

i
p

i a
p

i c
p

, ,

θ = .+ +f (2)i i b1/2 1/2,

where ω denotes the intrinsic frequency, and fi a
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, , fi+1/2,b, and fi c

p
,  denote the local sensory feedback terms corre-

sponding to (a), (b), and (c) in Fig. 2c, respectively. Each feedback term is explained in detail below.
According to the previous studies4,5, a distributed nervous system of sea roaches4 is similar to that in insects5, 

and sea roaches have mechanoreceptors and reflex pathways16,17. Thus, we modelled the sensory feedback from a 
leg to itself and to its nearby legs fi a

p
,  in the same manner as that proposed for hexapod locomotion14:

Figure 2.  Schematic of the model that implements body-limb coordination mechanism. (a) Schematic of the 
body system. The body consists of seven segments. In each segment, a leg is attached on each side of the body 
trunk. Pitch joints are implemented between the segments. A phase oscillator is implemented in each leg.  
(b) The relationship between the oscillator phase and the target leg tip position. The leg tends to be in the swing 
and stance phases when the oscillator phase is between 0 and π, and between π and 2π, respectively.  
(c) Schematic of the control system. Three types of local sensory feedback mechanisms are implemented to 
achieve body-limb coordination ((a) from legs to legs, (b) from legs to the body, and (c) from the body to legs). 
(d) Schematic of the local sensory feedback from the legs to the body. The pitch joint bends to the dorsal/ventral 
side when its adjacent posterior/anterior legs receive the ground reaction force. e. Schematic of the local sensory 
feedback from the body to the legs. The phase converges to π/2 when its anterior pitch joint bends to the ventral 
side or when its posterior pitch joint bends to the dorsal side.
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where σ1 and σ2 are positive constants, Ni
p denotes the ground reaction force acting on the i th leg on the side p, 

L(p, i) denotes the class of legs adjacent to the i th leg on the side p (specifically, (i ± 1) th legs on the ipsilateral 
side and i th leg on the contralateral side), kj = kf, kc, and kh for the anterior, contralateral, and posterior adjacent 
legs, respectively, and nL denotes the number of legs that belong to L(p, i). The oscillator phase is modified when 
the leg or its nearby legs respond to the ground reaction force. The first term on the right-hand side in Eq. (3) 
works in such a manner that the phase converges to 3π/2 (thus, the leg tends to remain in the stance phase to 
support the body) in response to the ground reaction force. The second term on the right-hand side in Eq. (3) 
works in such a manner that the phase converges to π/2 (thus, the leg tends to lift off the ground) when its adja-
cent legs respond to the ground reaction force and support the body.

The sensory feedback from the legs to the body trunk fi+1/2,b is described as
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where λ and n are positive constants. This term means that the pitch joint bends to the dorsal/ventral side when 
its adjacent posterior/anterior legs respond to the ground reaction force (Fig. 2d). Thus, we expect that the legs 
are able to obtain propulsive forces effectively, owing to the bending of the body trunk. The term ωn in Eq. (4) was 
implemented because of the observation of the more prominent bending of the body trunk as locomotion speed 
increased during the behavioural experiments.

The sensory feedback from the body trunk to the leg fi c
p
,  is modelled as
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where σ3 and σ4 are positive constants, and τi+1/2 denotes the torque generated at the (i + 1/2) th pitch joint 
(bending to the dorsal side is taken as positive). Equation (5) works in such a manner that the phase converges 
to π/2 (thus, the leg tends to remain in the swing phase) when its anterior pitch joint bends to the ventral side or 
when its posterior pitch joint bends to the dorsal side (Fig. 2e). Owing to this feedback mechanism, the legs do 
not interfere with the bending of the body trunk.

Robot Experiment.  We developed a sea roach-like robot to test the validity of the proposed model. The 
robot consisted of seven segments (Fig. 3a), with each segment consisting of the body trunk and two legs (Fig. 3b). 
Pitch joints were implemented between the segments to bend the body trunk. The legs and the pitch joints were 
actuated by motors. Each leg moved along the trajectory shown in Fig. 3c. Mechanisms for estimating the torque 
generated at the pitch joints and the ground reaction forces were implemented (Fig. 3d, details are provided in 
the Methods section).

We observed the robot’s locomotion with and without feedback from the legs to the body (λ = . × −1 31 10 s /4 3

⋅(rad V)2  and λ = . × ⋅−0 00 10 s /(rad V)4 3 2 , respectively). The intrinsic angular frequency ω was increased from 
4.71 rad/s to 9.42 rad/s during each trial. Details of the procedures are provided in the Methods section.

Figure 4 shows the results for the case with the feedback (λ = . × ⋅−1 31 10 s /(rad V)4 3 2 ) (Supplementary 
Movies 5 and 6). The photographs from the top and side views for a representative trial when ω = 4.71 rad/s and 
ω = 9.42 rad/s are shown in Fig. 4a and b, respectively. The corresponding gait diagrams and the time evolution of 
the pitch joint angles are shown in Fig. 4c and d, respectively. The leg density waves propagated from the tail to the 
head in both cases. The left and right legs were almost in anti-phase when ω = 4.71 rad/s; however, they became 
close to in-phase when ω = 9.42 rad/s. The body trunk bent significantly when ω = 9.42 rad/s, while the bending 
was not clearly observed when ω = 4.71 rad/s. These findings generally agree with the behavioural experiments. 
Figure 4e shows the time evolution of the pitch joint angles and the oscillator phases when ω = 9.42 rad/s. The 
pitch joint angle θi+1/2 (i = 1, 2, 3, 4, 5, 6) was negative when φ− sin i

p was positive, and positive when φ− +sin i
p

1 
was positive. Thus, the pitch joints bent to the ventral/dorsal side when their anterior/posterior legs contacted the 
ground.

To evaluate the results quantitatively, we measured the phase relationship between the legs and the locomotion 
velocity. The phase relationships between adjacent legs on the ipsilateral and contralateral sides were evaluated by 
using the following indices RI, ΦI, RC, and ΦC:
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where i denotes an imaginary number and 
 time,  legs, and 

 subjects denote the averages over the time, the 
legs, and the subjects, respectively (see Methods section). Parameters RI and RC characterize the extent of syn-
chronization for adjacent legs on the ipsilateral and contralateral side, respectively. For example, RI = 1 when 
φ φ−−j

p
j
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1  takes a fixed value for all ipsilateral adjacent leg pairs and for all subjects, while it approaches zero as 
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1  distributes. Parameters ΦI and ΦC characterize the average phase difference between adjacent legs on 
the ipsilateral and contralateral side, respectively.

The relevant results are shown in Fig. 5a and b (the dataset is provided in Supplementary Data 2). Parameters 
RI and RC were larger than 0.56 for all cases; thus, the leg movements were well synchronized. When ω = 4.71 
rad/s, ΦI and ΦC were around 4π/3 and π, respectively, and these relations held for the cases both with and 
without feedback. This result indicated that leg density waves were propagated from the tail to the head with the 
left and right legs in anti-phase. When ω was increased to 9.42 rad/s, ΦI did not change significantly, although it 
slightly shifted toward π. In contrast, ΦC greatly shifted toward 0 with feedback but remained at around π when 
no feedback was used.

The result for the locomotion velocity when ω = 9.42 rad/s is shown in Fig. 5c (the dataset is provided in 
Supplementary Data 2). Locomotion velocity was significantly higher using a feedback than without feedback 
(p < 0.01).

The above results indicate that the proposed body-limb coordination mechanism plays a crucial role for 
speed-dependent gait transitions that facilitates effective propulsion.

Discussion
Our findings provide a plausible explanation for the control mechanism underlying gait transition in sea roaches. 
At low speeds, the feedback from a leg to itself and its nearby legs ((a) in Fig. 2c) plays a crucial role. This feedback 
mechanism works so that the leg supports the body. Thus, adjacent legs are not in phase because otherwise they 
cannot support the body during the swing phase. Hence, the left and right legs are in anti-phase, and the legs 
form a supporting polygon as in hexapod locomotion14. In contrast, at high speeds, the feedbacks from the legs 
to the body and from the body to the legs ((b) and (c) in Fig. 2c, respectively) are important. Pitch bending of the 
body trunk is generated owing to the feedback, and it affects the nearby left and right legs equally. For example, 
when one of the legs on the i th segment contacts the ground, the (i + 1/2) th pitch joint bends to the ventral side 
owing to Eq. (4), which modulates the phases of both legs on the (i + 1) th segment toward π/2 owing to Eq. (5); 
moreover, the (i − 1/2) th pitch joint bends to the dorsal side owing to Eq. (4), which modulates the phases of 
both legs on the (i − 1) th segment toward π/2 owing to Eq. (5). Thus, the left and right legs tend to be in phase. 
Although the proposed body-limb coordination mechanism remains to be elucidated in biological studies and 
its biological principle is still unknown, we believe that our findings will provide insights for describing animal 
locomotion in future studies.

A limitation of the present study is that the timing of the body trunk bending of the robot (Fig. 4d and e) was 
different from that observed in the behavioural experiments where the body trunk tended to bend to the ventral 
side when the legs were lifted from the ground (Fig. 1e). One possible explanation for this is that the change in the 

Figure 3.  Sea roach-like robot used to validate the proposed model. (a) Full view of the robot. (b) Detailed 
structure of a segment. The pitch joint and the legs are operated by a servo motor and DC motors, respectively. 
(c) Trajectory of the leg tip. A crank mechanism was incorporated so that closed trajectory of the leg tip was 
drawn by driving the DC motor. (d) Mechanism for detecting the ground reaction force. The displacement of a 
spring embedded at the leg tips is detected by a potentiometer.
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body trunk curvature of real sea roaches is delayed from the timing of actuation owing to weakness of the actua-
tion torque. The difference between sea roaches and the robot regarding stiffness of the body trunk may also affect 
the timing of body trunk bending. The cause of the discrepancy between the behavioural and robot experiments 
remains to be investigated.

The contribution of this study is not limited to locomotion in sea roaches. We expect that our findings will 
be helpful for elucidating the common decentralized control principle underlying legged locomotion. Although 
neural network structures likely differ in detail between animal species, their basic principles may be similar, and 
it can be deduced through phenomenological reproduction of animal behaviours using highly abstract models. 
In fact, the proposed control scheme has several points in common with the control schemes previously proposed 
for other legged animals13–15. For example, the feedback from a leg to itself and its nearby legs ((a) in Fig. 2c) is a 
part of the control mechanism of hexapod locomotion14, whereas feedbacks from the legs to the body and from 
the body to the legs ((b) and (c) in Fig. 2c, respectively) are part of the control mechanism of quadruped loco-
motion13. Our proposed mechanism is likely also somewhat similar to the control mechanisms of myriapods. 
In millipede locomotion, leg density waves propagate from the tail to the head with the left and right legs being 
in phase. Although our previous model15 only focused on inter-limb coordination, the body-limb coordination 
mechanism proposed in this study could also contribute to the emergence of the millipedes’ gait pattern. In con-
trast, some species of centipedes generate leg density waves that propagate from the head to the tail, with the body 
trunk undulating in the yaw direction to increase the stride length of the legs18. In spite of the difference in the 
direction of body bending motion between sea roaches and centipedes, i.e., pitch and yaw directions, respectively, 
there may be similar body-limb coordination mechanisms that enable effective propulsion.

Thus, the synthetic approach, i.e., the attempt to understand mechanisms using mathematical models and 
robots, enables us to discuss points that are common or different between control mechanisms of different ani-
mal species. Such discussions will benefit researchers in the field of neuroscience and evolution theory because 
they provide information on how control mechanisms or neural systems may have co-evolved with morphology. 
Moreover, from an engineering viewpoint, understanding the common principle underlying various legged ani-
mals’ locomotion will help establish a systematic design method for legged robots that move like real animals. 
We propose a plausible body-limb coordination mechanism in which the body bending helps increase the stride 
length of the legs and thus increase the locomotion speed (Fig. 5c); it can be applied to legged robots with various 
numbers of legs.

Figure 4.  Sea roach gait-velocity relationships emerge in a robot with a body-leg coupling gait control model 
(a) Side and top views of the robot when ω = 4.71 rad/s and λ = . × ⋅−1 31 10 s /(rad V)4 3 2 . (b) Side and top 
views of the robot when ω = 9.42 rad/s and λ = . × ⋅−1 31 10 s /(rad V)4 3 2 . (c) and (d) Gait diagrams 
corresponding to (a) and (b), respectively, are shown at the top. Left and right legs are denoted by L and R, and 
the legs are numbered from the head. Colour bars indicate the stance phase. The time evolutions of the pitch 
joint angles θi+1/2 are shown at the bottom. (e) The time evolutions of the pitch joint angles θi+1/2 and the 
oscillator phases when ω = 9.42 rad/s and λ = . × ⋅−1 31 10 s /(rad V)4 3 2 .
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A potential further step would be a reduction in weight and size of the robot to better simulate locomotion 
in real sea roaches. The extension of the control scheme is another possible improvement; we have observed that 
real sea roaches increase the amplitude of their leg movement as their locomotion speed increases, and this effect 
could be incorporated into the current model wherein each leg moves along a fixed trajectory. These improve-
ments will enable the robot to move faster and more efficiently by using the proposed feedback mechanisms.

Methods
Behavioural experiments.  Eight intact sea roaches (Ligia cinerascens) collected at the seashore in Miyagi 
Prefecture of Japan were used. The body length and weight of the study animals were 30 ± 4 mm and 0.87 ± 0.33 g, 
respectively. The schematic of the experimental setup is shown in Supplementary Fig. 1. The sea roaches moved 
along a lane of 68.2 mm width, and ten trials were performed for each sea roach. When the sea roaches did not 
move voluntarily, we stimulated them by touching the uropods and the dorsal body surface. The locomotion was 
monitored by two high-speed cameras (DITECT, type HAS-U2) from the side and from above. The resolution of 
the high-speed camera was 1280 × 768 pixels, and the frame rate was 500 fps.

Because it was difficult to measure the ground reaction forces, the gait diagrams shown in Fig. 1d and e were 
drawn by manually analysing the snapshots taken by the high-speed cameras. In a few cases a leg was hidden by 
the body trunk or by other legs and could not be observed from either top or side views. In such cases, the timing 
of the foot contact or detachment was estimated from its to-and-fro movement. It was also difficult to automate 
the process of obtaining the phase relationship between the legs. Thus, in Fig. 1f, we evaluated whether the left 
and right legs were in phase or in anti-phase by carefully looking at the videos taken by the high-speed cameras.

The bending angle of the body trunk shown in Fig. 1d and e was also measured manually because automatic 
tracking of specific points was difficult. We printed out the snapshots of Supplementary Movies 2 and 4 and 
marked 8 points equidistantly along the dorsal surface of the body trunk in each snapshot. The points were 
marked near the proximal ends of the legs (Fig. 1d and e). The marked points were connected by lines, and the 
angles between adjacent lines were measured by using a protractor. Because the obtained data were variable owing 
to inaccuracy of hand work, they were approximated by taking moving average over the range of eleven plots.

In the above-mentioned experiments, sea roaches did not tend to move straight in the middle of the lane, 
and their legs often touched the side walls. Unfortunately, it was inevitable because it seems that they have a 
habit to approach nearby objects. To examine whether the contact with the side walls affects gait patterns or not, 
we performed an additional experiment wherein a sea roach (15 mm body length, 0.14 g body weight) moved 
on a flat surface without side walls, which was monitored from above. Then, we found that it exhibited both 
anti-phase pattern (3.59 body length per second, Supplementary Movie 7) and in-phase pattern (4.20 body length 

Figure 5.  Quantitative data of robot experiments validating the proposed model. The phase relationship 
between adjacent ipsilateral and contralateral legs in the cases (a) with feedback (λ = . × ⋅−1 31 10 s /(rad V)4 3 2 ) 
and (b) without feedback (λ = . × ⋅−0 00 10 s /(rad V)4 3 2 ). The vectors point (RIcosΦI, RIsinΦI)T for the 
ipsilateral legs and (RCcosΦC, RCsinΦC)T for the contralateral legs. Blue and red arrows denote the vectors for 
ω = 4.71 rad/s and ω = 9.42 rad/s, respectively. (c) Locomotion velocity for ω = 9.42 rad/s in the cases with 
feedback (λ = . × ⋅−1 31 10 s /(rad V)4 3 2 ) and without feedback (λ = . × ⋅−0 00 10 s /(rad V)4 3 2 ). The bar heights 
and the error bars indicate means and standard deviations, respectively (*p <0 0.01, t-test).
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per second, Supplementary Movie 8). This result indicates that the contact with the side walls is not essential for 
the emergence of the anti- and in-phase patterns (Fig. 1 and Supplementary Movies 1–4). We cannot exclude a 
possibility that pitch bending of the body trunk (Fig. 1c and e and Supplementary Movies 1) was caused by the 
contact with the side wall, because side view images could not be measured owing to technical difficulty in this 
additional experiment. However, it is suggested (though not fully validated) from our synthetic model that the 
pitch bending of the body contributes to the gait transition.

Body structure of the robot.  The robot, consisting of seven segments, was 0.71 m long, 0.21 m wide, 0.11 m 
high, and weighted 2.5 kg (Fig. 3a). Pitch joints were incorporated between the segments. Each segment consisted 
of the body trunk and two legs (Fig. 3b). A DC motor (Maxon Japan Corporation, DCX10L EB KL 12 V + GPX10 
64:1 + ENX10 EASY 32IMP) was incorporated in each leg. The mechanism shown in Fig. 3c converts the rota-
tional motion of the DC motor into an ellipsoidal foot trajectory. Furthermore, a servo motor (Kondo Kagaku, 
KRS-2572 HV ICS) was incorporated at the centre of each segment to drive the pitch joint (Fig. 3b). The motors 
were controlled by microcomputers (mbed NXP LPC1768) incorporated in each segment.

Because it was difficult to directly measure the pitch joint torque τi+1/2, it was calculated from the difference 
between the target and real angle of the pitch joint, which could be obtained from the servo motor. Hence, in the 
hardware experiments, the unit of τi+1/2 in Eq. (5) is rad. Moreover, because it was difficult to directly measure the 
ground reaction force Ni

p, it was expressed by the voltage output of the potentiometer that detects the displace-
ment of the spring implemented at the leg tip (Fig. 3d). Hence, in the hardware experiments, the unit of Ni

p in Eq. 
(4) is V. To examine whether the ground reaction force is properly estimated by measuring the displacement of 
the spring, we performed an additional experiment. The experimental setup is shown in Supplementary Fig. 2a. 
One of the segments was detached from the robot and attached to a slider perpendicular to the ground. Force 
sensors (Optoforce, OMD-30-SE-100N) were placed on the ground. The left and right legs moved periodically in 
anti-phase (9.42 rad/s) on the force sensors to measure the displacement of the springs and the ground reaction 
forces simultaneously (Supplementary Movie 9). The result is shown in Supplementary Fig. 2b. We find that the 
displacement is large when the ground reaction force is large, although the increase of the displacement often 
precedes that of the ground reaction force owing to backlash in the force measurement system. Thus, the ground 
reaction force is roughly estimated by the displacement of the spring.

Robot experiment.  Five trials were conducted under the same experimental conditions. In each trial, the robot 
was powered on and was then placed on a treadmill. The intrinsic angular frequency ω was increased from 4.71 rad/s 
to 9.42 rad/s after several tens of seconds after the start of the experiment. The other parameter values, which were 
chosen by trial-and-error, are shown in Supplementary Table 1. To avoid evaluating a transient process before con-
vergence to steady gait patterns, the phase relationship between the legs (Fig. 5a and b) was not evaluated until 10 s 
after the robot was placed on the ground or the moment when ω was increased from 4.71 rad/s to 9.42 rad/s. The 
locomotion velocity (Fig. 5c) was evaluated for several seconds during which the robot moved straight and steadily.
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