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Transcriptome Analysis of 
Mesenchymal Stem Cells from 
Multiple Myeloma Patients Reveals 
Downregulation of Genes Involved 
in Cell Cycle Progression, Immune 
Response, and Bone Metabolism
Rodrigo Carlini Fernando1, Diego Robles Mazzotti2, Hatylas Azevedo3, Alex Freire Sandes4, 
Edgar Gil Rizzatti4, Mariana Bleker de Oliveira1, Veruska Lia Fook Alves1, 
Angela Isabel Pereira Eugênio1, Fabrício de Carvalho1, Maria Aparecida Dalboni5, 
David Correa Martins6 & Gisele Wally Braga Colleoni1

A growing body of evidence suggests a key role of tumor microenvironment, especially for bone marrow 
mesenchymal stem cells (MSC), in the maintenance and progression of multiple myeloma (MM), 
through direct and indirect interactions with tumor plasma cells. Thus, this study aimed to investigate 
the gene expression and functional alterations of MSC from MM patients (MM-MSC) in comparison with 
their normal counterparts from normal donors (ND-MSC). Gene expression analysis (Affymetrix) was 
performed in MM-MSC and ND-MSC after in vitro expansion. To validate these findings, some genes 
were selected to be evaluated by quantitative real time PCR (RT-qPCR), and also functional in vitro 
analyses were performed. We demonstrated that MM-MSC have a distinct gene expression profile than 
ND-MSC, with 485 differentially expressed genes (DEG) - 280 upregulated and 205 downregulated. 
Bioinformatics analyses revealed that the main enriched functions among downregulated DEG were 
related to cell cycle progression, immune response activation and bone metabolism. Four genes were 
validated by qPCR - ZNF521 and SEMA3A, which are involved in bone metabolism, and HLA-DRA and 
CHIRL1, which are implicated in the activation of immune response. Taken together, our results suggest 
that MM-MSC have constitutive abnormalities that remain present even in the absence of tumors cells. 
The alterations found in cell cycle progression, immune system activation, and osteoblastogenesis 
suggest, respectively, that MM-MSC are permanently dependent of tumor cells, might contribute to 
immune evasion and play an essential role in bone lesions frequently found in MM patients.

Multiple myeloma (MM) is a hematologic malignancy of plasma cells, characterized by the infiltration of tumor 
cells in the bone marrow (BM), production of monoclonal (M) protein, which can be detected in the blood and/
or urine of patients, and lesions in target-tissues and organs, including hypercalcemia, renal failure, anemia, and 
bone lesions1,2. In the United States, MM represents, approximately, 1% of all cancer types and 10% of hematologi-
cal malignancies2. The disease is often preceded by a pre-malignant condition known as monoclonal gammopathy 
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of undetermined significance (MGUS)3,4, which is present in, approximately, 3% of the population over 50 years 
and represents a risk of progression to MM of 1% per year5. Smoldering MM is another pre-malignant condition 
that can be classified between MGUS and MM, and presents a higher risk of progression to MM (approximately, 
10% per year)6.

The overall survival of MM patients has improved considerably in recent years, both for patients eligible for 
autologous hematopoietic stem cell transplantation as well as for those ineligibles for this therapeutic procedure7,8. 
However, these advances were not observed in all patients; for instance, among those classified as high-risk by 
molecular cytogenetic markers, the overall survival remains without significant advances7. In addition, most MM 
patients eventually relapse one or more times over the course of the disease, including those who have achieved a 
complete response, until the moment they might become refractory to all therapeutic arsenal available7.

The first breakthroughs in MM treatment were the introduction of melphalan in combination with pred-
nisone, in the late 1960s9, and the introduction of high doses of chemotherapy followed by autologous hematopoi-
etic stem cell transplantation for eligible patients, at the beginning of 1980s10. However, the greatest breakthrough 
occurred in 2000s, with the use of immunomodulatory agents, thalidomide11 and, subsequently, its analogues 
lenalidomide12,13 and pomalidomide14, as well as with the use of proteasome inhibitors, bortezomib15 and, more 
recently, carfilzomib16 and ixazomib17. Other therapeutic drugs have emerged, such as monoclonal antibodies 
daratumumab (anti-CD38)18 and elotuzumab (anti-SLAMF7)19, and histone deacetylase inhibitor panobinostat20. 
Besides, there are a large number of new drugs with great anti-MM potential that are being tested in preclinical 
and clinical studies, and, likely, the therapeutic arsenal for MM treatment is going to become even greater in the 
coming years.

Despite the great advance in MM treatment aforementioned, which has improved patients’ overall survival, 
MM remains an incurable disease and, therefore, more information about its pathogenesis is essential for the 
search for new therapeutic targets. Genetic and epigenetic alterations are often found in tumor plasma cells, and 
accumulate over the course of the disease21. However, several of these alterations are already found in plasma cells 
of patients with MGUS, and smoldering MM. Thus, it is intuitive to think that, although such alterations are nec-
essary for MM development, they are not sufficient21. In this scenario, the role of the tumor microenvironment 
for MM pathogenesis emerges.

A growing body of evidence suggests that tumor microenvironment plays a key role in the maintenance 
and progression of various cancers, including solid tumors22,23 and hematological malignancies24. In MM, the 
essential role of BM tumor microenvironment is well established and several studies have shown that plasma 
cells strongly depend on it25. Tumor plasma cells interact, directly and indirectly, with the tumor microenviron-
ment, which is composed by cellular and noncellular elements, promoting proliferation, migration, survival, 
and drug resistance26–28. Among cellular elements, mesenchymal stem cells (MSC) deserve great attention in 
MM pathogenesis29. MSC is an adult stem cell, that can be found in different organs or tissues, especially in 
BM30. Apparently, MSC from MM patients (MM-MSC) do not share the same genetic alterations present in MM 
cells, ruling out the hypothesis of a common progenitor31. However, an increasing but still limited number of 
studies have demonstrated that MM-MSC might have some important differences compared to MSC from nor-
mal donors (ND-MSC), comprising from differences in gene and protein expression, to functional alterations, 
including lower proliferation and osteoblastic differentiation capacity, impaired immunomodulatory properties, 
among others31–35.

Therefore, the aim of this study was to explore the differences between MM-MSC and their normal counter-
parts, through gene expression and functional analyses, in order to add new insights to MM pathogenesis that 
could contribute to the development of new therapeutic molecules capable of disrupting the interaction between 
MM-MSC and MM cells, making these tumors cells more sensitive to drugs and immune response action.

Casuistic and Methods
Ethical aspects.  This study was approved by the Institutional Review Board  of the Federal University of São 
Paulo (CAAE: 34306314.6.0000.5505). BM samples were obtained after written informed consent of participants 
or legal representative, according to Helsinki Declaration and local regulations.

Subjects and cell line.  Nineteen patients, from both genders, newly diagnosed with MM and without any 
previous treatment for the disease, i.e., no chemotherapy, no corticosteroids, no immunomodulators, no pro-
teasome inhibitors, or bisphosphonates, were successfully enrolled in this study and allocated in the case group. 
The clinical laboratory characteristics of MM patients at the diagnosis are shown in Table 1. Seven BM normal 
donors for allogeneic stem cell transplantation, not matched by age or gender, were also included in the study and 
allocated in the control group. As an additional control, the HS-5 human bone marrow normal stromal cell line 
(ATCC, Manassas, VA, USA) was also used in some experiments.

Isolation, expansion and characterization of MSC.  BM samples from normal donors (n = 7) and 
newly diagnosed MM patients (n = 19) were harvested from patients’ iliac crest. Then, BM mononuclear cells 
were isolated using Ficoll-Paque PLUS (GE Healthcare, Little Chalfont, Bucks, GBR), according to the man-
ufacturer’s instructions. Finally, MSC were sorted by Magnetic-Activated Cell Sorting (MACS) methodology, 
using CD105+ as a positive marker (Miltenyi Biotec, Bergisch Gladbach, DEU). MSC expansion was performed 
on αMEM with GlutaMAX and nucleoside medium36, supplemented with penicillin (100 U/mL)/streptomycin 
(100 μg/mL), fungizone (2.5 μg/mL) (All Gibco, Carlsbad, CA, USA) and 10% fetal bovine serum (FBS) (Vitrocell, 
Campinas, SP, BRA). MSC were incubated at 37 °C, 5% CO2 and high humidity. During passage zero, the cells 
were fed twice a week, replacing only 50% of culture medium volume, until the cells reached 80% confluence 
or up to 21 days. Then, MSC were detached from the culture plastic with the aid of 0.25% trypsin-EDTA rea-
gent (Gibco, Carlsbad, CA, USA), counted by tripan blue exclusion method and seeded again. From the first 
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passage onwards, 80% of the culture medium volume was replaced at the same conditions. After expansion, 
MM-MSC, ND-MSC and HS-5 cell line were immunophenotyped in the BD FACSCanto II flow cytometer 
(Becton, Dickinson and Company, Franklin Lakes, NJ, USA). Positive and negative markers were chosen based 
on the International Society for Cell Therapy Criteria37, using the following monoclonal antibodies: anti-CD105 
PE, anti-CD90 FITC, and anti-CD73 PE-Cy 7, as positive markers, and anti-CD45 PO, anti-CD34 PerCP-Cy 5.5, 
anti-CD14 APC-H7, and anti-HLA-DR PB, as negative markers. Data were acquired in the software FACSDIVA, 
version 8.0.1 (Becton, Dickinson and Company, Franklin Lakes, NJ, USA), and analyzed in the software Infinicyt, 
version 1.7  (Cytognos S. L., Salamanca, ESP).

The osteoblastic differentiation of MM-MSC (n = 4) and ND-MSC (n = 4) was performed in technical dupli-
cates in 12-well microplates, using StemPro Osteogenesis Differentiation kit (Gibco, Carlsbad, CA, USA) and fol-
lowing the manufacturer’s instructions. Cells were fed twice a week, and on days 7, 14 and 21, the differentiation 
medium was removed and frozen at −80 °C for further analysis. In order to confirm the cell differentiation by a 
quantitative methodology, osteocalcin measurement was performed on the differentiation media collected from 
the cases and controls on days 7, 14 and 21, using the Human Osteocalcin Quantikine ELISA kit (R&D Systems, 
Minneapolis, MN, USA), according to the manufacturer’s instructions.

Microarray hybridization and data acquisition.  For gene expression analysis, RNA samples were 
extracted from MM-MSC (n = 4) and ND-MSC (n = 4) using RNeasy Mini kit (Qiagen, Valencia, CA, USA). For 
each sample, three independent RNA extractions were performed. RNA quantification and purity analysis were 
performed on the NanoDrop® ND-8000 UV spectrophotometer (NanoDrop Technologies, Wilmington, DE, 
USA). In addition, RNA integrity was verified by 1% agarose gel electrophoresis, stained with ethidium bromide.

The microarray platform used was GeneChip® Human Exon 1.0 ST Array (Affymetrix, Santa Clara, CA, 
USA). On this platform, there are about 1.4 million probe sets, being approximately 4 probes per exon and 40 
probes per gene. Microarray images were obtained using GeneChip Scanner 3000 7 G, and data were quantified 
using Affymetrix GeneChip Command Console® Software (both Affymetrix, Santa Clara, CA, USA), generating 
CEL files containing the raw data.

Microarray data preprocessing and analysis.  Microarray raw data preprocessing and identification 
of differentially expressed genes (DEG) were performed using the AltAnalyze software www.altanalyze.org38. 
Once the analysis parameters were set, the raw data, in CEL format, was preprocessed by the Robust Multi-array 
Analysis (RMA) method39, which includes background correction, quantile normalization and summariza-
tion of the probes into specific probe sets. The probe sets were defined as differentially expressed between the 
groups when the p-values, corrected by the False Discovery Rate (FDR) method40, were less than 0.05 and the 
fold-changes (difference in expression in the case group versus control group) were greater than 1.5, in module. 
Differentially expressed probe sets were annotated for the purpose of identifying which genes they represent. To 
ensure that there was no great variability among within-condition samples, the coefficients of variation (CV), 
of the normalized gene expression values in log2, were calculated and, arbitrarily, the CV cut-off criteria less 
than 15% was established to consider a gene consistent. The microarray data, discussed in this article, have been 
deposited in NCBI’s Gene Expression Omnibus, and can be accessed through GEO Series accession number (ref 
GSE113736).

Bioinformatics analyses workflow.  After identification of DEG, we performed the bioinformatics analy-
ses in order to extract relevant biological information among these genes.

Patients’ characteristics

Median age, years (range) 67(43–80)

Sex, n (%)

  Male 09 (47)

  Female 10 (53)

M-protein type, n (%)

  IgG 08 (42)

  IgA 07 (37)

  Light chain 04 (21)

D&Sa stage, n (%)

  I 01 (5)

  II 02 (11)

  III 16 (84)

ISSb stage, n (%)

  1 04 (21)

  2 04 (21)

  3 08 (42)

NAc 03 (16)

Table 1.  Clinical and laboratorial characteristics of MM patients included in the study at diagnosis (N = 19). 
aD&S = Durie & Salmon. bISS = International Staging System. cNA = Not Available.

https://doi.org/10.1038/s41598-018-38314-8
http://www.altanalyze.org


www.nature.com/scientificreports/

4Scientific Reports |          (2019) 9:1056  | https://doi.org/10.1038/s41598-018-38314-8

Gene Co-Expression Network Analysis.  Gene co-expression network construction and additional analyses were 
performed using Cytoscape 3.5.1 software41, and three of its plug-ins. First, the GeneMANIA plug-in42 was used 
to generate the network, through the prediction of interactions among DEG, based exclusively on data published 
in the literature concerning co-expression. Then, another plug-in, CentiScaPe43 was used to calculate central-
ity measures of the genes (nodes) belonging to the constructed network. In our study, the calculated centrality 
measures were degree and betweenness, which represent, respectively, the number of connections of a node, i.e., 
the number of interactions of a gene with other genes in the network, and the number of shortest paths that pass 
through a node to connect other pairs of nodes. Lastly, GLay plug-in44 was used to find modules, also known as 
communities or clusters, which means groups of highly interconnected genes in the network.

Identification of high-hubs, hubs and bottlenecks.  The calculated degree and betweenness values were used to 
construct a scatter plot, using GraphPad Prism 7.0 statistical software (GraphPad Software, San Diego, CA, USA). 
The scatter plot allows categorization of nodes in high hubs, hubs, and bottlenecks, as previously described by 
Azevedo et al.45. In summary, by dividing the plot into quadrants, the genes located in the upper right quadrant 
represent the high hubs (high degree and betweenness values), whereas the genes located in the lower right 
quadrant represent the hubs (genes with high degree and low betweenness values), and, finally, genes located in 
the upper left quadrant represent bottlenecks (genes with high betweenness and low degree values). The most 
relevant functions of the nodes with the highest degrees and/or betweenness values were manually searched using 
the GeneCards database www.genecards.org.

Functional Enrichment Analysis.  Overrepresented biological functions and pathways from GO46,47 and KEGG48–51  
databases, respectively, were searched in the subnetworks found, with the aid of Enrichr software amp.pharm.
mssm.edu/Enrichr/52,53 and DAVID, version 6.8, software https://david.ncifcrf.gov/54. P-value, adjusted for mul-
tiple comparisons by the FDR method40, less than 0.05 was used as cut-off criteria to consider a category as sig-
nificantly enriched.

Real-time RT-qPCR validation.  In order to validate microarray results, total RNA extraction from 
MM-MSC (n = 13), ND-MSC (n = 5), and HS-5 cell line was performed using the RNA RNeasy Mini kit (Qiagen, 
Valencia, CA, USA), according to the manufacturer’s instructions. Then, cDNA was synthesized from 1.5 µg of 
total RNA, using SuperScript III and Oligo(dT) (both from Invitrogen, Carslbad, CA, USA). Real time RT-qPCR 
was carried out using the 7500 Real Time PCR System®, and the TaqMan Gene Expression Assays (both from 
Applied Biosystems, Foster City, CA, USA). All samples were evaluated in technical triplicates, and the Ct val-
ues for the endogenous control (GAPDH) and for the target genes (based on the bioinformatics analyses and 
their fold-change values), were determined during the log phase of the reaction. HS-5 cell line was used as a 
calibrator. For data analysis, the comparative ΔΔCt method was used55, where ΔCt = Cttarget gene − CtGAPDH and 
ΔΔCt = ΔCtcases or controls − ΔCtcalibrator. The candidate genes were considered differentially expressed in MM-MSC 
when their expression levels showed at least a 2-fold increase or decrease in comparison to ND-MSC.

Telomere length measurement.  Genomic DNA were extracted from MM-MSC (n = 19), ND-MSC 
(n = 7) and HS-5 cell line, using the Qiamp DNA Mini kit (Qiagen, Valencia, CA, USA), according to the man-
ufacturer’s instructions. After extraction, DNA quantification and purity analysis were performed in the DS-10 
spectrophotometer (DeNovix, Wilmington, DE, USA). Then, all DNA samples were diluted to a final concentra-
tion of 50 ηg/μL. MSC telomere length was determined by multiplex real time qPCR, as previously described by 
Cawthon56,57, with minor modifications. In summary, this methodology consists in determining the relative ratio 
(T/S) between the telomere region copy number (T) and a single copy gene (S), using a relative standard curve. In 
our study, we chose the ALB gene as the single copy gene. T/S ratio for each sample is proportional to the mean 
telomere length. All experiments were performed in triplicate and our CV inter-assay was around 13.04%.

Cell cycle analysis.  MM-MSC and ND-MSC frequencies distribution among cell cycle phases were eval-
uated in the BD FACSCanto II flow cytometer, using propidium iodide reagent (both Becton, Dickinson and 
Company, Franklin Lakes, NJ, USA). The results were analyzed using ModFit LT software (Verity Software House, 
Topsham, ME, USA).

Statistical analyses.  All statistical analyses were performed on IBM SPSS Statistics 20.0 software (IBM 
Corporation, Armonk, NY, USA), adopting α = 5% significance level. All graphs were plotted in GraphPad Prism 
7 software (GraphPad Software, San Diego, CA, USA) and the results are shown as mean and standard deviation 
(SD). In order to evaluate the group effect (MM-MSC versus ND-MSC) over time (7, 14 and 21 days) on the 
measurements of the continuous variable osteocalcin, we used the Generalized Estimating Equation (GEE) with 
gamma distribution. Mann-Whitney U test was used to perform comparison among groups regarding relative 
gene expression by RT-qPCR. Additionally, to evaluate group effect on the continuous dependent variable mean 
telomere length (T/S), we used the independent t-test, as the probabilistic distribution of this variable was con-
sidered normal (p = 0.01, Kolmogorov-Smirnov test). We also assumed the homogeneous variance distribution 
between groups, since Levene’s test showed no significant difference between group variances (F = 0.053 and 
p = 0.819). Lastly, to investigate the existence of an association between the group (MM-MSC versus ND-MSC) 
and the relative frequency of cells in the different cell cycle phases (G0/G1, S and G2/M), we performed the 
Fisher’s exact two-tailed test, since some expected frequencies were less than five. Principal component (PCA) 
and t-distributed stochastic neighbor embedding (t-SNE) analyses were implemented in the R software in order 
to perform dimensionality reduction and assess how the samples group to each other.
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Results
MSC phenotype and osteoblastic differentiation potential.  MM-MSC and ND-MSC expressed 
CD105, CD90, and CD73 (positive markers), and did not express the negative markers CD45, CD34, CD14, and 
HLA-DR (data not shown). After in vitro induction for osteoblastic differentiation, it was possible to detect oste-
ocalcin protein in the cell culture supernatant of MM-MSC (n = 4) and ND-MSC (n = 4) in the three moments 
evaluated (7, 14 and 21 days). The GEE statistical test with gamma distribution showed no statistically significant 
difference between osteocalcin measurements over time, synthesized in vitro by MM-MSC and ND-MSC (Fig. 1).

Distinct gene expression profiling between MM-MSC and ND-MSC.  After microarray data 
pre-processing and establishment of cut-off criteria (adjusted p-value < 0.05 and fold-change >1.5), we found 
485 DEG between MM-MSC and ND-MSC, including 280 upregulated and 205 downregulated genes. About 50% 
of them correspond to protein-coding genes, while the other half comprised genes encoding for long non-coding 
RNAs, small nuclear RNAs, and small nucleolar RNAs. Arbitrarily, we considered that genes with the CV val-
ues less than 15%, i.e., with low variability within-condition, were consistent. Only 30 genes in the MM-MSC 
group and 28 genes in the ND-MSC were considered not consistent out of the 485 DEG, with an overlap of 12 
non-consistent genes between the groups. The majority of the non-consistent genes were non-protein coding 
genes.

PCA and t-SNE analyses were performed to assess how the samples grouped to each other. Interestingly, both 
analyses were able to separate the samples into the studied groups, showing a good degree of similarity between 
the samples belonging to the same group (Figs S1 and S2). The first two PCA components (PC1 and PC2) were 
able to explain 23.4% and 11.9% of the data, respectively (Fig. S3).

Network and functional enrichment analyses reveal the functional gene signature of 
MM-MSC.  The 485 DEG were used to build a gene co-expression network, where genes are represented 
as nodes, and their relationship, in this case co-expression, is represented as edges connecting the genes. 
The Cytoscape plug-in GeneMANIA was used to construct the network, using only interactions from the 
co-expression category. After filtering out the genes that were not connected in the network, we observed 
195 genes (nodes) and 1515 interactions (edges) in the final network, with 31 genes upregulated, and 164 
downregulated.

The degree and betweenness values of the 195 nodes were calculated, using the CentiScaPe plug-in, and a 
scatter plot was built to visualize the relationship between degree (x-axis) and betweenness (y-axis) for each 
node. The plot was divided into four quadrants by applying an arbitrary cut-off of degree ≥29 and betweenness 
≥671.5 (Fig. 2). The 20 DEG with the highest degree (hubs) values and the 20 DEGs with the highest betweenness 
(bottlenecks) values were highlighted (total of 36 downregulated genes). Among the hubs, half of them partic-
ipate directly or indirectly in cell cycle progression. Additionally, some other genes are involved in functions 
related to the immune response, such as antigen processing and presentation via MHC class II, and regulation 
of the complement system activation (Table 2). In parallel, bottleneck genes participate in cell cycle regulation 
or immune response. Besides, some genes are involved in osteoblastogenesis (SEMA3A, BICC1, CHRLD1, and 
ZNF521) and HAS1 is involved in Waldenstrom’s macroglobulinemia (Table 3), a post-follicular B-cell lymphop-
roliferative disorder also associated with M-protein production (IgM). Finally, three genes with high degree and 
betweenness (high hubs) are involved in cell cycle progression, while one high-hub participates in the regulation 
of complement system activation (Table 4). We also performed the identification of functional modules within 
the gene co-expression network, i.e., the localization of groups of highly connected nodes inside the original net-
work (Fig. 3). Enrichment analysis of the functional modules was performed using the Enrichr and the DAVID 
softwares. Since the results obtained from both softwares were very similar, i.e., there was a great overlap between 
the terms of GO and the biological pathways of KEGG significantly enriched, we decided to show only the results 
generated by Enrichr. Overrepresented GO biological processes and KEGG pathways are represented in Figs 4 
and 5 for module 1, and in Figs 6 and 7 for module 3. We did not find any biological processes nor biological 

Figure 1.  Comparison of osteocalcin production between MM-MSC (n = 4) and ND-MSC (n = 4), quantified 
by ELISA, on days 7, 14 and 21 of culture. The experiments were performed in technical duplicates and the 
results are presented as mean and standard deviation (SD). To evaluate the effect of the group over time on the 
osteocalcin measurements produced by MM-MSC and ND-MSC, the GEE method with gamma distribution 
was used. NS = Not Significant; MM-MSC = Multiple Myeloma-Mesenchymal Stem Cells; ND-MSC = Normal 
Donor-Mesenchymal Stem Cells.
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pathways significantly enriched in module 2. In module 1, enriched functions are mainly related to the immune 
response, T cell activation, antigen processing and presentation via MHC classes I and II, cytokine-mediated sig-
naling pathways, and infectious and autoimmune diseases. In turn, enriched functions in module 3 are exclusively 
related to regulatory mechanisms of the cell cycle.

Real-time RT-qPCR validation.  The microarray data were validated at the mRNA level by RT-qPCR for 
SEMA3A, ZNF521, HLA-DRA, CHI3L1, NEIL3, and GPC6. The genes HLA-DRA, CHI3L1, and ZNF521 were 
downregulated in 69%, 69% and 62% of MM-MSC, whereas genes SEMA3A, NEIL3 and GPC6 were downregu-
lated in 54%, 38%, and 31% of MM-MSC, respectively (Fig. 8). Although all genes were downregulated in tumor 
samples when compared with normal controls, we only found a statistically significant difference for the ZNF521 
gene (p = 0.046) (Fig. 9).

Multiple myeloma effects on MM-MSC telomere length.  Telomere length comparison between 
MM-MSC and ND-MSC are showed in Fig. 10. As expected, MM-MSC presented lower telomeric length 
(mean = 0.97, SD = 0.11) than ND-MSC (mean = 1.04, SD = 0.11). However, the independent t test for the two 
samples showed that the difference found was not statistically significant (t(24) = 1.578, p = 0.128).

Cell cycle analysis showed no difference between MM-MSC and ND-MSC.  The majority of MSC 
from cases and controls were in the quiescent phase (G0/G1 phase, MM-MSC: mean = 86.05%, SD = 8.97%, 
ND-MSC: mean = 85.82%, SD = 4.01%), with a few cells in S phase (MM-MSC: mean = 10.93%, SD = 7.74, 
ND-MSC: mean = 12.32%, SD = 2.87%), and in the G2/M phase (MM-MSC: mean = 3.02%, SD = 3.61%, 
ND-MSC: mean = 1.86%, SD = 1.33%) (Fig. 11). Fisher’s exact two-tailed test showed no statistically signifi-
cant difference between the MM-MSC and ND-MSC percentages in the G0/G1, S and G2/M cell cycle phases 
(p = 1.00).

Discussion
Gene expression profiling analysis of MM-MSCs compared to ND-MSCs revealed 485 DEG, being 280 upregu-
lated and 205 downregulated. When we built the co-expression network, there was a reversal and the downregu-
lated genes became more represented in the network than the upregulated (164 versus 31), which was expected, 
since among the 280 upregulated genes, only 49 were protein-coding genes, whereas, of the 205 downregulated 
ones, 170 were protein-coding genes. Further exploration of DEG with different bioinformatics tools, showed that 
the most relevant enriched pathways and functions were among the downregulated genes, especially for those 
involved in cell cycle progression, immune response activation, and osteoblastic function and maturation. We 
have validated part of these findings through real-time quantitative PCR methodology, and additional in vitro 
functional assays. Six downregulated target genes, whose functions were mainly related to cell cycle progres-
sion, immune response activation, and osteoblastic function and maturation, were selected for validation at the 
mRNA level. Of the six target genes selected, a statistically significant difference was detected only for the ZNF521 
(p = 0.048), which was downregulated in 62% of the MM-MSC evaluated samples, validating the microarray 
findings. In line with these results, a tendency to down expression was also observed for the HLA-DRA and 
CHI3L1 genes (both 69%), and for SEMA3A gene (54%). Regarding the functional in vitro assays, we chose 
to validate the cell cycle progression, since this function has already been reported by other authors as being 
impaired in MM-MSC, leading these cells to enter into an early cellular senescence process when compared 

Figure 2.  Scatter plot with degree and betweenness values for all nodes of gene co-expression network. The 
official gene symbol of the nodes with the highest values of degree (hubs) or betweenness (bottlenecks) are 
highlighted in the lower right and upper left quadrants, respectively. In addition, nodes with the highest degree 
and highest betweenness values (high hubs) are highlighted in the upper right quadrant. Red and green symbols 
represent, respectively, upregulated and downregulated genes.
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to ND-MSC. To perform the functional validation, we analyzed the cell cycle phases distribution, and the tel-
omeric length quantification, through, respectively, flow cytometry, and multiplex real-time quantitative PCR 
methodologies. Regarding the cell cycle distribution, the majority of MM-MSC and ND-MSC were quiescent 
G0/G1 (mean = 86.05%, SD = 8.97%). The mean telomeric length was lower in MM-MSC in comparison with 
the ND-MSC (mean = 0.97, SD = 0.11 versus mean = 1.04, SD = 0.11). However, the difference found was not 
statistically significant, suggesting that the alterations in mRNA level related to the cell cycle are not related to a 
shortening of telomeres, or the casuistic was insufficient to detect this difference due to the biological variability 
among individuals.

Our results suggest that MM-MSCs have a distinct gene expression profiling in comparison with ND-MSCs. 
Interestingly, these cells showed hundreds of DEG even after in vitro expansion in the absence of tumor cells, 
confirming previous findings32–34,58 (Table 5). However, as discussed by André et al.33, the variability of the results 
found in these studies is relatively high, possibly due to several factors, including but not limited to: methodo-
logical differences prior to microarray execution - from the local and the form of MSC isolation, as well as its 
method of cultivation - up to differences in the microarray platform chosen, as well as the statistical and bioin-
formatics approaches used for the pre-processing of the raw data and identification of the DEG. However, despite 
the differences, it is still possible to make relevant comparisons among these studies, and to raise quite pertinent 
hypotheses.

The first work to evaluate the overall gene expression profiling of MM-MSC, in comparison with ND-MSC, 
was published in 2007 by Corre et al.32. Among the 183 DEG/Probesets found, 59 were classified by the authors 
as belonging to the category of tumor microenvironment, comprising functions such as cellular communication, 
receptor signaling molecules, extracellular matrix, and secretory molecules. Additionally, they highlighted 40 
genes (20 upregulated and 20 downregulated) as being essential for MM, of which four were also found in our 
study, one gene upregulated - ANGPTL4 - and three with diminished expression - NPR3, TNFRSF19, and FBLN1. 
The gene ANGPTL4 was also found downregulated in MM-MSC in three previous independent studies32–34. 
More recent publications have demonstrated its multiple roles in osteolytic lesions59, and MM bone disease60, 
for example, through the promotion of osteoclast-mediated bone resorption, cartilage degradation, and angio-
genesis. The NPR3 and FBLN1 genes, among other functions, participate in bone formation61,62, i.e., the reduc-
tion of their expression can potentially contribute to the development of osteolytic lesions frequently found in 
patients with MM. Finally, the TNFRSF19 gene, a member of the TNF receptor superfamily, appears to mediate 
caspase-independent cell death (Gene database, NCBI).

Gene Degree Betweenness Relevant function Reference

HLA-DRA 34 589.1 Participates in immune response, through presenting peptides derived 
from extracellular proteins to immune cells GeneCards

EXO1 34 515.9
Exonuclease which is involved in DNA mismatch repair, and is 
required for somatic hypermutation and class switch recombination of 
immunoglobulin genes

GeneCards and 
UniProtKB

GMFG 33 667.5 NAa —

MELK 33 562.0 Serine/threonine-protein kinase which plays an important role in cell 
cycle regulation and carcinogenesis UniProtKB

FOXM1 32 335.3 Transcriptional factor that regulates the expression of genes essential for 
cell cycle regulation UniProtKB

EVI2B 31 475.0 NA —

CDC20 31 426.8 Acts at multiple points during cell cycle, being required in nuclear 
movement prior to anaphase and chromosome segregation Entrez Gene

HLA-DMB 30 347.0 Participates in immune response, by helping CLIP removal from the 
peptide binding site of MHC class II molecules Entrez Gene

CDC6 30 302.5 Acts as a regulator of DNA replication and participates of checkpoints 
controls during cell cycle

Entrez Gene and 
UniProtKB

BUB1B 29 435.7 Kinase that plays a function as a cell cycle regulator, ensuring proper 
chromosome segregation before cell cycle progression Entrez Gene

IFI30 29 401.4 Lysosomal thiol reductase involved in immune response, through MHC 
class II-restricted antigen processing Entrez Gene

HJURP 29 269.5 Centromeric protein related with chromosome maintenance and cell cycle GeneCards

NCAPH 29 236.6
Represents the regulatory subunit of the condensin complex, which 
is required for conversion of interphase chromatin into condensed 
chromosomes for mitosis progression

Entrez Gene and 
UniProtKB

NUSAP1 29 213.9 Promotes the organization of mitotic spindle microtubules around 
chromosomes Entrez Gene

ASF1B 29 131.2 Histone chaperone that promotes histone deposition, exchange and 
removal during nucleosome assembly and disassembly Entrez Gene

CCNA2 29 99.5 Involved in cell cycle control, promoting transition through G1/S and 
G2/M and it is associated with cellular senescence pathway

Entrez Gene, 
GeneCards and 
UniProtKB

Table 2.  The 16 DEG with the highest values of degree and low values of betweeness (hubs) in the gene co-
expression network, and their most relevant functions. Keywords are underlined. aNA = Not Available.
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In line with our results, André et al.33 also found enriched categories related to the cell cycle, such as, 
“M-phase”, “DNA replication”, “cell cycle regulation”, etc, among downregulated genes, like those results found 
by Wagner et al. (2008) in a study with ND-MSC in replicative senescence63. In our study, one of the functional 
modules detected through Cytoscape was composed mainly of genes involved in different pathways and biologi-
cal processes related to cell cycle progression. In addition, André et al33. also demonstrated that MM-MSCs have 
a lower proliferative rate, higher cell size, β-galactosidase increased activity, retention of cells in the S phase of the 
cell cycle, and secrete a senescence-associated molecule profile. Thus, the authors hypothesized that MM-MSCs 
appear to become senescent earlier than ND-MSCs. It is important to highlight that in this study, MSCs were 
expanded in vitro in monoculture, i.e. in the absence of other cells including MM plasma cells. Berenstein et al.64 
demonstrated that MM-MSC, when cultured in the absence of tumor cells, accumulate in the S-phase of the cell 
cycle, increase β-galactosidase activity, and increase the expression of microRNAs associated with senescence. 
Moreover, they also demonstrated that MM-MSC co-cultivation with a MM cell line (KMS12-PE) is able to 
reverse, at least partially, the senescence phenotype of MM-MSC64. Contributing to these findings, the study of 
Garcia-Gomez et al.34, which evaluated the gene expression profiling of MM-MSC expanded in monoculture 
and co-culture with the MM cell line MM.1 S, observed that, after co-cultivation, some genes related to cell cycle 
progression become upregulated.

With regard to the other functional module identified through Cytoscape after performing functional enrich-
ment analysis, we observed that the majority of the enriched categories was related to different aspects of the 
immune response, including antigen processing and presentation via MHC classes I and II, T cells activation, and 
immune response triggered by inflammatory cytokines. All genes belonging to these categories were downregu-
lated in MM-MSC, suggesting that these biological pathways and processes could figure as a possible mechanism 
of immune escape. The immune system of MM patients is highly impaired65. A study published by our group 

Gene Degree Betweenness Relevant function Reference

EYA1 21 1098.0 Acts as protein phosphatase and as transcriptional coactivator, participating 
in DNA double-strand break repair

GeneCards and 
UniProtKB

DAPK1 25 1090.5 Serine/Threonine kinase that participates in cell survival, apoptosis, and 
autophagy UniProtKB

GLT8D2 28 986.2 NAa —

PTN 24 876.9 Secreted growth factor that plays essential roles in several pathways, 
including survival, cell migration, angiogenesis, and tumorigenesis Entrez Gene

SEMA3A 19 842.6 Positive regulator of osteoblastogenesis Hayashi et al.80

BICC1 23 824.2 Acts as a genetic determinant of osteoblastogenesis and bone mineral 
density Mesner et al.78

SERPINB1 25 822.2
Proteinase inhibitor that participates of innate immune response, being a 
potent intracellular inhibitor of granzyme H and regulating the activity of 
neutrophil proteases

Entrez Gene and 
UniProtKB

CHRDL1 25 809.0 Antagonist of bone morphogenetic protein 4 Entrez Gene

ENPP2 27 796.0
Phopholipase which is responsible for catalyzing the production of 
lysophosphatidic acid in extracellular fluids, promoting cell proliferation 
and chemotaxis

Entrez Gene

IL1R1 26 725.5 Cytokine receptor, being an important mediator involved in immune 
response and inflammatory responses Entrez Gene

BAALC 14 722.2 Indetified in patients with acute myeloid leukemia Entrez Gene

FOXQ1 13 712.0 Involved in cell cycle regulation and tumorigenesis Entrez Gene

MMD 24 707.0 Molecule expressed by in vitro differentiated macrophage Entrez Gene

RAB27B 13 703.3 Belongs to the Rab protein family and plays a role in vesicular fusion and 
trafficking Entrez Gene

HAS1 23 694.4
Enzyme that catalyzes the hyaluronan synthesis, a major component 
of most extracellular matrices. It is also associated with Waldenstrom 
macroglobulinemia

Entrez Gene, 
GeneCards, and 
UniProtKB

ZNF521 19 671.5 Zinc finger protein that promotes the maturation and function of mature 
osteoblasts Hesse et al.75

Table 3.  The 16 DEG with the highest values of betweeness and low values of degree (bottlenecks) in the gene 
co-expression network, and their most relevant functions. Keywords are underlined. aNA = Not Available.

Gene Degree Betweenness Relevant function Reference

NEIL3 42 2016.0 Plays a role in cell cycle, by repairing telomere damage during phase S Zhou et al.81

SERPING1 43 1687.6 Protein involved in the regulation of complement system activation Entrez Gene

TSPYL5 31 1133.1 Involved in modulation of cell growth, through TP53/p53 inhibition UniProtKB

APOBEC3B 29 805.4 Might participate in cell growth and/or cell cycle control Entrez Gene

Table 4.  The 4 DEG with the highest values of degree and betweeness (high hubs) in the gene co-expression 
network, and their most relevant functions. Keywords are underlined.
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showed that in BM of MM patients there is an increased expression of Treg cell markers, FOXP3 and CTLA4 
genes, suggesting their accumulation in the BM microenvironment of MM patients, and a possible mechanism 
of tumor evasion from the immune system66. Besides, other studies have showed that the decrease in the num-
ber of CD19+ B-cells, CD4+ and CD8+ T-cells in patients with MM is negatively correlated with survival in 
these individuals67–69. Moreover, several studies have demonstrated a decrease in the number and/or function 
of different types of CD4+ and CD8+ T-cells in patients with MM70. Another cell type affected in several types 
of cancer, including in MM, are dendritic cells, which mediate antigen-specific immune responses, through the 
antigen processing and presentation via MHC class II to T-cells71,72. Magalhães et al.73 demonstrated that patients 
who achieved long-term control of MM have several differences in the immune system compared to patients with 
active disease, ranging from increased cytotoxic T cells and NK cells, to decreasing numbers of Treg cells, thus 
favoring the restoration of the antitumor cytotoxic responses of the immune system. The MSCs, under normal 
conditions, play an important immunoregulatory role. In the context of multiple myeloma, although they are 
not the tumor cells themselves, growing evidence from the literature has shown that their immunoregulatory 
functions are altered. A recent study by Chen et al.74, demonstrated in animal model that MM-MSCs promote 
the proliferation of tumor plasma cells through the inhibition of T-cell mediated immune responses via the PD-1 
and PD-L1 pathway. Therefore, although no functional experiments have been performed to assess the immune 

Figure 3.  (A–C) Gene co-expression networks of the functional modules identified through the Cytoscape 
plug-in GLay, representing only the interactions between the hubs, bottlenecks and high hubs in each of the 
modules. Green color denotes gene dowregulation. All of the genes depicted above have decreased expression in 
MM-MSCs compared to ND-MSCs.
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Figure 4.  Co-expression network enrichment analysis showing overrepresented GO-BP terms for the network 
nodes from module 1. GO-BP = Gene Ontology-Biological Process.
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Figure 5.  Co-expression network enrichment analysis showing overrepresented KEGG pathways for the 
network nodes from module 1. KEGG = Kyoto Encyclopedia of Genes and Genomes.
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Figure 6.  Co-expression network enrichment analysis showing overrepresented GO-BP terms for the network 
nodes from module 3. GO-BP = Gene Ontology-Biological Process.
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response in MM-MCS, based on literature evidence, genes related to different pathways of the immune sys-
tem, including antigen processing and presentation, are expected to be altered in MM-MSC when compared to 
ND-MSC, as was observed in our study. However, the meaning of these alterations, as well as their role in the 
pathophysiology of the disease, still need to be elucidated.

            KEGG enriched pathways - Module 3
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Figure 7.  Co-expression network enrichment analysis showing overrepresented KEGG pathways for the 
network nodes from module 3. KEGG = Kyoto Encyclopedia of Genes and Genomes.

Figure 8.  Heat-map showing the expression pattern of the genes SEMA3A, GPC6, HLA-DRA, ZNF521, 
CHI3L1, and NEIL3, evaluated by RT-qPCR. The candidate genes were considered differentially expressed in 
MM-MSC when their expression levels showed at least a 2-fold increase or decrease in comparison to normal 
cells. MM-MSC = Multiple Myeloma Mesenchymal Stem Cells.
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Regarding bone formation and resorption, the ZNF521 gene, which was downregulated in MM-MSCs, plays 
a key role in bone metabolism - this gene acts inhibiting the differentiation of osteoblast progenitors, through 
binding to RUNX2 pro-differentiation transcription factor, and simultaneously promoting maturation and cor-
rect function of mature osteoblasts75. In agreement with these data, the RUNX2 gene was also downregulated in 
MM-MSC (FC = −1.65, gene expression evaluated only by microarray), possibly contributing to the imbalance 
of the bone metabolism observed in patients with MM. In addition, the downregulation of SEMA3A, which was 
classified as a bottleneck in the co-expression network, may also contribute to bone metabolism imbalance, since 
it plays an important role in osteoblastogenesis, inhibiting osteoclastic differentiation and stimulating osteoblastic 
differentiation76. This gene also acts as an inhibitor of angiogenesis in endothelial cells, and a study reported that 
the loss of its inhibitory capacity may contribute to the transition from MGUS to the active form of MM77. Finally, 

Figure 9.  Expression of SEMA3A, GPC6, HLA-DRA, ZNF521, CHI3L1, and NEIL3, evaluated by RT-
qPCR, of MM-MSC (n = 13) in comparison with ND-MSC (n = 5). The experiments were performed in 
technical triplicates and the results are presented as mean and standard deviation (SD). GAPDH gene was 
used as endogenous control and the HS-5 cell line as a calibrator. Mann-Whitney U test was used to perform 
comparison among groups regarding relative gene expression. NS = Not Significant; MM-MSC = Multiple 
Myeloma-Mesenchymal Stem Cells; ND-MSC = Normal Donor-Mesenchymal Stem Cells.
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the BICC1 gene, also downregulated in the MM-MSC and classified as a bottleneck, is a genetic determinant of 
osteoblastogenesis and mineral bone density78.

The main limitation of our study is the small number of MM patients enrolled (n = 19). All of them were 
diagnosed in the same public hospital which receives most of MM new cases in stage III (84% in this study) and 
medical emergency, such as spinal cord compression, renal insufficiency, hypercalcemia or bone fractures, when 
immediate therapeutic interventions with corticosteroids and bisphosphonates are necessary, making patients 
ineligible for gene expression studies. Another limitation was that the controls were not age-matched to cases. 
In general, transplant normal donors were younger than MM patients. This situation could raise the hypothesis 
that the early senescence profile of MM-MSC, or the other differences detected through bioinformatics analysis, 
could be artificially created by the lack of age matching. Magalhães et al.79 conducted a meta-analysis of microar-
ray studies that evaluated aging-related genes, and they identified 74 genes with higher levels of evidence. Of the 
485 DEG in the MM-MSC compared to the ND-MSCs identified in this study, there was an overlap of only two 
genes within the 74 reported by Magalhães et al.79. The genes were SERPING1 and S100A6, which are involved 
with the regulation of complement cascade and cell cycle progression and differentiation, respectively. Thus, 
the absence of age-matched cases and controls probably did not significantly affect our data. Additionally, MSC 
from both groups were expanded in vitro, which might introduce artifacts. However, unfortunately, MSC from 
normal donors and patients with MM are found in very low number in the BM. Therefore, in order to obtain the 
appropriate number of cells to perform experiments, these cells must be expanded in vitro previously. Finally, 
MM-MSCs were expanded in vitro in the absence of MM tumor cells. However, despite this limitation, the com-
parisons among different studies, including those that were carried out in co-culture, allow the researchers to 

Figure 10.  Mean telomere length of MM-MSC (n = 19) in comparison with ND-MSC (n = 7), expressed by 
T/S ratios. The experiments were performed in technical triplicates and the results are presented as mean and 
standard deviation (SD). To determine the effect of group on MSC telomere length, the independent t-test was 
used. NS = Not Significant; MM-MSC = Multiple Myeloma-Mesenchymal Stem Cells; ND-MSC = Normal 
Donor-Mesenchymal Stem Cells.

Figure 11.  Cell cycle analysis of MM-MSC (n = 17) in comparison with ND-MSC (n = 7), expressed by cell 
percentages over G0/G1, S and G2/M phases. The results are presented as mean and standard deviation (SD). 
To evaluate the association of the group and the MSC frequencies over cell cycle phases, the Fisher’s exact 
two-tailed test was used. NS = Not Significant; MM-MSC = Multiple Myeloma-Mesenchymal Stem Cells; ND-
MSC = Normal Donor-Mesenchymal Stem Cells.
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generate quite interesting hypotheses, which can be tested through comparisons between the monoculture and 
the co-culture of the MM- MSC with or without MM cells.

In summary, our study demonstrated that MM-MSCs have a distinct gene expression profile when compared 
to the ND-MSCs, corroborating previous studies. The functional enrichment analysis of the gene co-expression 
network revealed that the main deregulated functions in MM-MSC are related to cell cycle progression, activation 
of the immune response, and to bone metabolism, which may contribute directly or indirectly to MM physiopa-
thology. Due to the essential role of these cells in the maintenance and progression of MM, potential therapeutic 
targets and new drugs capable of disrupting the interactions between MM-MSC and MM cells are welcome.
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