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OptiPharm: An evolutionary 
algorithm to compare shape 
similarity
S. Puertas-Martín   1,3, J. L. Redondo1, P. M. Ortigosa1 & H. Pérez-Sánchez2

Virtual Screening (VS) methods can drastically accelerate global drug discovery processes. Among 
the most widely used VS approaches, Shape Similarity Methods compare in detail the global shape of 
a query molecule against a large database of potential drug compounds. Even so, the databases are 
so enormously large that, in order to save time, the current VS methods are not exhaustive, but they 
are mainly local optimizers that can easily be entrapped in local optima. It means that they discard 
promising compounds or yield erroneous signals. In this work, we propose the use of efficient global 
optimization techniques, as a way to increase the quality of the provided solutions. In particular, we 
introduce OptiPharm, which is a parameterizable metaheuristic that improves prediction accuracy and 
offers greater computational performance than WEGA, a Gaussian-based shape similarity method. 
OptiPharm includes mechanisms to balance between exploration and exploitation to quickly identify 
regions in the search space with high-quality solutions and avoid wasting time in non-promising areas. 
OptiPharm is available upon request via email.

The discovery of new drugs is a very expensive process, frequently taking around 15 years with success rates that 
are usually very low1,2. Many experimental approaches have been used for discovering new compounds with the 
desired pharmacological properties, ranging from traditional medicine3,4 to High Throughput Screening (HTS) 
infrastructures5,6. The latter is mostly used by the Pharma Industry, but little by academic research groups; in 
other words, its application is not widespread outside the industrial domain. In order to avoid these limitations, 
new techniques based on principles of Physics and Chemistry were developed about three or four decades ago 
for the computer simulation (mainly using high-performance computing architectures) of systems of biological 
relevance7,8. Computational chemistry was later applied for processing large compound databases, and also for 
predicting their bioactivity or other relevant pharmacologic properties. Using this approach, it was shown that it 
was possible to use such computational methodology to pre-filter compound databases into much smaller subsets 
of compounds that could be characterized experimentally. This idea was named Virtual Screening (VS), and it 
reduces the time needed and expenses involved when working on drug discovery campaigns9,10. Nonetheless, 
the accuracy of the predictions made with VS methods still needs to be improved to avoid discarding promising 
compounds or providing erroneous signals and the time needed for their calculations still needs to be reduced. 
The inaccuracies in the predictions of VS methods are mostly due to the simplifications used in their scoring 
functions11.

VS methods can be divided into Structure-Based (SBVS) and Ligand-Based (LBVS) methods. When the struc-
ture of the protein target is known, SBVS can be applied, and methods such as molecular docking12 and Molecular 
Dynamics13 are employed. But the number of already resolved crystallographic structures is still insufficient14, so 
SBVS methods cannot always be applied. Another option is to use LBVS methods, where only data about known 
compounds with desired properties are used to derive new improved ones. In practice, whether SBVS or LBVS 
methods should be used, or even both at the same time, will depend on the specific drug discovery project.

This study focuses on LBVS methods, which can be divided into several categories15 such as pharmacophore 
methods16,17, shape similarity methods (SSM)18, QSAR19, Machine Learning20, atom-based clique-matching such 
as SQ/SQW21 and Lisica22, property-based (USR23) or atom distribution triplet based (Phase-Shape24).
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In SSM, a large database of compounds is processed against a molecular query, to provide information con-
cerning which of the molecules from the database is geometrically similar, in terms of global molecular shape, to 
the input molecule used. Indeed, different strategies exist for shape calculation. One of the most widely used is the 
Gaussian25 model. Tools such as ROCS26, WEGA27, SHAFTS28 and Shape-IT29 use it.

The main differences between SSM reside in the accuracy of the predictions. It has been demonstrated that, 
depending on the compound dataset, some methods perform better than others30, but there is currently no 
one-size-fits-all approach that can be considered first choice for any molecular dataset. Besides, the computa-
tional time needed for the calculations is also of the utmost importance.

Among the previously commented SSM methods, we consider WEGA to be the state of the art in terms of 
accuracy of the predictions, while ROCS is considered to be the state of the art in terms of computational speed. 
For achieving such performance, ROCS introduced a number of drastic short-cuts for efficiency for computing 
overlap volumes between molecules31. For instance, all hydrogen atoms are ignored as they make very small con-
tribution for the overall molecular shape, and all heavy atoms are set with equal radii. Besides, the most critical 
simplification in ROCS is that the shape density function of each molecule contains only the first-order terms, 
and all higher order terms in the original Gaussian approach25 are omitted. This significantly simplified ROCS 
computations but also received criticism for the inaccuracy of this approximation23; mainly that the molecular 
volumes are significantly overestimated. And since the Gaussian shape algorithms are widely used in various VS 
methods, it is important to avoid errors introduced to the shape similarity calculation due to this overestimation 
of the volumes.

WEGA was the first method that partially solved some of these ROCS issues by avoiding the use of only 
first-order terms and incorporating more terms, at the expenses of increasing computation costs, but increasing 
accuracy of the calculations, which is desirable in the drug discovery context.

In this work, we introduce a novel SSM method named OptiPharm, which introduces a new optimization 
scheme that can be adapted through extensive parameterization to relevant features of molecular datasets, such 
as average size, shape, etc. In other words, OptiPharm is an evolutionary method for global optimization, which 
can be parametrized to different aims. SSM methods with extensive parameterization at the search level have not 
been practically explored in the VS context. The most of techniques are local optimizers which do not sufficiently 
explore the search space. As the results we later show, making an effort to deeply explore the whole search space 
can be of a great interest to increase hit rates in drug discovery projects.

Method
This section describes the main idea behind shape similarity calculations and its application in the drug discovery 
process using the new OptiPharm method. Next, the optimization algorithm used in similarity screening calcu-
lations is presented and, finally, the benchmarks used in this study are explained in detail.

Shape Similarity.  The similarity score between molecules A and B is computed as the overlapping volume 
of their atoms. In particular, to compare the results obtained by OptiPharm with those achieved by WEGA, the 
similarity function is implemented as in WEGA27. For the sake of completeness, this function is written in the 
following form:
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where p is a parameter that controls the softness of the Gaussian spheres, i.e., the height of the original Gauss 
function, and σ is the radius of the atom. More precisely, the radius represents the well-known van der Waals 
radius. The values associated to those two parameters are obtained by empirical knowledge. For the problem 
under consideration, the same figures proposed in WEGA27 are considered.

Notice that the score obtained from Equation 1 depends on the number of atoms of the two compared mole-
cules, i.e., the higher this number, the longer the value of VAB

g . In reality, it lies in the interval [0, +inf). To be able 
to measure the grade of similarity between compounds, independently of the number of atoms that compose 
them, the Tanimoto Similarity32 value is computed:
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where VAA and VBB is the self-overlap volume of molecules A and B, respectively. It has a value in the range [0, 1], 
where 0 means there is no overlapping, and 1 means the shape densities of both molecules are the same.

Previous approaches.  WEGA is a local optimizer conceived to maximize the overlapping between two mol-
ecules A and B, given as input parameters. To direct the search, it computes the derivate of the objective function 
Tc, which specifically considers Equation 1. It means that WEGA can be only applied when the similarity of two 
molecules is measured by means of such an equation.

WEGA starts the search with an initial solution and moves it from neighbor to neighbor as long as possible 
while increasing the objective function value. The main advantage of WEGA is its ability to find a solution in a 
sufficiently short period of time. On the contrary, its main drawback is its difficulty to escape from local optima 
where the search cannot find any further neighbor solution that improves the objective function value, i.e., the 
quality of the final solution closely depends on the considered starting ligand pose, obtained from the conforma-
tion of the molecular query. To deal with this drawback and to increase its probability of success, WEGA con-
siders more than a single starting point. More precisely, it applies the local optimizer from four different poses. 
The first one is obtained by aligning and centering the two input molecules at the origin of the coordinates. The 
remaining ones are obtained by rotating the first one 180 grades at each axis27.

The interested reader can revise literature33–35 for the research progress of WEGA algorithm and some of its 
applications. In this work, we consider that it is possible to find a better trade-off between quality of the solution 
and computing time.

Optimization algorithm.  OptiPharm is an evolutionary global optimizer, available upon request. It can 
be considered a general-purpose algorithm, in the sense that it can be used to solve any optimization problem 
that involves the computation of the similarity of two compounds given as input parameters. In other words, it is 
independent of the objective function used to measure the similarity between two given molecules. Nevertheless, 
in this work, its performance is illustrated by solving a maximization problem which consists on finding the s 
solution which maximizes the Tc function previously defined.

OptiPharm is a global optimization method in the sense that it makes an effort to analyze the whole search 
space looking for promising areas where the local and global optima can be. In other words, instead of focusing 
on a set of pre-specified starting points, as WEGA does, it applies procedures to find promising subareas of the 
search space, which will be deeper analyzed during the optimization procedure. OptiPharm applies procedures 
based on species evolution to gradually adjust one of the molecules (the query) to the other one (the target), 
which remain fixed during the optimization procedure.

A solution s represents the rotation and translation to be accomplished by the query. More precisely, s is a 
quaternion of the form s = (θ, c1, c2, Δ), where θ is the rotation angle to be carried out over a rotation edge defined 
by the points c1 = (x1, y1, z1) and c2 = (x2, y2, z2), and Δ = (Δx, Δy, Δz) represents a displacement vector. It should 
be borne in mind throughout that a quaternion indicates the rotation and the translation applied to the variable 
molecule from its initial state.

The parameters associated to a quaternion s are bounded. Since each pair of input compounds can have differ-
ent sizes, the corresponding limits are dynamically computed by OptiPharm, for each particular instance. To do 
so, the 3D boxes containing the input compounds are calculated. Then, the bound values for both c1 and c2 are set 
to the borders of the box containing the variable molecule. Notice that the same axis can be given by an infinite 
number of two coordinates. In this way, redundancy is prevented, which is very important from an optimization 
point of view, since exploring the same solutions several times makes the algorithm inefficient. The interval of Δ 
is set to [−maxD, maxD], being maxD the maximum difference between the boxes. This avoids the evaluation 
of situations where no overlapping exists between molecules, and the similarity between them is clearly zero (see 
Fig. 1). Finally, the angle θ is always set in the interval [0, 2π], independently of the compounds considered as 
input parameters.

The bound values of the quaternion components define a multidimensional search space (or feasible region) 
with multiple local and global optima.

OptiPharm is a new metaheuristic for global optimization. OptiPharm includes mechanisms to detect prom-
ising subareas of the search space and to discard those in which no global optima are expected to be found. In 
other words, instead of focusing on some fixed starting solutions, OptiPharm attempts to detect new ones which 
have the potential to become local or global optima. To do so, OptiPharm initially works on a set of M solutions 
(quaternions), called population. The quaternions can be considered as independent starting points on which 
OptiPharm applies reproduction procedures based on natural evolution. The term independent signifies that a 
point has the ability to discover new promising poses (in this work we use the concept of pose as rigid body rota-
tions and translations obtained from starting conformation of query compound) without the participation of the 
rest of the population. As a consequence, offsprings of new promising solutions can appear. Then, from among all 
the existing poses, the best M solutions will be promoted to the next stage, where they are improved by means of 
a local optimizer. This reproduction-replacement-improvement sequence is repeated until a number of iterations 
tmax is achieved (see Fig. 2).

But the real strength of OptiPharm lies on the concept of radius: each solution in the population has an asso-
ciated radius value, which determines a multidimensional subarea of the search space. It can be understood as a 
window, where the reproduction and improvement methods are applied. The radius associated to a pose depends 
on the iteration i where it has been discovered. More precisely, the radius Ri of a new point, found during the 
reproduction procedure at iteration i, comes from an exponential function that decreases as the index level (cycles 
or generations) increases, and which depends on the initial domain landscape (the radius at the first level, R1) and 
the radius of the smallest candidate solution Rtmax

, which is given as input parameter. This radius mechanism, 
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designed as a balance between exploration and exploitation, is inherited from UEGO, a general optimization 
method widely used in the literature with promising results36.

During the execution of OptiPharm, several candidate solutions with different radii can coexist simultane-
ously which means that the method is able to analyze both big and small subregions at the same stage of the 
optimization procedure as it looks for valuable new solutions (see Fig. 3).

Figure 1.  The correct bounding of the parameter Δ prevents the evaluation of poor quality solutions, such as 
that considered in this figure, where no overlapping exists and hence the shape similarity of both molecules is 
equal to zero.

Figure 2.  OptiPharm algorithm structure.
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Apart from the maximum number of starting solutions M, the number of iterations tmax and the smallest 
radius value Rtmax

, OptiPharm has another input given parameter: the maximum number of function evaluations 
for the whole optimization procedure, N. These function evaluations are distributed among the candidate solu-
tions at each iteration, in such a way that each one has a budget to generate new solutions and to improve them. 
These budgets are mathematically computed by means of equations that depend on the previously mentioned 
input parameters. Again, this idea has been borrowed from UEGO36.

In a previous work37 the effects of the different parameters of UEGO and, hence, of OptiPharm were ana-
lyzed. Moreover, some guidelines to fine-tune the parameters depending on the problem to be solved were also 
proposed.

Finally, it should be noted that, unlike most heuristics in the literature, the termination criteria of OptiPharm 
is not based on the number of function evaluations N, but on the number of iterations tmax. This point is important 
since the number of function evaluations consumed by OptiPharm depends on the particular case being solved. 
In other words, OptiPharm adapts itself to the complexity of the problem considered.

In the following subsubsections, the key stages of OptiPharm are explained.

Initialization method.  In the initialization phase, the two input molecules are aligned and centered at the origin 
of the coordinates (see Fig. 4). Then, from this initial situation, a population of M poses is composed. The first 
pose represents this initial stage, i.e. the former candidate solution will be equal to s1 = (θ, c1, c2, Δ) = (0, (0, 0, 
0), (0, 0, 0), (0, 0, 0)), indicating than the molecule to be optimized is not moved with respect to the target, which 
remains fixed. Three more initial poses are obtained by rotating the variable molecule π radians at each axis 
(always from the initial state), resulting in the following candidate solutions s2 = (π, (1, 0, 0), (0, 0, 0), (0, 0, 0)),  
s3 = (π, (0, 1, 0), (0, 0, 0), (0, 0, 0)) and s4 = (π, (0, 0, 1), (0, 0, 0), (0, 0, 0)). Finally, in order to introduce some 
randomness and prevent a possible drift to local optima, M − 4 molecular poses, with all their randomly obtained 
parameters, are also included.

Figure 5 shows the five initial solutions achieved for a particular instance with M = 5. As can be seen, there is 
always some overlap between both molecules. Consequently, the objective function is always greater than zero, 
while the radius value associated to all the initial poses is equal to R1. Notice that such a value is equal to the 
diameter of the search space.

Reproduction method.  The reproduction method is in charge of exploring the different subareas defined by the 
radius of each pose s in the population (see Fig. 3). The idea is to find new promising solutions which can evolve 
toward local or global optima at later phases of the algorithm. Each subarea is analyzed independently of the 
remaining ones. The process is as follows:

From each pose si in the population, new candidate solutions sij are randomly computed in the area defined 
by its radius (see Fig. 6(a)). Additionally, for each pair of trial solutions (sij and sik), the middle point (Mid(sij, sik))  
of the segment connecting the pair is computed (see Fig. 6(b)). Then, the objective function value of the extreme 
points (f(sij) and f(sik)), as well as the middle point (f(Mid(sij, sik))), is computed. If any objective function value 
of these new generated points is better of the original solution si, it will be updated, i.e., the centre of that sub-
area si will be the one with the best objective function value. Additionally, if the objective function value in the 
middle solution is better than that of the extreme points, it may mean that it is in a hill (see Fig. 6(b)), so that it 
is considered a candidate to be included in the population list. On the contrary, the endpoints will be inserted 
as new poses. The radius of the new pose in the population will be that one associated with the current iteration. 
Figure 6(c) shows a summary of the whole process by keeping the references to the names in Fig. 6(a,b).

Replacement method.  After the reproduction method has been applied, it is highly probable that the size of 
the population will be greater than the population size given by the input parameter M. Therefore, a mechanism 
for selecting the surviving solutions must be applied. Different types of replacements exist but, in this work, a 

Figure 3.  Several solutions with different radii can coexist simultaneously. Therefore, at the same stage of the 
optimization procedure, new promising regions are systematic analyzed, while others are examined thoroughly. 
This figure illustrates an example for a 2-dimensional case.
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deterministic and highly elitist one has been implemented: the original population and their corresponding off-
spring are grouped in an intermediate population, and then the M best solutions, i.e., the best poses, are selected 
as members of the population. The remaining ones are eliminated.

The implementation of this direct replacement involves the use of a sorting procedure whereby the poses are 
sorted according to their shape similarity value.

Improvement method.  In order to introduce some noise into the search process, and hence avoid the conver-
gence to local optima, a mutation operator is usually applied to the new offspring. Then, in most evolutionary or 
genetic algorithms, mutation mechanisms are included in the optimization procedure, which runs small random 
changes to the new individuals. However, for the present problem, the use of improvement methods has better 
shown to better approximate the poses towards the optima.

Figure 4.  Initially both molecules are aligned and centered at the origin of the coordinates (see figure above). 
The variable molecule is depicted in green, while the target is represented in red. Then, OptiPharm applies 
procedures based on species evolution to gradually adjust the variable molecule to the target. The two figures 
below show intermediate solutions obtained by OptiPharm when, from the initial state (top), a rotation is 
carried out (left) and a consecutive translation is accomplished (right).

Figure 5.  Initial solutions for a case with M = 5: (a) s1, initial situation; (b) s2, obtained when rotating s1 π rad at 
x-axis; (c) s3, obtained when rotating s1 π rad at y-axis; (d) s4, obtained when rotating s1 π rad at z-axis; (e) s5, all 
the parameter (θ, c1, c2, Δ) are randomly computed in the limits dynamically calculated by OptiPharm, for this 
particular instance.
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The improvement method implemented in OptiPharm is the local search method SASS, initially proposed by 
Solis and Wets38. It has been chosen mainly because it is a derivative-free optimization algorithm that can be 
applied to maximize any arbitrary function over a bounded subset of N .

Several modifications have been included to adapt SASS to the problem at hand. In the following they are 
briefly described.

Algorithm SASS internally assumes that the range in which each variable is allowed to vary is the interval 
[0, 1]. Since this is not our case, when necessary we use a function to rescale (normalize) the variable values to the 
interval [0, 1], and the function denorm to invert this process. In SASS, the new points are generated using a 
Gaussian perturbation ξ ∈ 3 over the search point (x,α) and a normalized bias term ∈b 3 to direct the search. 
The standard deviation σ specifies the size of the sphere that most likely contains the perturbation vector. In this 
work, its upper bound σub should have the same value as the normalized radius of the caller solution. Then, the 
parameter σub is also considered an argument of SASS. Hence, any single step taken by the optimizer is no longer 
than the radius of the calling candidate solution. Finally, the stopping rules are determined by a maximum num-
ber of function evaluations (femax) and by the maximum number of consecutive failures (Maxfcnt).

OptiPharm applies SASS to every pose in the population. See Fig. 7 for an illustrative example of its 
performance.

Computational Experiments Framework
Hardware setup.  All the experiments carried out in this work have been executed in a Bullx R424-E3, which 
consists of 2 Intel Xeon E5 2650v2 (16 cores), 128 GB of RAM memory and 1 TB HDD.

Figure 6.  Reproduction method.

https://doi.org/10.1038/s41598-018-37908-6
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Methodology to test the performance of the algorithms.  OptiPharm is a computer program which 
implements an evolutionary optimization algorithm which includes randomness in the search procedure. Then, 
in order to test its performance, we run each particular instance several times and we provide some statistical 
metrics, as usually is done when testing any heuristic algorithm in works in literature39–43. From a statistic point 
of view, a minimum number of 30 samples need to be considered for this44. Nevertheless, in this work, each par-
ticular instance has been run 100 times to increase confidence in the results. Then, figures as the average value and 
the standard deviation are computed to analyze its effectiveness and efficiency. It is important to highlight that 
executing several times a particular instance is only a methodology to analyze the robustness of the algorithm, but 
in the real world scenario, OptiPharm only needs a single run to provide reliable results.

Regarding WEGA, it is only run once for each particular instance, since it is deterministic (it uses a descent 
gradient method) and different executions always produce the same result.

Benchmarks.  Unlike OptiPharm, WEGA does not consider the hydrogen atoms in the shape similarity cal-
culations. To be able to compare the results provided by both algorithms, OptiPharm has been configured to omit 
the hydrogens when computing the shape similarity score. Additionally, as WEGA does27, all the heavy atom radii 
have been set to 1.7 Å. Furthermore, all compound pairs are centred and aligned in the same way. Consequently, 
the molecule centroids have been located at the coordinates centre of the search space. Finally, each molecule 
has been aligned in such a way that its longest axis has been oriented at X-axis and the shortest along the Z-axis.

The underlying OptiPharm algorithm is parameterizable, which means that it can be fine-tuned depending 
on the user’s preferences. So users may prefer to obtain high-quality solutions at the expense of slightly increasing 
the computational effort, while others may want an acceptable solution with reasonable computing time. In this 
work, the parameters that control OptiPharm were tuned by trying several combinations of parameter values 
with a reduced set of problems, and following the guidelines described in a previous work37. As a consequence, 
two different sets of input parameters are proposed, given rise to two versions of OptiPharm with different aims:

	 (i)	 OptiPharm Robust (OpR). In this case, the set of input parameters is chosen to make OptiPharm reliable 
and robust; in other words, to allow OptiPharm to deeply explore and exploit the search space in the search 
for the best possible pose. In particular, the following values were considered: N = 200000 function 
evaluations, M = 5 starting poses, tmax = 5 iterations and =R 1tmax

 as the smallest possible radius.
	(ii)	 OptiPharm Fast (OpF). On this occasion, the parameters are tuned so that the running times are lower or 

similar to those of WEGA, enabling a fair comparison between both algorithms. The following values were 
considered: N = 1000 function evaluations, M = 5 starting poses, tmax = 5 iterations and a minimum radius 
of =R 5tmax

.

From the previous paragraphs, one could infer that the number of starting poses, M = 5, and the number of 
iterations, tmax = 5, can be fixed independently of the goal pursued, while the smallest radius Rtmax

, and most 

Figure 7.  Example. The local optimizer SASS has been used as Improvement method. This figure shows the 
performance of SASS for a 2D case. SASS is a derivative-free optimization algorithm that can be applied to 
maximize an arbitrary function over a bounded subset of N . It looks for an improving direction and moves the 
starting point along it by making changes of different sizes (if the number of consecutive successes is larger than 
a pre-specified value, then the advance along the suggested searching direction will be longer; otherwise, the 
size of the step will be reduced. The area of action of the optimizer is limited by the corresponding radius. In 
OptiPharm, the stopping rule of SASS is determined by a maximum number of function evaluations and by the 
maximum number of consecutive failures.
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importantly, the number of function evaluations N have a bigger influence in both the effectiveness and the effi-
ciency of the algorithm.

Four computational studies were designed by considering the well-known Food and Drug Administration 
(FDA)45, Directory of Useful Decoys (DUD)46, Directory of Useful Decoys - Enhanced (DUD-E)47 and Maybridge 
datasets. In the following sections, they are briefly described.

FDA.  The FDA, a federal agency of the United States Department of Health and Human Services, is responsible 
for protecting and promoting public health by controlling, among other things, prescription and over-the-counter 
pharmaceutical drugs (medications). This agency provides a data set containing 1751 molecules, which represents 
approved medicines that can be used with safety in humans in the USA. It is a common practice48, in the current 
scenario, to identify which compound pairs in the FDA database share a high degree of shape similarity. To com-
pare the performance of both OptiPharm and WEGA, a set of 40 query compounds were randomly selected from 
this database. In order to obtain a representative set of samples, the FDA dataset was initially sorted according to 
the number of atoms of the compounds, and divided into 24 intervals (see Fig. 8). Then, a subset of compounds 
was randomly chosen for each interval. The number of selected samples in each interval was proportional to the 
number of compounds it included.

DUD.  Tests were also carried out applying shape similarity calculations and using different sets of molecules 
that are known to be active or inactive, and standard VS benchmark tests, such as the DUD46, whereby VS meth-
ods check how efficient they are at differentiating ligands that are known to bind to a given protein target, from 
non-binders or decoys. Input data for each molecule of each set contain its molecular structure and information 
about whether it is active or not. Information about active molecules for each protein of the DUD set was taken 
from experimental data. Decoys were prepared in order to resemble active ligands physically, but at the same 
time, to be chemically different from active molecules, making it very unlikely that they would act as binders. On 
average, for each ligand it is possible to find 36 decoy molecules that are very similar in physical terms, but with a 
very different topology. Details about how decoys were prepared (selected from already existing molecules in the 
ZINC database) can be found in the literature46, so that we shall only mention here the principal details required 
to understand the present study.

	 1.	 The initial database was built using 3.5 million Lipinski-compliant molecules from the ZINC database of 
commercially available compounds (version 6, December 2005).

	 2.	 Feature key fingerprints were calculated using the default type 2 substructure keys of CACTVS49 and the 
fingerprint-based similarity analysis was performed with the program SUBSET. Compounds with Tc values 
lower than 0.9 to any annotated ligand (named as actives) were selected. This reduced the number of ZINC 
compounds to 1.5 million molecules topologically dissimilar to the ligands.

	 3.	 The program QikProp (Schrodinger, LLC, New York, NY) was used to calculate 32 physical properties of 
all the annotated ligands and selected ZINC compounds from the previous step, and QikSim (Schrodinger, 
LLC, New York, NY) was applied to prioritize ZINC compounds possessing similar physical properties to 
any of the ligands.

	 4.	 A weight of 4 was used to emphasize the druglike descriptors (molecular weight, number of hydrogen 
bond acceptors, number of hydrogen bond donors, number of rotatable bonds, and log P), while the rest of 
the descriptors were ignored (weight 0) during the similarity analysis procedure.

	 5.	 Finally, thirty-six decoy compounds were selected for each ligand, leading to a total of 95316 decoys that 
were similar in terms of physical properties but topologically dissimilar to the 2950 annotated ligands. The 
total number of decoys is less than 36 times the number of annotated ligands because some ligands had the 
same decoys.

Figure 8.  Number of compounds included on the FDA database, according to their number of atoms.
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The original DUD database downloaded from http://zinc.docking.org has been used.

DUD-E.  The DUD-E47 is a well-known benchmark for structure-based virtual screening methods from the 
Shoichet Lab at UCSF47. The methodology of the DUDE benchmark is fully described in its original work47. 
Briefly, the benchmark is constructed by first gathering diverse sets of active molecules for a set of target pro-
teins. Analogue bias is mitigated by removing similar actives; similar actives are eliminated by first clustering the 
actives based on scaffold similarity, then selecting exemplar actives from each cluster. Then, each active molecule 
is paired with a set of property-matched decoys (PMD)50. PMD are selected to be similar to each other and to 
known actives with respect to some 1-dimensional physicochemical descriptors (e.g., molecular weight) while 
being topologically dissimilar based on some 2D fingerprints (e.g., ECFP51). The enforcement of the topological 
dissimilarity supports the assumption that the decoys are likely to be inactive because they are chemically differ-
ent from any know active. The benchmark consists of 102 targets, 22,886 actives (an average of 224 actives per 
target) and 50 PMD per active52. The original DUD-E database downloaded from http://dude.docking.org/ has 
been used in this work.

Maybridge.  Maybridge53 Screening Hit Discovery collection (over 53,000 compounds) is a commercial library 
of small hit-like and lead-like organic compounds of high diversity (Tanimoto Clustering at 0.9)54, that covers ca. 
87% of the 400,000 theoretical drug pharmacophores with general compliance with the Lipinsky rule of five and 
of good ADMET properties. The HitCreatorTM Collection (selection of 14,400 of Maybridge screening com-
pounds) aims to represent the diversity of the main collection covering the drug-like chemical space. Maybridge 
also offers a fragment library (30,000 fragments), a hit-to-lead building block collection, and a Ro3 2500 diversity 
fragment library (2500 fragments) with a Tanimoto similarity index of 0.66 (based on standard Daylight finger-
printing), assured solubility, optimized for SPR and Ro3 compliant. It provides special collections of Fluoro55, 
Fluoro and Bromo-fragment libraries56. The original Maybridge database downloaded from https://www.may-
bridge.com has been used in this study.

The AUC metric.  In this work, to measure the goodness of the algorithms when distinguishing between ligands 
and decoys, the Area Under a ROC Curve (AUC) was computed, as previously done in other related papers27. 
See57 for an in-depth description of calculation. Broadly speaking, the AUC of a set of elements is computed by 
considering a descriptor value that is associated to each element.

For the problem at hand, such a descriptor is given by Equation 4, which measures the shape similarity 
between two molecules, A and B. However, before computing the AUC, given a query molecule and a set of 
molecules the similarity to which is to be computed, a optimization problem must be solved to obtain the shape 
similarity scores for each molecule in the set. Then, the list is sorted in descending order according to the shape 
similarity values. Without going into detail, an AUC value equal to 1 means that such a particular algorithm has 
been able to differentiate perfectly between two datasets - in our case, between ligands and decoys. In other words, 
it is possible to determine a cut-off point (a real value) which divides the list into two intervals that contain all 
the decoys and ligands, respectively. When it is not possible to determine only two intervals, more cut-off points 
should be considered in an incremental way. Of course, the larger the number of intervals, the smaller the AUC 
value. However, AUC values smaller than or equal to 0.5 mean the algorithm has poor effectiveness, i.e., a random 
method would have achieved a similar classification.

Results and Discussion
Results obtained for FDA database.  It is important to mention that for all the algorithms and all the 
instances, a score equal to 1 is obtained when a molecule is compared to itself. Thus, from here on, when we men-
tion “the molecule with the highest shape similarity to a query compound”, and noted by BestComp, we exclude 
the case where target molecule and query are equal.

Table 1 shows, for each query compound, its number of atoms (nA), the other compound from the FDA data-
base with the highest shape similarity (BestComp) and the associated function score (Tc), according to OpR, OpF 
and WEGA. As can be seen, the OpR algorithm provides the highest shape similarity values Tc, although it is also 
the most time-consuming method according to Table 2. This means that better predictions can be accomplished 
by using OpR when there are no time constraints. However, if lower execution times are required, algorithms 
such as OpF or WEGA should be considered.

To the best of our knowledge, no algorithm, method or program exists that is able to provide with certainty 
the most similar molecule to a given query compound. Until this work, WEGA was the algorithm providing the 
most optimal shape similarity values27,34. Now, as can be seen in Table 1, OpR improves on WEGA in terms of 
the ability to find higher values of shape similarity when processing a query compound against a ligand database. 
Therefore, to analyze the effectiveness of OpF and WEGA in term of their predictions, the solutions provided by 
OpR will be considered the optimal ones.

As can be seen in Table 1, the predictions of WEGA coincide with those of OpR in 22 out of 40 cases, while 
OpF does it in 30 out of 40 occasions. This represents a small advantage to OpF against WEGA in terms of success 
in the predictions. Additionally, from Table 2, which shows the computing times, one can appreciate that OpF is 
quicker than WEGA.

Furthermore, it is important to study the instances where the predictions of OpF and WEGA do not coincide 
with those achieved by OpR. This occurs in 18 out of 40 cases for WEGA, and 10 times for OpF. Then, for each 
particular query, the 1751 compounds are sorted in descending order according to the shape similarity value 
obtained by OpR. Next, it is computed the position i in the list where the BestComp achieved by OpF (resp. 
WEGA) is, and which one shape similarity value, Tc(OpR). This information is shown in Table 1, columns 6 and 
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9 for OpF and WEGA, respectively. Broadly speaking, in most of cases the predictions carried out by OpF are 
located in a better position in the OpR list than the predictions proposed by WEGA.

It is important to mention that, in general, OptiPharm is designed to maintain population diversity and to 
investigate many promising poses in parallel, avoiding the genetic drift towards a single (local or global) optimal 
pose. However, depending on the selected set of parameters, the accuracy when approximating to the optima 
may be higher or lower. For this reason, OpF has been fine-tuned to explore the search space looking for the 
most promising poses, but without wasting time by “polishing” them. In optimization terms, the input param-
eters are selected to determine the highest peaks in the search space, but not to actually reach the top of the 
highest peak. Even when OpF proposes as BestComp the same compound as OpR (or even WEGA), its shape 
similarity value may be smaller. If the algorithm is allowed to run longer, as with OpR, the identified poses can 
be polished, increasing the score value. In this case we prioritize the computational effort. Figure 9 depicts a 
graphical example of this fact, specifically the query DB09236 from the FDA database, whose result can be seen 
in Table 1. Considering this query, OpR reveals that DB00270 is the compound which maximizes the shape 

query OpR OpF WEGA

name nA BestComp Tc BestComp Tc (i, Tc(OpR)) BestComp Tc (i, Tc(OpR))

DB00529 7 DB00828 0.921 DB00828 0.920 — DB00828 0.921 —

DB00331 9 DB01189 0.940 DB01189 0.936 — DB01189 0.940 —

DB01365 12 DB00191 0.944 DB00191 0.943 — DB00191 0.944 —

DB01352 15 DB00306 0.891 DB00306 0.884 — DB00237 0.872 (2, 0.872)

DB00380 19 DB00816 0.842 DB00816 0.822 — DB00816 0.842 —

DB06216 20 DB00370 0.905 DB00370 0.902 — DB09304 0.856 (2, 0.869)

DB00674 21 DB01619 0.865 DB01619 0.855 — DB00370 0.850 (2, 0.850)

DB00632 23 DB00464 0.724 DB00464 0.719 — DB00464 0.717 —

DB07615 24 DB01250 0.799 DB01250 0.797 — DB01250 0.799 —

DB00693 25 DB01619 0.841 DB01619 0.793 — DB01068 0.825 (2, 0.825)

DB00887 25 DB06614 0.745 DB06614 0.732 — DB04938 0.733 (2, 0.730)

DB09219 25 DB00434 0.819 DB00792 0.805 (3, 0.812) DB00792 0.812 (3, 0.812)

DB00351 27 DB04839 0.941 DB04839 0.936 — DB00603 0.902 (2, 0.902)

DB00381 28 DB01023 0.819 DB01023 0.732 — DB06712 0.707 (5, 0.706)

DB09237 28 DB01054 0.717 DB01054 0.648 — DB01115 0.686 (4, 0.685)

DB01198 29 DB00402 0.933 DB00402 0.929 — DB00402 0.933 —

DB00876 30 DB09039 0.664 DB05239 0.651 (3, 0.653) DB05239 0.653 (3, 0.653)

DB01621 32 DB01148 0.694 DB01148 0.693 — DB01148 0.694 —

DB09236 33 DB00270 0.672 DB01115 0.615 (2, 0.669) DB01433 0.662 (3, 0.662)

DB08903 37 DB00333 0.653 DB00333 0.610 — DB06703 0.630 (4, 0.630)

DB00728 38 DB01339 0.820 DB01339 0.816 — DB01339 0.820 —

DB01419 42 DB06605 0.630 DB06605 0.626 — DB06605 0.630 —

DB00320 43 DB01413 0.629 DB01413 0.618 — DB01413 0.629 —

DB01232 49 DB01082 0.549 DB01082 0.535 — DB01082 0.549 —

DB00246 50 DB01261 0.761 DB01261 0.738 — DB01261 0.761 —

DB00503 50 DB00845 0.499 DB01319 0.461 (4, 0.496) DB01319 0.498 (4, 0.496)

DB09114 50 DB08993 0.476 DB04894 0.411 (6, 0.416) DB08993 0.477 —

DB00254 55 DB00595 0.877 DB00595 0.874 — DB00595 0.877 —

DB00309 55 DB00541 0.634 DB00541 0.618 — DB00541 0.634 —

DB06439 57 DB00207 0.515 DB00207 0.494 — DB00212 0.513 (2, 0.513)

DB01196 60 DB00286 0.784 DB00286 0.779 — DB00286 0.784 —

DB01078 66 DB00511 0.502 DB00511 0.479 — DB00511 0.503 —

DB01590 68 DB00877 0.469 DB00385 0.459 (2, 0.464) DB00877 0.469 —

DB04894 80 DB00364 0.482 DB00364 0.468 — DB00864 0.453 (3, 0.453)

DB04786 86 DB01078 0.387 DB09158 0.306 (3, 0.369) DB01078 0.387 —

DB00732 87 DB01045 0.434 DB01045 0.417 — DB01045 0.434 —

DB00403 94 DB00035 0.394 DB06402 0.355 (4, 0.376) DB08874 0.386 (2, 0.386)

DB00050 102 DB00569 0.396 DB00569 0.391 — DB00569 0.396 —

DB06699 117 DB00091 0.454 DB00512 0.409 (2, 0.414) DB09099 0.412 (3, 0.411)

DB06219 128 DB00512 0.422 DB00364 0.354 (2, 0.409) DB00364 0.410 (2, 0.409)

Table 1.  Results obtained for 40 query compounds from the FDA database. For each query, its nA and the 
BestComp with the highest Tc is shown, according to OpR, OpF and WEGA. Note that the score Tc is equal to 1 
when the query compound is compared with itself for all the instances and algorithms, so that BestComp really 
represents the second most similar molecule to the query.
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similarity function, with a score value equal to Tc = 0.672 (see Fig. 9(a)). OpF reveals that molecule DB01115 
maximises the shape similarity function with a score value equal to Tc = 0.615. Finally, WEGA reveals that the 
molecule DB01433 maximizes the shape similarity function with Tc = 0.662. Apparently, WEGA achieves a more 
similar compound than OpF, since it provides as solution a compound with a higher score than the one proposed 
by OpF. However, when OpR optimizes the query with the molecule DB01115 proposed by OpF, it provides a 
score value of 0.669 (see Fig. 9(b)). By contrast, OpR gives a value of 0.662 when it optimizes the query with the 
compound DB01433 given by WEGA, (see Fig. 9(c)). This means that the solution provided by OpF is more sim-
ilar in terms of shape than that of WEGA.

Table 2 shows performance values among the different methods. Clearly, the slowest algorithm is OpR, since 
it has been fine-tuned to be robust and accurate. Even so, the time values are not extremely high when compared 
against the other two methods. In fact, taking into account the possibility of using high-performance computing 

query nA

OpR OpF WEGA

speedupAv SD Av SD T

DB00529 7 61.2 0.560 4.8 0.008 16.4 3.4

DB00331 9 77.4 0.752 5.8 0.041 17.5 3.0

DB01365 12 96.7 0.714 7.3 0.004 16.9 2.3

DB01352 15 116.5 0.823 9.1 0.037 19.5 2.1

DB00380 19 165.1 1.425 11.0 0.028 20.4 1.9

DB06216 20 169.2 1.203 11.8 0.030 25.3 2.1

DB00674 21 169.9 1.123 12.3 0.011 20.6 1.7

DB00632 23 130.4 1.564 11.3 0.005 22.3 2.0

DB07615 24 205.4 1.385 13.4 0.010 22.4 1.7

DB00693 25 215.2 2.158 14.5 0.017 24.2 1.7

DB00887 25 213.5 1.547 14.2 0.001 21.6 1.5

DB09219 25 223.1 1.709 14.3 0.010 22.6 1.6

DB00351 27 220.7 1.980 15.3 0.017 23.4 1.5

DB00381 28 227.5 1.499 15.5 0.013 32.1 2.1

DB09237 28 227.4 1.222 15.8 0.001 22.8 1.4

DB01198 29 223.9 1.354 14.6 0.000 23.1 1.6

DB00876 30 262.0 1.878 17.1 0.002 23.7 1.4

DB01621 32 267.1 1.475 17.2 0.017 24.7 1.4

DB09236 33 280.7 2.230 18.1 0.059 27.0 1.5

DB08903 37 289.3 2.188 20.0 0.045 25.5 1.3

DB00728 38 284.6 1.787 20.3 0.032 25.8 1.3

DB01419 42 359.2 2.371 21.7 0.031 28.5 1.3

DB00320 43 355.6 2.374 22.8 0.016 25.6 1.1

DB01232 49 395.7 2.896 25.7 0.036 29.2 1.1

DB00246 50 250.7 1.719 15.5 0.073 22.6 1.5

DB00503 50 416.6 2.743 26.3 0.008 31.0 1.2

DB09114 50 388.3 2.782 23.9 0.005 31.6 1.3

DB00254 55 263.1 1.919 17.4 0.003 25.3 1.5

DB00309 55 377.3 2.626 28.5 0.022 30.8 1.1

DB06439 57 434.8 2.937 29.3 0.048 32.9 1.1

DB01196 60 244.7 1.599 15.9 0.054 27.1 1.7

DB01078 66 485.9 3.538 28.9 0.050 36.0 1.2

DB01590 68 495.1 3.297 31.9 0.010 39.4 1.2

DB04894 80 550.4 3.876 37.8 0.006 40.7 1.1

DB04786 86 598.7 4.728 32.3 0.002 45.4 1.4

DB00732 87 628.5 4.147 40.1 0.015 44.2 1.1

DB00403 94 609.5 5.072 39.6 0.041 49.5 1.3

DB00050 102 664.1 4.834 45.5 0.050 51.3 1.1

DB06699 117 725.6 5.257 50.8 0.005 55.0 1.1

DB06219 128 828.4 7.030 52.0 0.090 63.4 1.2

mean 46 330.0 2.408 21.7 0.024 29.7 1.6

Table 2.  Performance results obtained by the different similarity methods. Columns represent: DrugBank code 
for each molecule, its corresponding nA, average running time (in seconds) and standard deviation obtained by 
OpR and OpF (see columns 3–6), execution time spent by WEGA (see column 7), and speedup of OpF against 
WEGA.
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to accelerate it (please, see Future Work Section), it would be perfectly justifiable to use Robust mode to increase 
the percentage success in the predictions. For its part, OpF is the fastest algorithm, reducing on average the com-
putational effort of WEGA almost 3.5 times. Besides, as can be appreciated in the Speedup column, the lower the 
number of atoms, the greater the increase in speed obtained by OpF. Additionally, it is important to mention that 
OpF is able to adapt itself to the complexity of the problem to solve.

Finally, it is interesting to remark that, in spite of the randomness included at some stages of the OptiPharm 
algorithm, its variability is almost negligible, as can be appreciated from the standard deviation values provided 
in Table 2.

Results obtained for DUD and DUD-E databases.  Tables 3 and 4 show the results of testing the 
shape-based VS performance of both OptiPharm (in its two versions) and WEGA against the DUD and DUD-E 
databases, respectively. Metrics of AUC values and execution time have been computed. As previously was men-
tioned, to test the OptiPharm reliability, each particular instance has been run 100 times and average values 
have been computed. Furthermore, the corresponding SD has also been provided. Regarding WEGA, since it is 
deterministic, only one single execution has been carried out for each particular instance and the corresponding 
values have been shown.

In general terms, the SD values obtained for OpR and OpF are quite small, which indicates that their varia-
bility is small, and that (i) they converge toward the same optima in spite of the included randomness and (ii) the 
computing time is practically the same when different executions of the same instance are carried out.

Focusing now on Table 3, it is possible to infer that the three algorithms are equivalent in terms of accuracy 
of the predictions, i.e. they obtain about the same AUC values regardless of the considered instance. In fact, the 
average of the AUC values is practically equal, as can be seen in the last row of the table. Nevertheless, OpF is 
almost 5 times faster than WEGA and more than 16 times quicker than OpR.

Finally, similar conclusions than previously can be obtained for the DUD-E database (see Table 4). In terms of 
effectiveness, OpR and WEGA are comparable, since they obtain practically the same mean AUC value. On the 
contrary, OpF obtains an average AUC value slightly smaller. Nevertheless, OpF is more than 17 times faster than 
WEGA and more than 38 times quicker than OpR.

Results obtained when hydrogen atoms are considered.  By default, WEGA does not consider hydro-
gen atoms during optimization, which is a common practice for most tools in the current scenario, since evalu-
ation without hydrogens is less time-consuming. However, this simplification may have serious consequences in 
a VS process. In this work, the effect of excluding the hydrogens of the molecules when optimizing is analyzed. 
Table 5 shows number of atoms for the 40 query molecules selected from the FDA database when the hydrogens 
are not taken into account and when they are considered (columns 2 and 6 respectively). Additionally, the mole-
cule BestComp from the FDA dataset, which maximizes the shape similarity and the corresponding score value 
Tc, both when the input molecules include the hydrogens and when they not, is shown. Notice that these experi-
ments were accomplished using OpR since, according to the previous results, it is the most efficient algorithm. For 
the sake of completeness, the average execution time (in seconds), in both cases, has also been included. As it can 
be seen, in 15 out of 40 cases, the BestComp molecule differs, depending on whether the hydrogens are consid-
ered or not. Additionally, and as expected, the computing time decreases when hydrogens are not considered (see 
columns 5 and 9). This means that excluding the hydrogens of the molecules is not an appropriate simplification; 
although the computing effort is shorter, the molecule that which maximizes the shape similarity can change.

Finally, for a fair comparison in terms of score value, the optimized BestComp obtained by OpR when no 
hydrogens are considered is re-evaluated, but considering now the hydrogens. As we can see, the obtained score 
value is always smaller than the one obtained when the hydrogens are included (compare columns 8 and 10). This 
means that the BestComp molecule found by OpR when the hydrogens are considered is indeed more similar 
than the one proposed when the hydrogens are excluded. The Fig. 10 illustrates this fact.

In addition, the impact on the classification when the hydrogen atoms are considered has also been evaluated 
when DUD and DUD-E databases are considered as input. The algorithms OpR and OpF have been selected to 

Figure 9.  Depiction of shape similarity between the query DB09236 and (a) the molecule DB00270, (b) the 
compound DB01115, and (c) the molecule DB01433, when they are optimized by OpR.
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this aim. The corresponding results are shown in Tables 6 and 7. Notice that WEGA has not been included in the 
study since it never considers the hydrogens.

Broadly speaking, the mean AUC value increases slightly when the hydrogen atoms are considered in DUD 
database, for both OpR and OpF algorithms. See last row of Tables 3 and 6. In particular, an increment of 0.03 
(resp. 0.01) has been obtained for OpR (resp. OpF). In addition, for 23 out of 40 cases, OpR obtains better AUC 
values when the hydrogens are considered. Regarding OpF, it happens for 20 out of 40 instances.

The same increasing tendency can be appreciated in the mean AUC value when the DUD-E database is con-
sidered. Please, see Tables 4 and 7. In this case, an increment of 0.02 has been obtained for both OpR and OpF 

name

AUC Time

OpR OpF WEGA OpR OpF WEGA

Av SD Av SD AUC Av SD Av SD Time

ace 0.39 0.013 0.44 0.021 0.33 278.7 0.046 15.2 0.000 31.0

ache 0.71 0.004 0.71 0.008 0.72 645.5 0.059 35.5 0.003 67.0

ada 0.67 0.003 0.71 0.011 0.66 67.8 0.011 4.9 0.000 12.5

alr2 0.24 0.003 0.28 0.012 0.22 87.3 0.015 6.8 0.000 13.9

ampc 0.70 0.005 0.75 0.020 0.71 68.6 0.013 5.0 0.000 10.9

ar 0.73 0.003 0.73 0.005 0.72 209.2 0.020 18.1 0.001 41.2

cdk2 0.60 0.010 0.58 0.010 0.59 184.3 0.026 12.4 0.000 28.7

comt 0.43 0.017 0.45 0.016 0.37 45.6 0.007 3.3 0.000 10.0

cox1 0.49 0.003 0.51 0.009 0.48 57.2 0.009 4.7 0.000 12.6

cox2 0.95 0.002 0.93 0.004 0.95 1738.5 0.112 109.6 0.006 1038.6

dhfr 0.65 0.003 0.61 0.007 0.65 1392.8 0.081 83.6 0.006 742.6

egfr 0.59 0.003 0.54 0.006 0.57 2128.5 0.100 137.3 0.008 962.1

er_agonist 0.79 0.003 0.80 0.007 0.79 228.4 0.026 17.6 0.001 120.7

er_antagonist 0.73 0.008 0.73 0.015 0.72 262.4 0.029 15.2 0.000 70.0

fgfr1 0.41 0.001 0.45 0.003 0.40 668.7 0.047 39.4 0.003 387.6

fxa 0.60 0.007 0.60 0.010 0.68 1161.2 0.073 65.5 0.005 244.6

gart 0.31 0.007 0.41 0.012 0.27 197.0 0.024 11.6 0.000 49.6

gpb 0.85 0.004 0.82 0.008 0.84 128.9 0.016 10.5 0.000 35.5

gr 0.62 0.005 0.66 0.008 0.62 365.2 0.034 27.4 0.002 53.5

hivpr 0.78 0.011 0.71 0.011 0.76 622.7 0.063 36.0 0.001 51.1

hivrt 0.75 0.011 0.75 0.010 0.75 143.8 0.019 9.8 0.000 34.0

hmga 0.75 0.012 0.75 0.015 0.77 240.7 0.027 14.9 0.000 78.5

hsp90 0.68 0.009 0.77 0.016 0.66 128.7 0.019 8.2 0.000 30.5

inha 0.61 0.007 0.53 0.009 0.60 479.7 0.045 32.4 0.002 84.4

mr 0.84 0.004 0.84 0.007 0.84 66.6 0.011 5.6 0.000 10.7

na 0.86 0.008 0.83 0.008 0.85 165.4 0.017 12.4 0.000 31.6

p38 0.50 0.003 0.45 0.012 0.47 1997.2 0.125 112.7 0.006 371.6

parp 0.50 0.003 0.46 0.008 0.49 96.3 0.016 7.8 0.000 33.8

pde5 0.75 0.008 0.74 0.009 0.75 420.6 0.038 23.5 0.001 124.9

pdgfrb 0.45 0.003 0.47 0.006 0.46 964.0 0.058 54.3 0.005 145.7

pnp 0.61 0.008 0.61 0.020 0.63 71.4 0.011 5.6 0.000 17.2

ppar_gamma 0.68 0.014 0.72 0.011 0.70 1055.6 0.086 50.2 0.003 134.2

pr 0.62 0.018 0.65 0.029 0.61 151.7 0.024 10.9 0.000 44.5

rxr_alpha 0.90 0.023 0.91 0.013 0.91 122.0 0.016 7.3 0.000 13.8

sahh 0.89 0.006 0.87 0.007 0.89 87.9 0.012 6.7 0.000 19.5

src 0.32 0.003 0.38 0.008 0.30 1388.0 0.072 74.3 0.006 272.7

thrombin 0.50 0.009 0.57 0.013 0.55 510.2 0.045 28.6 0.001 145.4

tk 0.56 0.018 0.56 0.017 0.58 47.8 0.008 4.2 0.000 20.6

trypsin 0.28 0.006 0.33 0.009 0.26 255.4 0.024 12.6 0.000 41.0

vegfr2 0.61 0.006 0.60 0.008 0.61 323.5 0.027 21.2 0.001 49.5

mean 0.62 0.007 0.63 0.011 0.61 481.4 0.038 29.1 0.002 142.2

Table 3.  DUD database. For each query compound, the average AUC value and the mean running time 
(in seconds) over 100 independent executions were computed with both OpR and OpF. For the sake of 
completeness, the SD is also provided for both OpR and OpF versions. WEGA is a deterministic algorithm, so 
it was only executed once and its computed AUC value and the execution time are included. The last row of the 
table shows average values for the query molecules.
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name

AUC Time

OpR OpF WEGA OpR OpF WEGA

Av SD Av SD AUC Av SD Av SD Time

aa2ar 0.57 0.000 0.56 0.011 0.57 2656.8 24.748 45.6 1.125 1363.1

abl1 0.52 0.001 0.53 0.003 0.52 905.6 5.756 35.8 1.197 430.4

ace 0.51 0.000 0.50 0.015 0.53 1392.5 4.369 27.8 0.827 710.6

aces 0.24 0.000 0.27 0.006 0.24 1733.6 3.072 26.9 0.901 978.7

ada 0.63 0.000 0.58 0.041 0.71 245.6 1.570 5.3 0.193 232.0

ada17 0.48 0.000 0.47 0.002 0.48 1894.6 3.297 47.6 1.796 1011.2

adrb1 0.36 0.002 0.33 0.003 0.36 966.5 1.987 32.6 1.002 634.5

adrb2 0.37 0.001 0.37 0.003 0.38 1155.9 10.912 19.8 0.736 555.6

akt1 0.26 0.001 0.26 0.008 0.26 1062.5 1.992 40.4 0.977 675.6

akt2 0.41 0.001 0.34 0.004 0.39 504.1 5.271 17.0 0.563 210.9

aldr 0.54 0.001 0.50 0.007 0.54 565.1 2.701 23.0 0.789 310.2

ampc 0.63 0.000 0.52 0.007 0.64 118.9 1.736 2.5 0.096 101.8

andr 0.63 0.000 0.60 0.002 0.63 595.8 17.953 26.1 0.774 398.3

aofb 0.44 0.000 0.45 0.002 0.44 135.2 0.411 3.1 0.090 198.3

bace1 0.53 0.000 0.46 0.018 0.54 1284.8 4.041 37.8 1.197 758.4

braf 0.56 0.002 0.48 0.005 0.55 766.7 9.025 14.8 0.424 352.3

cah2 0.45 0.003 0.44 0.002 0.44 765.5 13.342 37.6 1.297 1173.8

casp3 0.41 0.000 0.44 0.001 0.39 561.4 0.763 13.8 0.384 436.6

cdk2 0.66 0.001 0.64 0.004 0.66 3007.8 71.465 70.7 1.907 837.4

comt 0.60 0.002 0.56 0.005 0.62 122.9 1.591 5.3 0.146 111.7

cp2c9 0.43 0.000 0.43 0.005 0.44 408.3 2.055 11.1 0.326 280.0

cp3a4 0.53 0.001 0.53 0.007 0.53 1370.1 6.526 32.5 0.904 430.5

csf1r 0.55 0.000 0.58 0.006 0.60 1085.7 37.667 27.9 0.806 397.4

cxcr4 0.71 0.002 0.65 0.003 0.73 231.4 1.851 4.0 0.117 112.3

def 0.69 0.000 0.55 0.008 0.69 324.2 15.676 6.5 0.188 191.6

dhi1 0.64 0.000 0.67 0.002 0.64 1200.7 7.467 26.8 0.689 703.7

dpp4 0.57 0.000 0.55 0.002 0.57 3618.4 6.684 62.8 1.866 1402.7

drd3 0.30 0.000 0.29 0.002 0.29 2085.8 6.171 56.3 1.884 1174.4

dyr 0.40 0.001 0.38 0.004 0.40 976.6 26.652 63.6 1.888 624.9

egfr 0.52 0.001 0.45 0.005 0.54 3601.2 99.478 54.8 1.780 1460.8

esr1 0.64 0.000 0.64 0.003 0.63 1994.7 6.168 43.2 1.385 749.2

esr2 0.69 0.000 0.65 0.003 0.68 1300.2 2.196 25.8 0.919 693.1

fa7 0.66 0.001 0.60 0.003 0.52 2691.7 8.408 111.9 1.731 184.1

fa10 0.51 0.002 0.53 0.008 0.67 761.6 2.982 14.0 0.388 589.3

fabp4 0.69 0.009 0.62 0.010 0.67 285.8 3.176 11.1 0.425 119.0

fak1 0.69 0.002 0.67 0.002 0.67 648.8 6.135 37.6 0.863 160.3

fgfr1 0.47 0.002 0.47 0.004 0.46 50.5 0.788 1.7 0.052 50.2

fkb1a 0.68 0.001 0.67 0.008 0.72 458.1 16.792 10.4 0.308 253.5

fnta 0.55 0.000 0.47 0.004 0.55 6081.6 4.037 186.2 5.634 2102.5

fpps 0.86 0.001 0.81 0.002 0.88 250.7 1.818 8.7 0.267 221.3

gcr 0.52 0.000 0.48 0.002 0.50 1046.0 1.883 29.3 0.970 624.2

glcm 0.36 0.002 0.30 0.001 0.35 132.6 6.153 3.4 0.104 132.2

gria2 0.59 0.001 0.56 0.004 0.60 740.5 8.288 22.9 0.865 418.7

grik1 0.62 0.001 0.67 0.004 0.61 262.6 4.979 8.3 0.273 253.6

hdac2 0.34 0.000 0.31 0.002 0.35 521.0 2.440 10.6 0.354 400.5

hdac8 0.42 0.000 0.40 0.004 0.43 528.3 5.144 11.8 0.372 353.7

hivint 0.41 0.001 0.35 0.004 0.41 384.1 1.260 12.3 0.389 221.2

hivpr 0.70 0.001 0.69 0.009 0.71 4748.8 5.144 133.4 3.808 1354.1

hivrt 0.52 0.000 0.49 0.001 0.52 1107.6 4.250 42.3 1.469 573.8

hmdh 0.75 0.000 0.71 0.003 0.74 976.8 7.565 19.7 0.549 399.8

hs90a 0.63 0.001 0.60 0.008 0.64 390.3 8.946 9.7 0.189 183.7

hxk4 0.64 0.001 0.49 0.002 0.62 358.3 12.647 11.5 0.382 188.1

igf1r 0.48 0.002 0.46 0.004 0.50 1048.3 2.244 31.8 1.059 401.7

inha 0.39 0.002 0.34 0.005 0.43 130.6 0.407 2.3 0.075 79.6

ital 0.39 0.002 0.44 0.007 0.38 1157.5 2.996 30.1 0.827 459.8

Continued
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name

AUC Time

OpR OpF WEGA OpR OpF WEGA

Av SD Av SD AUC Av SD Av SD Time

jak2 0.68 0.000 0.64 0.004 0.68 412.2 4.734 8.1 0.277 283.3

kif11 0.83 0.000 0.58 0.006 0.83 606.8 6.053 8.2 0.272 318.1

kit 0.43 0.000 0.41 0.003 0.44 678.5 0.307 15.9 0.559 325.9

kith 0.69 0.003 0.65 0.002 0.70 153.3 1.227 3.7 0.145 104.5

kpcb 0.58 0.000 0.52 0.004 0.59 622.6 6.039 13.6 0.471 310.2

lck 0.46 0.001 0.43 0.002 0.44 2110.1 4.281 40.6 1.237 1121.1

lkha4 0.52 0.000 0.52 0.003 0.58 599.4 0.866 9.7 0.298 365.4

mapk2 0.65 0.000 0.61 0.003 0.65 376.4 1.190 10.4 0.316 210.0

mcr 0.64 0.000 0.59 0.002 0.63 292.4 3.096 6.1 0.200 175.4

met 0.68 0.002 0.73 0.007 0.72 2182.0 15.724 46.8 1.571 564.2

mk01 0.39 0.001 0.38 0.002 0.40 256.9 0.739 6.1 0.209 154.7

mk10 0.45 0.000 0.49 0.005 0.44 559.1 2.017 11.5 0.362 258.8

mk14 0.54 0.001 0.52 0.003 0.54 6277.2 25.295 139.1 4.452 1404.4

mmp13 0.56 0.000 0.55 0.002 0.60 3671.8 7.850 63.4 2.080 1525.6

mp2k1 0.42 0.000 0.53 0.003 0.45 722.9 17.182 11.7 0.383 339.2

nos1 0.35 0.001 0.33 0.003 0.35 366.6 8.322 6.3 0.197 267.2

nram 0.85 0.000 0.79 0.002 0.85 357.0 8.898 6.2 0.163 200.7

pa2ga 0.60 0.000 0.62 0.005 0.60 416.6 3.433 8.6 0.324 218.3

parp1 0.64 0.000 0.63 0.001 0.64 1481.6 2.181 43.2 1.314 981.3

pde5a 0.59 0.000 0.56 0.002 0.56 2777.0 56.574 37.4 1.222 1243.3

pgh1 0.70 0.000 0.72 0.004 0.71 620.4 1.826 15.3 0.412 425.2

pgh2 0.79 0.000 0.74 0.001 0.79 1130.5 2.544 35.5 1.161 791.9

plk1 0.53 0.000 0.47 0.006 0.54 797.5 6.744 11.3 0.346 267.3

pnph 0.74 0.000 0.70 0.001 0.74 264.4 1.521 5.9 0.185 212.8

ppara 0.76 0.000 0.75 0.003 0.77 2109.3 27.199 39.3 1.456 870.2

ppard 0.47 0.001 0.34 0.002 0.44 1557.1 2.223 31.7 0.856 503.6

pparg 0.45 0.001 0.43 0.002 0.45 2867.4 34.034 69.3 1.942 1122.2

prgr 0.72 0.001 0.69 0.002 0.71 1148.7 12.219 33.8 1.017 469.9

ptn1 0.31 0.001 0.29 0.005 0.30 348.1 1.425 8.9 0.264 290.6

pur2 0.37 0.000 0.26 0.009 0.33 242.8 1.844 4.9 0.153 146.9

pygm 0.58 0.000 0.62 0.005 0.57 241.4 1.812 5.9 0.162 173.2

pyrd 0.84 0.000 0.80 0.001 0.85 343.0 0.970 8.2 0.237 233.1

reni 0.59 0.002 0.56 0.003 0.58 970.5 21.357 39.6 1.241 292.4

rock1 0.55 0.000 0.52 0.002 0.54 216.7 3.338 4.3 0.167 207.4

rxra 0.61 0.000 0.49 0.003 0.60 410.0 10.792 8.5 0.312 258.6

sahh 0.87 0.000 0.60 0.003 0.86 123.9 0.394 2.1 0.105 131.8

src 0.55 0.002 0.53 0.002 0.60 4995.2 6.656 271.2 7.781 1318.6

tgfr1 0.60 0.001 0.49 0.003 0.59 514.3 9.723 10.5 0.373 350.7

thb 0.79 0.000 0.75 0.001 0.81 651.8 1.963 12.8 0.428 321.2

thrb 0.45 0.000 0.43 0.003 0.45 2427.1 114.339 71.5 2.444 1205.4

try1 0.57 0.000 0.56 0.001 0.57 2483.4 50.893 60.8 2.151 1123.2

tryb1 0.38 0.000 0.36 0.003 0.39 555.0 2.471 8.3 0.275 277.8

tysy 0.65 0.002 0.61 0.007 0.66 705.4 0.347 16.4 0.525 266.7

urok 0.40 0.000 0.40 0.002 0.41 511.1 1.834 13.8 0.466 342.5

vgfr2 0.57 0.000 0.60 0.003 0.59 1816.6 16.649 42.6 1.154 902.3

wee1 0.65 0.001 0.47 0.018 0.62 695.5 5.638 12.1 0.377 204.3

xiap 0.79 0.004 0.76 0.010 0.78 530.0 6.233 16.1 0.448 187.4

mean 0.56 0.001 0.53 0.005 0.56 1152.9 10.256 30.1 0.912 516.6

Table 4.  DUD-E database. For each query compound, the average AUC value and the mean running 
time (in seconds) over 100 independent executions were computed with both OpR and OpF. For the sake 
of completeness, the standard deviation SD is also provided for both OpR and OpF versions. WEGA is a 
deterministic algorithm, so it was only executed once and its computed AUC value and the execution time are 
included. The last row of the table shows average values for the query molecules.

https://doi.org/10.1038/s41598-018-37908-6


www.nature.com/scientificreports/

17Scientific Reports |          (2019) 9:1398  | https://doi.org/10.1038/s41598-018-37908-6

algorithms. Both OpR and OpF obtain better AUC values in more than half of the cases (58 out of 102 for OpR 
and 67 out of 102 for OpF).

In general terms, considering the hydrogens increases the average computing time. Compare again Tables 3 
and 6 for DUD database, and Tables 4 and 7 for DUD-E benchmark. As can be seen, the time increases 2.9x times 
for both OpR and OpF when DUD is considered as input. For the DUD-E case, the increase is of 4.8x and 5.7x for 

query

Without hydrogens With hydrogens

BestComp 
w/o H
evaluated 
with H

nA BestComp Tc Time nA BestComp Tc Time Tc

DB00529 7 DB00828 0.921 61.2 10 DB09294 0.869 135.5 0.701

DB00331 9 DB01189 0.940 77.4 20 DB09210 0.862 255.8 0.710

DB01352 15 DB00306 0.891 116.5 29 DB00306 0.889 361.1 0.884

DB01365 12 DB00191 0.944 96.7 30 DB00191 0.935 406.9 0.928

DB00380 19 DB00816 0.842 165.1 35 DB01041 0.852 477.4 0.802

DB06216 20 DB00370 0.905 169.2 37 DB00370 0.876 500.1 0.874

DB00693 25 DB01619 0.841 215.2 37 DB01619 0.863 553.4 0.854

DB07615 24 DB01250 0.799 205.4 40 DB00721 0.790 576.5 0.713

DB09219 25 DB00434 0.819 223.1 40 DB01320 0.845 636.2 0.764

DB00674 21 DB01619 0.865 169.9 42 DB01619 0.801 556.7 0.786

DB01198 27 DB00402 0.933 223.9 45 DB00402 0.892 624.7 0.890

DB00887 25 DB06614 0.745 213.5 45 DB00837 0.742 613.0 0.686

DB00246 28 DB01261 0.761 250.7 50 DB01261 0.756 737.6 0.751

DB00381 28 DB01023 0.819 227.5 53 DB01023 0.828 728.6 0.823

DB09237 28 DB01054 0.717 227.4 54 DB01054 0.752 759.4 0.745

DB00876 30 DB09039 0.664 262.0 54 DB09039 0.674 800.8 0.665

DB00254 32 DB00595 0.877 263.1 55 DB00595 0.848 814.7 0.838

DB00351 27 DB04839 0.941 220.7 57 DB04839 0.934 748.3 0.928

DB01196 29 DB00286 0.784 244.7 60 DB00286 0.797 820.4 0.794

DB01621 33 DB01148 0.694 267.1 66 DB01148 0.715 924.2 0.708

DB09236 32 DB00270 0.672 280.7 66 DB01054 0.682 940.2 0.615

DB08903 37 DB00333 0.653 289.3 69 DB00333 0.679 968.5 0.673

DB00632 23 DB00464 0.724 130.4 69 DB00464 0.740 696.4 0.732

DB01419 42 DB06605 0.630 359.2 70 DB06605 0.671 1086.4 0.667

DB00320 43 DB01413 0.629 355.6 80 DB00728 0.617 1139.0 0.596

DB00728 38 DB01339 0.820 284.6 91 DB01339 0.839 1094.0 0.837

DB00503 50 DB00845 0.499 416.6 98 DB00701 0.541 1465.3 0.442

DB01232 49 DB01082 0.549 395.7 100 DB00212 0.617 1411.8 0.581

DB00309 55 DB00541 0.634 377.3 110 DB00541 0.624 1348.2 0.621

DB04786 86 DB01078 0.387 598.7 120 DB00511 0.432 1657.8 0.405

DB09114 50 DB08993 0.476 388.3 130 DB08993 0.512 1799.6 0.510

DB06439 57 DB00207 0.515 434.8 137 DB00207 0.591 1871.5 0.533

DB01078 66 DB00511 0.502 485.9 140 DB00511 0.582 1819.4 0.570

DB01590 68 DB00877 0.469 495.1 151 DB00877 0.557 1995.5 0.545

DB04894 80 DB00364 0.482 550.4 152 DB00646 0.537 1797.1 0.495

DB00403 94 DB00035 0.394 609.5 167 DB08874 0.470 2130.0 0.446

DB00732 87 DB01045 0.434 628.5 169 DB06287 0.484 2204.4 0.470

DB00050 102 DB00569 0.396 664.1 194 DB00569 0.489 2248.0 0.483

DB06699 117 DB00091 0.454 725.6 221 DB09099 0.514 2482.6 0.496

DB06219 128 DB00512 0.422 828.4 229 DB00512 0.443 2796.0 0.414

mean 44 0.686 330.0 86 0.704 1124.6 0.674

Table 5.  Results obtained by OpR for 40 query compounds from the FDA database. Two experiments were 
carried out, one excluding the hydrogen atoms for all the molecules (a common practice in most VS tools in the 
literature) and the other hand considering the hydrogens in all the molecules. For each study and query, its nA 
without and with hydrogens, the BestComp with the highest Tc and the computing time, in second, are shown. 
Finally, the optimized BestComp obtained when no hydrogens are considered is re-evaluated, but including the 
hydrogens (last column).
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OpR and OpF, respectively. Of course, the larger the number of atoms considered for a compound, the higher the 
computing time associated to its evaluation, but the more realistic the associated scoring function value.

Therefore, based on the results, it can be concluded that a more realistic classification of compounds can 
be obtained if hydrogen atoms are considered. In such a case, the computing time can be reduced by using 
high-performance computing approaches.

Results obtained for Maybridge database.  Finally, a study has been conducted to show the utility of 
OpR, i.e. it can find good quality solutions when possible.

The effectiveness of OpR has been analyzed when it is executed with the Maybridge database considering 
hydrogens. In particular, a set of query compounds were selected from such a database. The choice procedure was 
carried out as follows: the Maybridge dataset was initially sorted according to the number of atoms of the com-
pounds and split into 38 intervals. Then, a single compound was randomly chosen for each interval. Table 8 
summarizes the obtained results. In particular, it is shown: (i) the number nC of compounds with a number of 
atoms included in the interval ∈ i jnA [ , ); (ii) the randomly selected query from such an interval, and (iii) the 
other molecule from Maybridge (BestComp) with the highest shape similarity value (Tc) according to OpR. The 
last row of the table shows the total number of compounds with nA < 95 (resp. nA ≥ 95) and the average Tc value. 
Notice that there exist intervals with 0 compounds, we note those cases by including ‘−’ in the corresponding 
columns.

As can be seen in Table 8, OpR obtains an average Tc value of 0.940 for queries with nA < 95. This is not rare 
since the number of compounds with less than 95 atoms is equal to 53370, so the probability of finding similar 
molecules is relatively high. On the contrary, the average Tc value obtained by OpR for molecules with more than 
95 atoms is equal to 0.637, which is not a bad figure if we consider that only 29 out of 53399 molecules have more 
than 95 atoms. Even so, OpR obtains good quality solutions for queries with more than 95 atoms. See for example, 
the instances JFD0120 and JFD0063, with 96 and 104 atoms, respectively. For those two cases, OpR has found 
compounds with Tc values of 0.930 and 0.875, even when the number of molecules with similar sizes is not high. 
Let focus now on the worst cases, i.e. those where OpR obtains the lowest Tc values. They are JFD02950 and 
JFD02946 with 180 and 135 atoms, respectively. Notice that there are not molecules in the database with similar 
sizes. More precisely, there are just 10 molecules, including JFD02950 and JFD02946, with ∈nA [135, 190). 
Therefore, the probability of discovering similar molecules in terms of shape is very low, since the most likely is 

Figure 10.  Query compound DB06439 is represented by the red structure. Hydrogens are white atoms. Colours 
remain fixed. (a) Tc = 0.515 where the compound DB00207 is the yellow structure. (b) Tc = 0.591 where 
the compound DB00207 is the green structure. (c) Tc = 0.533 where the compound DB00207 is the orange 
structure. (d) The three previous compounds are optimized with respect to the query.
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that they do not exist. Then, from the results, it is possible to infer that OpR finds a high-quality solution to a 
given query when it exists in the corresponding database.

Conclusions and Future Work
This work has introduced the SSM OptiPharm, based on novel metaheuristic approaches and illustrated its per-
formance in terms of prediction accuracy and running time when processing well-known benchmarks such as 
DUD, and in addition FDA dataset. Comparison made with WEGA show that OptiPharm offers the same predic-
tive accuracy but at a much lower computational cost (average speedup is 5x). Another of the advantages of the 
method compared with WEGA is that its optimization algorithm is easily parameterizable so that very different 
heuristic schemes can be tested, and so it adapts itself to a given database depending on the average molecular size 

name

AUC Time

OpR OpF OpR OpF

Av SD Av SD Av SD Av SD

ace 0.40 0.001 0.42 0.021 894.3 8.584 51.3 0.343

ache 0.72 0.002 0.68 0.007 2448.1 95.702 132.8 0.336

ada 0.79 0.006 0.75 0.021 227.9 10.047 15.3 0.092

alr2 0.46 0.007 0.48 0.009 187.4 6.656 15.0 0.073

ampc 0.74 0.013 0.73 0.015 131.4 1.561 9.2 0.021

ar 0.86 0.003 0.84 0.003 748.1 37.040 66.5 0.151

cdk2 0.62 0.003 0.60 0.011 449.6 11.774 30.1 0.143

comt 0.40 0.008 0.41 0.008 136.0 7.498 8.7 0.041

cox1 0.59 0.001 0.58 0.006 141.6 9.842 12.1 0.035

cox2 0.90 0.001 0.88 0.005 3768.5 99.262 237.3 0.578

dhfr 0.59 0.004 0.53 0.007 3946.1 77.654 217.4 0.432

egfr 0.56 0.002 0.57 0.004 5896.4 131.069 379.9 0.484

er_agonist 0.74 0.003 0.71 0.010 751.7 20.644 59.1 0.324

er_antagonist 0.69 0.004 0.73 0.008 887.3 23.421 52.9 0.209

fgfr1 0.42 0.000 0.46 0.002 1782.4 31.747 112.2 0.309

fxa 0.66 0.009 0.61 0.011 3089.2 41.870 166.9 0.443

gart 0.28 0.011 0.34 0.013 469.3 5.374 28.7 0.183

gpb 0.85 0.002 0.82 0.008 329.8 3.580 27.9 0.178

gr 0.77 0.004 0.76 0.011 1222.8 64.358 95.1 0.280

hivpr 0.74 0.010 0.74 0.007 2049.9 94.105 113.9 0.732

hivrt 0.70 0.008 0.69 0.009 470.9 17.540 31.1 0.174

hmga 0.84 0.004 0.82 0.008 855.8 23.483 56.6 0.162

hsp90 0.77 0.012 0.81 0.015 412.6 18.489 26.2 0.063

inha 0.59 0.010 0.53 0.005 1392.1 43.314 89.5 0.289

mr 0.87 0.003 0.86 0.004 235.4 6.255 21.4 0.092

na 0.83 0.002 0.80 0.009 479.8 9.484 40.0 0.275

p38 0.31 0.004 0.37 0.006 6491.8 129.148 346.9 0.598

parp 0.59 0.004 0.59 0.006 232.4 8.260 19.2 0.126

pde5 0.77 0.006 0.75 0.006 1399.2 12.286 78.8 0.473

pdgfrb 0.44 0.004 0.46 0.008 2704.0 93.157 143.2 0.893

pnp 0.71 0.004 0.68 0.017 193.9 1.978 14.9 0.054

ppar_gamma 0.73 0.006 0.73 0.012 3000.9 40.167 139.5 0.172

pr 0.68 0.011 0.66 0.013 544.4 25.760 36.8 0.274

rxr_alpha 0.89 0.023 0.87 0.015 414.1 9.421 25.5 0.152

sahh 0.88 0.006 0.81 0.012 227.1 13.657 15.5 0.036

src 0.44 0.002 0.46 0.005 3727.8 73.533 219.2 0.510

thrombin 0.56 0.010 0.57 0.006 1517.8 16.977 92.9 0.210

tk 0.65 0.003 0.64 0.011 125.6 3.786 11.6 0.065

trypsin 0.27 0.004 0.30 0.008 733.3 10.189 36.3 0.187

vegfr2 0.62 0.003 0.60 0.007 861.6 53.930 54.0 0.280

mean 0.65 0.005 0.64 0.009 1389.5 34.815 83.3 0.262

Table 6.  DUD database with hydrogens. For each query compound, the average AUC value and the mean 
running time (in seconds) over 100 independent executions were computed with both OpR and OpF. For the 
sake of completeness, the SD is also provided for both OpR and OpF versions. The last row of the table shows 
average values for the query molecules.
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name

AUC Time
OpR OpF OpR OpF
Av SD Av SD Av SD Av SD

aa2ar 0.54 0.000 0.54 0.001 12648.0 307.385 256.3 15.165
abl1 0.56 0.000 0.58 0.003 4178.4 107.358 184.4 3.043
ace 0.63 0.000 0.63 0.001 6514.7 169.817 174.3 6.823
aces 0.22 0.000 0.23 0.001 10542.9 234.978 194.1 7.856
ada 0.68 0.000 0.70 0.003 1435.5 50.096 40.2 1.630
ada17 0.53 0.000 0.57 0.001 9711.7 254.865 235.6 1.251
adrb1 0.41 0.001 0.39 0.002 5819.1 180.508 238.1 4.965
adrb2 0.41 0.000 0.42 0.001 8295.1 243.728 167.7 9.623
akt1 0.26 0.001 0.29 0.003 5113.7 105.351 205.4 3.847
akt2 0.47 0.000 0.43 0.002 2762.0 78.460 115.8 2.685
aldr 0.56 0.001 0.55 0.006 2156.1 84.687 87.3 0.626
ampc 0.68 0.000 0.56 0.015 465.2 11.388 12.5 0.532
andr 0.78 0.000 0.75 0.001 3845.4 93.711 196.9 6.801
aofb 0.41 0.000 0.41 0.001 941.4 14.389 24.1 1.065
bace1 0.58 0.000 0.53 0.003 8931.4 248.917 303.5 7.397
braf 0.53 0.000 0.52 0.003 4113.9 105.411 102.8 3.975
cah2 0.50 0.002 0.51 0.001 2636.3 63.463 145.9 4.771
casp3 0.45 0.000 0.48 0.001 2751.9 63.384 88.8 3.199
cdk2 0.64 0.000 0.63 0.002 14337.1 270.933 407.1 8.501
comt 0.63 0.005 0.56 0.003 441.1 12.081 23.5 1.007
cp2c9 0.45 0.000 0.45 0.002 1980.4 33.515 68.4 2.496
cp3a4 0.55 0.000 0.54 0.004 7613.5 271.865 211.5 6.706
csf1r 0.51 0.000 0.54 0.001 5659.4 189.853 146.7 0.106
cxcr4 0.75 0.000 0.69 0.001 1712.4 66.771 30.8 0.612
def 0.76 0.000 0.72 0.002 2013.0 40.488 55.5 1.596
dhi1 0.75 0.000 0.75 0.002 6446.4 158.161 189.5 4.195
dpp4 0.62 0.000 0.61 0.001 15566.7 374.754 328.8 14.946
drd3 0.37 0.000 0.39 0.001 14175.3 269.919 431.7 13.124
dyr 0.42 0.003 0.38 0.002 5729.7 96.321 373.8 4.095
egfr 0.50 0.000 0.51 0.002 18151.4 354.857 336.4 4.806
esr1 0.57 0.001 0.60 0.002 10530.6 293.861 240.5 0.841
esr2 0.64 0.000 0.63 0.003 8166.9 185.100 207.5 5.593
fa10 0.63 0.004 0.61 0.001 13762.4 325.381 628.2 10.031
fa7 0.48 0.001 0.50 0.006 4005.9 117.438 88.6 2.803
fabp4 0.74 0.003 0.67 0.005 1366.2 49.416 51.3 0.834
fak1 0.71 0.001 0.60 0.006 2801.9 81.060 163.6 3.498
fgfr1 0.47 0.002 0.47 0.001 281.7 5.810 9.5 0.613
fkb1a 0.78 0.001 0.73 0.005 2286.2 71.672 72.1 3.259
fnta 0.54 0.001 0.48 0.001 33347.0 569.040 1131.1 13.666
fpps 0.78 0.000 0.75 0.001 902.0 23.601 37.0 2.852
gcr 0.64 0.000 0.62 0.001 5936.8 117.042 194.4 5.002
glcm 0.33 0.003 0.28 0.001 923.6 32.983 21.8 0.044
gria2 0.58 0.000 0.55 0.002 3159.4 95.870 100.3 6.522
grik1 0.54 0.000 0.57 0.004 1198.1 22.338 45.2 4.290
hdac2 0.39 0.000 0.36 0.003 2752.9 88.176 55.1 1.536
hdac8 0.40 0.000 0.36 0.004 3001.7 74.002 83.5 2.987
hivint 0.38 0.000 0.38 0.001 1542.3 51.847 63.8 2.193
hivpr 0.76 0.000 0.73 0.001 26933.4 678.027 764.7 0.995
hivrt 0.56 0.001 0.52 0.001 5961.3 173.759 233.7 9.952
hmdh 0.85 0.000 0.80 0.004 4998.3 136.453 127.5 1.861
hs90a 0.66 0.000 0.65 0.002 1772.9 26.219 56.4 1.329
hxk4 0.65 0.000 0.50 0.003 1488.3 41.273 59.9 2.133
igf1r 0.46 0.001 0.43 0.004 5161.5 144.369 174.9 5.849
inha 0.40 0.000 0.42 0.004 680.8 28.818 11.7 0.104
ital 0.41 0.002 0.44 0.003 5063.5 158.899 129.6 0.267
jak2 0.72 0.000 0.69 0.002 2058.1 58.984 48.4 3.409
kif11 0.83 0.000 0.68 0.003 3439.9 123.658 54.4 3.115

Continued
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and topology, to name a few. Also, bearing in mind that OptiPharm, unlike WEGA, allows optimizing includ-
ing the hydrogen atoms of the compounds. Results have shown that its consideration improves the predictions, 
although it is more costly from a computational point of view. High-performance computing approaches may be 
a good alternative to deal with this drawback.

OptiPharm has been designed with parallelism in mind. Notice that each pose in the population can gener-
ate a new offspring without the participation of the remaining quaternions in the population, meaning that the 
Reproduction method can be easily parallelized by dividing the poses in the population among the available 

name

AUC Time
OpR OpF OpR OpF
Av SD Av SD Av SD Av SD

kit 0.38 0.000 0.38 0.001 3238.8 110.014 91.8 8.589
kith 0.72 0.001 0.69 0.003 766.2 9.368 24.1 0.997
kpcb 0.57 0.000 0.53 0.005 3258.8 90.824 94.7 2.935
lck 0.41 0.000 0.40 0.001 11895.8 307.804 247.0 12.443
lkha4 0.57 0.000 0.57 0.003 3373.8 105.163 51.1 0.528
mapk2 0.63 0.001 0.61 0.001 1820.0 67.425 60.5 3.590
mcr 0.78 0.000 0.73 0.001 1616.9 48.168 46.3 2.394
met 0.71 0.005 0.68 0.005 11546.8 450.466 250.3 6.843
mk01 0.44 0.000 0.39 0.002 1259.4 33.755 39.0 1.265
mk10 0.45 0.000 0.46 0.002 2520.8 86.614 70.2 2.139
mk14 0.54 0.001 0.53 0.002 28472.3 565.522 692.5 14.399
mmp13 0.61 0.000 0.58 0.000 18288.5 482.792 358.3 18.123
mp2k1 0.45 0.000 0.54 0.001 3429.1 71.075 69.3 6.095
nos1 0.34 0.000 0.35 0.001 2571.5 73.863 58.7 2.016
nram 0.88 0.000 0.86 0.002 1839.6 46.528 43.6 3.260
pa2ga 0.67 0.000 0.66 0.004 2310.8 67.884 59.1 5.073
parp1 0.64 0.000 0.66 0.000 7534.6 164.474 261.3 7.200
pde5a 0.50 0.000 0.48 0.003 7966.8 132.170 127.7 0.662
pgh1 0.70 0.000 0.70 0.003 3045.1 89.026 102.0 5.014
pgh2 0.72 0.000 0.70 0.002 4841.0 142.901 201.6 7.323
plk1 0.60 0.000 0.54 0.003 4137.3 131.707 59.5 0.316
pnph 0.72 0.000 0.67 0.005 1321.8 49.860 29.9 0.095
ppara 0.67 0.000 0.65 0.002 9214.1 279.082 184.1 2.299
ppard 0.39 0.001 0.37 0.006 7555.7 234.371 194.5 4.637
pparg 0.41 0.000 0.37 0.001 13606.9 308.089 388.7 12.057
prgr 0.80 0.000 0.75 0.004 5894.0 155.765 208.6 4.872
ptn1 0.35 0.000 0.36 0.002 1233.6 29.355 36.5 2.168
pur2 0.47 0.000 0.37 0.007 1035.2 31.177 28.7 1.284
pygm 0.61 0.000 0.62 0.002 1091.7 30.718 36.0 1.144
pyrd 0.81 0.000 0.81 0.004 1474.6 37.570 34.4 0.277
reni 0.68 0.001 0.65 0.005 6085.1 234.368 253.1 3.662
rock1 0.56 0.000 0.56 0.001 1414.9 44.631 26.4 0.190
rxra 0.72 0.000 0.55 0.006 2236.7 58.555 50.5 0.268
sahh 0.85 0.000 0.61 0.002 549.8 12.608 9.6 0.279
src 0.57 0.003 0.55 0.001 23435.6 686.152 1187.2 15.975
tgfr1 0.53 0.000 0.53 0.001 2329.2 76.982 48.8 0.365
thb 0.79 0.000 0.75 0.003 3150.5 82.192 83.2 3.025
thrb 0.50 0.000 0.48 0.002 13973.6 228.488 444.4 3.482
try1 0.59 0.000 0.60 0.002 12992.8 261.488 384.5 0.510
tryb1 0.42 0.000 0.38 0.004 3221.7 92.226 63.8 2.376
tysy 0.60 0.000 0.58 0.004 3038.2 113.099 72.7 0.099
urok 0.38 0.000 0.37 0.001 2944.9 92.744 77.0 0.357
vgfr2 0.52 0.000 0.54 0.001 9023.2 150.967 242.1 5.486
wee1 0.70 0.001 0.56 0.002 3547.3 120.772 77.2 2.831
xiap 0.86 0.000 0.80 0.005 3272.1 112.115 101.8 4.684
mean 0.58 0.000 0.55 0.003 5878.3 148.367 171.6 4.183

Table 7.  DUD-E database with hydrogens. For each query compound, the average AUC value and the mean 
running time (in seconds) over 100 independent executions were computed with both OpR and OpF. For the 
sake of completeness, the standard deviation SD is also provided for both OpR and OpF versions. The last row 
of the table shows average values for the query molecules.
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processing units. Similarly, the poses can also be enhanced by distributing them in the Improvement procedure. 
This means that OptiPharm can be drastically accelerated by using high-performance computing with practically 
no effort. In the future, several programming paradigms based on both shared and distributed memory architec-
tures will be implemented and analyzed. In particular, a parallel version of OptiPharm will be implemented to be 
executed on GPUs, and compared with the GPU-accelerated WEGA58.

Availability of Data and Materials
The databases belong to their authors and access to them depends on any applicable restrictions. OptiPharm 
software is available upon request via email.

References
	 1.	 Drews, J. Drug discovery: a historical perspective. Science 287, 1960–1964 (2000).
	 2.	 Ban, F. et al. Best practices of computer-aided drug discovery: lessons learned from the development of a preclinical candidate for 

prostate cancer with a new mechanism of action. Journal of Chemical Information and Modeling 57, 1018–1028 (2017).
	 3.	 Qiu, J. Traditional medicine: a culture in the balance. Nature 448, 126–128 (2007).
	 4.	 Fu, X. et al. Toward understanding the cold, hot, and neutral nature of chinese medicines using in silico mode-of-action analysis. 

Journal of Chemical Information and Modeling 57, 468–483 (2017).
	 5.	 White, R. E. High-throughput screening in drug metabolism and pharmacokinetic support of drug discovery. Annual review of 

pharmacology and toxicology 40, 133–157 (2000).
	 6.	 Glick, M., Jenkins, J. L., Nettles, J. H., Hitchings, H. & Davies, J. W. Enrichment of high-throughput screening data with increasing 

levels of noise using support vector machines, recursive partitioning, and laplacian-modified naive bayesian classifiers. Journal of 
chemical information and modeling 46, 193–200 (2006).

	 7.	 Terstappen, G. C. & Reggiani, A. In silico research in drug discovery. Trends in pharmacological sciences 22, 23–26 (2001).
	 8.	 Karplus, M. & McCammon, J. A. Molecular dynamics simulations of biomolecules. Nature Structural & Molecular Biology 9, 

646–652 (2002).
	 9.	 McInnes, C. Virtual screening strategies in drug discovery. Current opinion in chemical biology 11, 494–502 (2007).
	10.	 Geppert, H., Vogt, M. & Bajorath, J. Current trends in ligand-based virtual screening: molecular representations, data mining 

methods, new application areas, and performance evaluation. Journal of chemical information and modeling 50, 205–216 (2010).
	11.	 Bohm, H.-J. & Stahl, M. The use of scoring functions in drug discovery applications, vol. 18 (John Wiley & Sons, 2003).
	12.	 Yuriev, E. & Ramsland, P. A. Latest developments in molecular docking: 2010–2011 in review. Journal of Molecular Recognition 26, 

215–239 (2013).
	13.	 Ganesan, A., Coote, M. L. & Barakat, K. Molecular dynamics-driven drug discovery: leaping forward with confidence. Drug 

discovery today 22, 249–269 (2017).
	14.	 Lipinski, C. A. Rule of five in 2015 and beyond: target and ligand structural limitations, ligand chemistry structure and drug 

discovery project decisions. Advanced drug delivery reviews 101, 34–41 (2016).
	15.	 Leelananda, S. P. & Lindert, S. Computational methods in drug discovery. Beilstein Journal of Organic Chemistry 12, 2694–2718 

(2016).
	16.	 Seidel, T., Bryant, S. D., Ibis, G., Poli, G. & Langer, T. 3D pharmacophore modeling techniques in computer-aided molecular design 

using LigandScout (John Wiley & Sons, 2017).

[i, j) nC

Queries with nA < 95

[i, j) nC

Queries with nA ≥ 95

query BestComp Tc query BestComp Tc

[0, 5) 0 — — — [95, 100) 6 JFD01206 JFD01203 0.930

[5, 10) 2 CD08226 RF01682 0.940 [100, 105) 3 JFD00633 JFD01915 0.875

[10, 15) 93 AC10702 KM03331 0.982 [105, 110) 3 JFD02451 JFD02452 0.762

[15, 20) 968 AC10402 RF03315 0.939 [110, 115) 3 JFD01915 JFD00633 0.877

[20, 25) 3469 AC11546 NRB00891 0.940 [115, 120) 1 JFD02945 RH00477 0.512

[25, 30) 7050 AC10751 AC11968 0.991 [120, 125) 2 BTB14731 JFD01602 0.508

[30, 35) 10414 AC12586 RH01548 0.895 [125, 130) 1 JFD01714 JFD01716 0.676

[35, 40) 10623 AC10018 JFD00624 0.939 [130, 135) 0 — — —

[40, 45) 9015 AC10608 HTS01369 0.867 [135, 140) 1 JFD02946 RJC01701 0.474

[45, 50) 6085 AW00180 AW00174 0.873 [140, 145) 0 — — —

[50, 55) 3008 AW00136 HTS03294 0.849 [145, 150) 1 JFD02949 JFD00655 0.552

[55, 60) 1479 JFD00968 RJC02093 0.993 [150, 155) 2 BTB12204 BTB12205 0.600

[60, 65) 648 JFD03035 NRB03291 0.972 [155, 160) 2 BTB12205 BTB12204 0.600

[65, 70) 247 HTS13346 HTS13343 0.982 [160, 165) 1 RJC01719 BTB12214 0.487

[70, 75) 108 JFD01818 RJC03231 0.976 [165, 170) 2 RJC01701 JFD02451 0.645

[75, 80) 57 JFD01718 JFD01716 0.957 [170, 175) 0 — — —

[80, 85) 50 NRB03718 NRB03775 0.991 [175, 180) 0 — — —

[85, 90) 40 JFD00292 JFD00294 0.877 [180, 185) 1 JFD02950 JFD00655 0.417

[90, 95) 14 JFD01716 JFD01718 0.959 [185, 190) 0 — — —

mean 53370 0.940 29 0.637

Table 8.  Maybridge database. The number nC of queries from the database with a number of atoms ∈ i jnA [ , ) 
is shown. From each interval, a query has been randomly selected, and the other molecule from the database 
(BestComp) with the highest Tc has been computed by using OpR. Note that the score Tc is equal to 1 when the 
query compound is compared with itself for all the instances, so that BestComp really represents the second 
most similar molecule to the query.

https://doi.org/10.1038/s41598-018-37908-6


www.nature.com/scientificreports/

23Scientific Reports |          (2019) 9:1398  | https://doi.org/10.1038/s41598-018-37908-6

	17.	 Sperandio, O. et al. MED-SumoLig: a new ligand-based screening tool for efficient scaffold hopping. Journal of Chemical Information 
and Modeling 47, 1097–1110 (2007).

	18.	 Yan, X. et al. Chemical structure similarity search for ligand-based virtual screening: methods and computational resources. Current 
drug targets 17, 1580–1585 (2016).

	19.	 Debnath, S., Debnath, T., Majumdar, S., Arunasree, M. & Aparna, V. A combined pharmacophore modeling, 3D QSAR, virtual 
screening, molecular docking, and ADME studies to identify potential HDAC8 inhibitors. Medicinal Chemistry Research 25, 
2434–2450 (2016).

	20.	 Ain, Q. U., Aleksandrova, A., Roessler, F. D. & Ballester, P. J. Machine-learning scoring functions to improve structure-based binding 
affinity prediction and virtual screening. Wiley Interdisciplinary Reviews: Computational Molecular Science 5, 405–424 (2015).

	21.	 Miller, M. D., Sheridan, R. P. & Kearsley, S. K. SQ: A program for rapidly producing pharmacophorically relevent molecular 
superpositions. Journal of Medicinal Chemistry 42, 1505–1514 (1999).

	22.	 Lešnik, S. et al. LiSiCa: a software for ligand-based virtual screening and its application for the discovery of butyrylcholinesterase 
inhibitors. Journal of Chemical Information and Modeling 55, 1521–1528 (2015).

	23.	 Ballester, P. J. & Richards, W. G. Ultrafast shape recognition to search compound databases for similar molecular shapes. Journal of 
Computational Chemistry 28, 1711–1723 (2007).

	24.	 Sastry, G. M., Dixon, S. L. & Sherman, W. Rapid shape-based ligand alignment and virtual screening method based on atom/feature-
pair similarities and volume overlap scoring. Journal of Chemical Information and Modeling 51, 2455–2466 (2011).

	25.	 Grant, J. A., Gallardo, M. A. & Pickup, B. T. A fast method of molecular shape comparison: a simple application of a gaussian 
description of molecular shape. Journal of Computational Chemistry 17, 1653–1666 (1996).

	26.	 ROCS, OpenEye Scientific Software, Santa Fe, NM. http://www.eyesopen.com.
	27.	 Yan, X. et al. Enhancing molecular shape comparison by weighted gaussian functions. Journal of Chemical Information and Modeling 

53, 1967–1978 (2013).
	28.	 Li, S., Song, Y., Liu, X. & Li, H. A rapid python-based methodology for target-focused combinatorial library design. Combinatorial 

chemistry & high throughput screening 19, 25–35 (2016).
	29.	 Shape-it, Silicos-it: chemoinformatics services and software. http://silicos-it.be.s3-website-eu-west-1.amazonaws.com/
	30.	 Lagarde, N., Zagury, J.-F. & Montes, M. Benchmarking data sets for the evaluation of virtual ligand screening methods: review and 

perspectives. Journal of chemical information and modeling 55, 1297–1307 (2015).
	31.	 Nicholls, A., MacCuish, N. E. & MacCuish, J. D. Variable selection and model validation of 2D and 3D molecular descriptors. 

Journal of computer-aided molecular design 18, 451–474 (2004).
	32.	 Jaccard, P. Distribution de la flore alpine dans le bassin des Dranses et dans quelques régions voisines. Bulletin de la Société Vaudoise 

des Sciences Naturelles 37, 241–272 (1901).
	33.	 Ding, P. et al. PTS: a pharmaceutical target seeker. Database 2017, bax095 (2017).
	34.	 Ge, H. et al. Scaffold hopping of potential anti-tumor agents by WEGA: a shape-based approach. Med. Chem. Commun. 5, 737–741 

(2014).
	35.	 Shang, J., Dai, X., Li, Y., Pistolozzi, M. & Wang, L. HybridSim-VS: a web server for large-scale ligand-based virtual screening using 

hybrid similarity recognition techniques. Bioinformatics 33, 3480–3481 (2017).
	36.	 Jelásity, M., Ortigosa, P. M. & Garca, I. UEGO, an abstract clustering technique for multimodal global optimization. Journal of 

Heuristics 7, 215–233 (2001).
	37.	 Ortigosa, P. M., Garca, I. & Jelásity, M. Reliability and performance of UEGO, a clustering-based global optimizer. Journal of Global 

Optimization 19, 265–289 (2001).
	38.	 Solis, F. J. & Wets, R. J.-B. Minimization by random search techniques. Mathematics of Operations Research 6, 19–30 (1981).
	39.	 Redondo, J. L., Fernández, J., Garca, I. & Ortigosa, P. M. Solving the multiple competitive location and design problem on the plane. 

Evolutionary Computation 17, 21–53 (2009).
	40.	 Redondo, J. L., Ortigosa, P. M. & Zilinskas, J. Multimodal evolutionary algorithm for multidimensional scaling with city-block 

distances. Informatica 23, 601–620 (2012).
	41.	 Petering, M. E. & Hussein, M. I. A new mixed integer program and extended look-ahead heuristic algorithm for the block relocation 

problem. European Journal of Operational Research 231, 120–130 (2013).
	42.	 Ivorra, B. et al. Modelling and optimization applied to the design of fast hydrodynamic focusing microfluidic mixer for protein 

folding. Journal of Mathematics in Industry 8, 4 (2018).
	43.	 Fernández, J., G.-Tóth, B., Redondo, J. L. & Ortigosa, P. M. The probabilistic customer’s choice rule with a threshold attraction value: 

effect on the location of competitive facilities in the plane. Computers and Operations Research 101, 234–249 (2019).
	44.	 Johnson, R. A. & Bhattacharyya, G. K. Statistics: principles and methods (John Wiley & Sons, 2014).
	45.	 Wishart, D. S. et al. DrugBank: a comprehensive resource for in silico drug discovery and exploration. Nucleic acids research 34, 

D668–D672 (2006).
	46.	 Huang, N., Shoichet, B. K. & Irwin, J. J. Benchmarking sets for molecular docking. Journal of medicinal chemistry 49, 6789–6801 

(2006).
	47.	 Mysinger, M. M., Carchia, M., Irwin, J. J. & Shoichet, B. K. Directory of useful decoys, enhanced (DUD-E): better ligands and decoys 

for better benchmarking. Journal of Medicinal Chemistry 55, 6582–6594 (2012).
	48.	 den Haan, H., Morante, J. J. H. & Perez-Sanchez, H. Computational evidence of a compound with nicotinic α4β2-Ach receptor 

partial agonist properties as possible coadjuvant for the treatment of obesity. bioRxiv (2016).
	49.	 Ihlenfeldt, W. D., Takahashi, Y., Abe, H. & Sasaki, S.-I. Computation and management of chemical properties in CACTVS: an 

extensible networked approach toward modularity and compatibility. Journal of chemical information and computer sciences 34, 
109–116 (1994).

	50.	 Wallach, I. & Lilien, R. Virtual decoy sets for molecular docking benchmarks. Journal of Chemical Information and Modeling 51, 
196–202 (2011).

	51.	 Rogers, D. & Hahn, M. Extended-connectivity fingerprints. Journal of Chemical Information and Modeling 50, 742–754 (2010).
	52.	 Wallach, I., Dzamba, M. & Heifets, A. AtomNet: a deep convolutional neural network for bioactivity prediction in structure-based 

drug discovery. arXiv preprint arXiv:1510.02855 (2015).
	53.	 Maybridge. Available online: http://www.maybridge.com, (Accessed on 10 october 2018).
	54.	 Butina, D. Unsupervised data base clustering based on daylight’s fingerprint and tanimoto similarity: A fast and automated way to 

cluster small and large data sets. Journal of Chemical Information and Computer Sciences 39, 747–750 (1999).
	55.	 Monge, A., Arrault, A., Marot, C. & Morin-Allory, L. Managing, profiling and analyzing a library of 2.6 million compounds gathered 

from 32 chemical providers. Molecular Diversity 10, 389–403 (2006).
	56.	 Pérez-Regidor, L., Zarioh, M., Ortega, L. & Martn-Santamara, S. Virtual screening approaches towards the discovery of toll-like 

receptor modulators. International Journal of Molecular Sciences 17 (2016).
	57.	 Fawcett, T. An introduction to ROC analysis. Pattern Recognition Letters 27, 861–874 (2006).
	58.	 Yan, X., Li, J., Gu, Q. & Xu, J. gWEGA: GPU-accelerated WEGA for molecular superposition and shape comparison. Journal of 

Computational Chemistry 35, 1122–1130 (2014).

https://doi.org/10.1038/s41598-018-37908-6
http://www.eyesopen.com
http://silicos-it.be.s3-website-eu-west-1.amazonaws.com/
http://www.maybridge.com


www.nature.com/scientificreports/

2 4Scientific Reports |          (2019) 9:1398  | https://doi.org/10.1038/s41598-018-37908-6

Acknowledgements
This work was funded by grants from the Spanish Ministry of Economy and Competitiveness (TIN2015-
66680-C2-1-R, CTQ2017-87974-R), Junta de Andalucía (P12-TIC301), Fundación Séneca–Agencia de Ciencia 
y Tecnología de la Región de Murcia under Projects 19419/PI/14 and 18946/JLI/13. Powered@NLHPC: This 
research was partially supported by the supercomputing infrastructure of the NLHPC (ECM-02). The authors also 
thankfully acknowledge the computer resources and the technical support provided by the Plataforma Andaluza 
de Bioinformática of the University of Málaga. This work was partially supported by the computing facilities of 
Extremadura Research Centre for Advanced Technologies (CETA–CIEMAT), funded by the European Regional 
Development Fund (ERDF). CETA–CIEMAT belongs to CIEMAT and the Government of Spain. Savns Puertas 
Martn is a fellow of the Spanish ‘Formación de profesorado universitario’ program, financed by the Spanish 
Ministry of Education, Culture and Sport.

Author Contributions
S. Puertas-Martín, J. L. Redondo, P. M. Ortigosa and H. Pérez-Sánchez contributed equally to this work and 
discussed the results and implications and commented on the manuscript at all stages.

Additional Information
Competing Interests: The authors declare no competing interests.
Publisher’s note: Springer Nature remains neutral with regard to jurisdictional claims in published maps and 
institutional affiliations.

Open Access This article is licensed under a Creative Commons Attribution 4.0 International 
License, which permits use, sharing, adaptation, distribution and reproduction in any medium or 

format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Cre-
ative Commons license, and indicate if changes were made. The images or other third party material in this 
article are included in the article’s Creative Commons license, unless indicated otherwise in a credit line to the 
material. If material is not included in the article’s Creative Commons license and your intended use is not per-
mitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the 
copyright holder. To view a copy of this license, visit http://creativecommons.org/licenses/by/4.0/.
 
© The Author(s) 2019

https://doi.org/10.1038/s41598-018-37908-6
http://creativecommons.org/licenses/by/4.0/

	OptiPharm: An evolutionary algorithm to compare shape similarity

	Method

	Shape Similarity. 
	Previous approaches. 
	Optimization algorithm. 
	Initialization method. 
	Reproduction method. 
	Replacement method. 
	Improvement method. 


	Computational Experiments Framework

	Hardware setup. 
	Methodology to test the performance of the algorithms. 
	Benchmarks. 
	FDA. 
	DUD. 
	DUD-E. 
	Maybridge. 
	The AUC metric. 


	Results and Discussion

	Results obtained for FDA database. 
	Results obtained for DUD and DUD-E databases. 
	Results obtained when hydrogen atoms are considered. 
	Results obtained for Maybridge database. 

	Conclusions and Future Work

	Acknowledgements

	Figure 1 The correct bounding of the parameter Δ prevents the evaluation of poor quality solutions, such as that considered in this figure, where no overlapping exists and hence the shape similarity of both molecules is equal to zero.
	Figure 2 OptiPharm algorithm structure.
	Figure 3 Several solutions with different radii can coexist simultaneously.
	Figure 4 Initially both molecules are aligned and centered at the origin of the coordinates (see figure above).
	Figure 5 Initial solutions for a case with M = 5: (a) s1, initial situation (b) s2, obtained when rotating s1 π rad at x-axis (c) s3, obtained when rotating s1 π rad at y-axis (d) s4, obtained when rotating s1 π rad at z-axis (e) s5, all the parameter (θ,
	Figure 6 Reproduction method.
	Figure 7 Example.
	Figure 8 Number of compounds included on the FDA database, according to their number of atoms.
	Figure 9 Depiction of shape similarity between the query DB09236 and (a) the molecule DB00270, (b) the compound DB01115, and (c) the molecule DB01433, when they are optimized by OpR.
	Figure 10 Query compound DB06439 is represented by the red structure.
	Table 1 Results obtained for 40 query compounds from the FDA database.
	Table 2 Performance results obtained by the different similarity methods.
	Table 3 DUD database.
	Table 4 DUD-E database.
	Table 5 Results obtained by OpR for 40 query compounds from the FDA database.
	Table 6 DUD database with hydrogens.
	T­ab­le 7 DUD-E database with hydrogens.
	Table 8 Maybridge database.




