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Pseudomonas aeruginosa displays intrinsic resistance to many antibiotics and known to acquire

actively genetic mutations for further resistance. In this study, we attempted to understand genomic
and transcriptomic landscapes of P. aeruginosa clinical isolates that are highly resistant to multiple
antibiotics. We also aimed to reveal a mode of antibiotic resistance by elucidating transcriptional
response of genes conferring antibiotic resistance. To this end, we sequenced the whole genomes and
profiled genome-wide RNA transcripts of three different multi-drug resistant (MDR) clinical isolates that
are phylogenetically distant from one another. Multi-layered genome comparisons with genomes of
antibiotic-susceptible P. aeruginosa strains and 70 other antibiotic-resistance strains revealed both well-
characterized conserved gene mutations and distinct distribution of antibiotic-resistant genes (ARGs)
among strains. Transcriptions of genes involved in quorum sensing and type VI secretion systems were
invariably downregulated in the MDR strains. Virulence-associated phenotypes were further examined
and results indicate that our MDR strains are clearly avirulent. Transcriptions of 64 genes, logically
selected to be related with antibiotic resistance in MDR strains, were active under normal growth
conditions and remained unchanged during antibiotic treatment. These results propose that antibiotic
resistance is achieved by a “constitutive” response scheme, where ARGs are actively expressed even in
the absence of antibiotic stress, rather than a “reactive” response. Bacterial responses explored at the
transcriptomic level in conjunction with their genome repertoires provided novel insights into (i) the
virulence-associated phenotypes and (ii) a mode of antibiotic resistance in MDR P. aeruginosa strains.

Antibiotic-resistant infections are now a serious problem worldwide. In 2017, a strain of Klebsiella pneumoniae
that became resistant to all available antibiotics caused a fatal infection in the US'. Globally, more than 0.7 mil-
lion people die each year from resistant infections and it was estimated that 10 million people will die from
* antimicrobial-resistant (AMR) infections in 20502 There is a famous collection called ESKAPE (Enterococcus
- faecium, Staphylococcus aureus, Klebsiella pneumonia, Acinetobacter baumannii, Pseudomonas aeruginosa, and
. Enterobacter species) composed of troublemaker pathogens that easily acquire antibiotic resistance’. In the US,
the Centers for Disease Control and Prevention reported that 51,000 patients became infected with P. aeruginosa
annually and 13% among those are infected by multidrug-resistant (MDR) strains*.

P. aeruginosa strains contain genomes of approximately 5 to 7 Mbp, and significant numbers of their con-
served genes encode regulatory proteins. This suggests that P. aeruginosa are capable of responding to various
environmental stresses®. In addition, P. aeruginosa has intrinsic antibiotic resistance due to the presence of
resistance-nodulation-division efflux pumps that physically sequester incoming antibiotics®. Moreover, biofilms
act as protective barrier against antibiotic penetration’. Genetically, P. aeruginosa can also acquire antibiotic
resistance through mutations or horizontal transfer of responsible genes®.

A variety of antibiotics has been discovered and developed from the 1950s through the 1960s following the
commercialization of penicillin®. Thereafter, antibiotic-resistant pathogens were increased by indiscriminate use
of antibiotics in humans and animals, so development of novel antibiotics for treating AMR infections has been
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MIC range (ug/ml)*
Strain TIC TOB IMI CIP PIP/TZP
PAO1 32 0.25 4 0.0625 8(4)
Y31 128 0.25 4 0.5 8(4)
Y71 1024 128 16 16 128(4)
Y82 1024 256 16 16 64(4)
Y89 1024 128 16 16 128(4)

Table 1. Strains used in this study and their resistance against five different antibiotics. *Minimum inhibitory
concentration (MIC) was determined by the broth dilution method at 37 °C for 24 h. TIC: ticarcillin; TOB:
tobramycin; IMI: imipenem; CIP: ciprofloxacin; PIP: piperacillin; TZP: tazobactam.

actively pursued, but has not been successful'®!". Such present situation calls for efforts on various levels in order
to better manage AMR infections.

Previous studies aimed at elucidating antibiotic resistance mechanisms have had the following limitations.
First, many studies have been based mainly on comparative genomic analysis to find causes of antibiotic resist-
ance'>"3. Second, transcriptome- and proteome-level responses have been explored using antibiotic-susceptible
laboratory P. aeruginosa strains'*-'”. Therefore, physiological characteristics of antibiotic-resistant clinical isolates
have been less considered. In the present study, we sequenced the whole genomes of three MDR P. aeruginosa
clinical isolates and profiled their genome-wide RNA transcripts as well. Function-level categorization of differ-
entially expressed genes provided initial insights into their virulence potentials, which were validated later exper-
imentally. Further, RNA-level analysis enabled us to understand how MDR strains respond to antibiotic exposure.
Results provided in the present study will contribute to expand the current understanding of the physiological
characteristics of antibiotic-resistant P. aeruginosa strains and the mechanisms of antibiotic resistance.

Results

Comparative genomic analysis of clinically isolated MDR P. aeruginosa strains. Bacterial adap-
tations resulting in antibiotic resistance are caused by DNA-level changes'®. To elucidate those modifications
uniquely observed in MDR strains, we sequenced the whole genomes of three MDR strains (Y71, Y82, and Y89)
isolated from independent pneumonia patients. As a negative control, we also sequenced the genome of an anti-
biotic-susceptible isolate (Y31) recovered from a patient also diagnosed with pneumonia. Minimum inhibitory
concentration (MIC) values of five different antibiotics against the strains were determined as shown in Table 1.
PAO]I, a standard laboratory P. aeruginosa strain, was used as a control in the MIC test, and its genome was used
as a reference in subsequent sequencing analyses. The four clinical isolates originated from different patients and
were confirmed to be phylogenetically distant from one another based on the random amplified polymorphic
DNA assay"’.

Assembled genomes were constructed and aligned with the PAO1 genome (Fig. 1). Inversion of a large region
was invariably observed in the middle of every genome. The overall information for all genomes is summarized in
Table 2. While the PAO1 genome is about 6.26 Mbp and harbors 5,572 predicted open reading frames (ORFs)?,
all clinical isolates were found to have larger genomes and more ORFs. The presence of a plasmid was only iden-
tified in the Y89 strain, as shown by a red arrow (Fig. 1).

Next, we sought to examine whether MDR strains possess genes responsible for antibiotic-resistant phe-
notypes. To this end, we performed blastp analysis using genome-deduced proteins against the ResFinder
and Comprehensive Antibiotic Resistance Database (CARD) databases?'?2. MDR strains, but not
antibiotic-susceptible strains, contain well-characterized antibiotic-resistant genes (ARGs). Table 3 shows that
the blaOXA-1 gene, encoding an enzyme for hydrolysis of 3-lactam antibiotics?, is present in all three MDR
strains. The aadB*, aac(67)-31%, and aph(3’)-VI1a®® genes, conferring aminoglycoside resistance, were found
in Y71 and Y89, whereas the Y82 strain harbored the aadB and aac(67)-31 genes. The presence of these addi-
tional genes was reflected in their tobramycin resistance, with the MICs of tobramycin being increased more
than 512-fold compared to those of PAO1 and Y31 (Table 1). All MDR strains possessed the sull gene encoding
a sulphonamide-resistant dihydropteroate synthase”. The cmx gene, whose product confers chloramphenicol
resistance?, was identified in the Y71 and Y89 genomes. Protein sequences encoded by these resistant genes are
almost identical to those retrieved in the ResFinder and CARD databases (Table 3), further validating that these
proteins perform their known functions.

In addition, a conserved mutation was observed in the MDR strains that results in amino acid replacement
T83I in topoisomerase, the product of the gyrA gene (Table 4). This particular mutation has been reported to be
responsible for quinolone resistance?-*?, and our MIC test further confirmed that all three MDR strains were
highly resistant to ciprofloxacin treatment (Table 1). Moreover, mutations of the oprD gene, which encodes a
porin through which imipenem can penetrate?, were also identified in the three MDR strains. Premature termi-
nation of translation ensued due to the mutations (Table 4). Together, genome-wide examinations revealed a wide
range of common mutations that contributed to the antibiotic resistance.

Transcriptomic landscapes of MDR P. aeruginosa strains. Previous studies using antibiotic-resistant
P. aeruginosa isolates have focused on identifying DNA-level variations and their effects. To understand bet-
ter the physiological characteristics of MDR strains, we also conducted RNA sequencing (RNASeq) analysis.
Differentially expressed genes with greater than 2-fold increases (or decreases) and a false discovery rate (FDR)

SCIENTIFIC REPORTS |

(2019) 9:487 | DOI:10.1038/s41598-018-37422-9 2



www.nature.com/scientificreports/

500000 1000000 1500000 2000000 2500000 3000000 3500000 4000000 4500000 5000000 5500000 6000000

BEOED DI 2 B
il

500‘0“ 6500000

|y by
Bt 5500000 Gopnllll \ 6500000

Y71 \
600D 6500000 7606000

i —— “l\in
Y11 W .IL]

Y22 o ot m-—

T spoo | odtuoo ] vaohoon —opdlme——geedoor— /oatonn ] Zeobout——
lll--" 11][ ]

Y89 (no annotations loum)

Figure 1. Alignment of PAO1, Y31, Y71, Y82, and Y89 whole genomes with the Mauve program. Strain names
are indicated on the left in different colors. The Y89 strain harbors a plasmid, and its sequence is shown at the
end (red arrow). The PAO1 genome is displayed as a collection of squared regions above the center line. Regions
with homologous sequences are shown with the same-colored squares. Squares that lie above the center line are
aligned in the same orientation, while squares below the line are aligned in the inverse orientation, relative to
the corresponding regions of the PAO1 genome. Each squared region consists of a collection of vertical lines,
and the height of each line is drawn proportional to the similarity between the sequences. Thus, a white region
inside squared regions represents a sequence that is exclusively present on a given genome.

PAOL | 6,264,404 66.60% 5,697 5,572 19 13 63 2
Y31 6,831,076 66.15% 6,313 6,190 42 12 65 6
Y71 6,940,949 65.97% 6,477 6,335 61 12 65 7
Y82 7,106,857 65.75% 6,504 6,383 44 12 63 4
Y89 6,868,832 65.98% 6,462 6,329 56 12 63 5

Table 2. General genome information for the five strains used in the study. DNA GC: proportion of DNA that
is guanine or cytosine; rRNA: ribosomal RNA; tRNA: transfer RNA.

less than 0.05 were extracted from both groups (MDR and antibiotic-susceptible [AS]) and used for the construc-
tion of a heat map (Fig. 2A). Overall, a larger number of genes exhibited decreased transcriptions in MDR vs.
AS strains. Of 78 genes that showed meaningful differences between groups, 64 exhibited decreased expression
(more than 2-fold) in the MDR strains. We then constructed a functional gene network using those 64 genes.
As shown in Fig. 2B, two distinct clusters stand out in the network. The first cluster (boxed in with a solid line)
consists of genes (rhll, rhiR, rhlA, pqsA, pqsB, pqsC, pqsD, pqsE, pgsL, phnA, henA, henB, and henC) related to
quorum sensing (QS), a cell density-dependent regulatory mechanism of P. aeruginosa virulence®. The second
cluster (boxed in with a dashed line) contains genes encoding components of the type VI secretion system (T6SS)
that kills host cells** and competing bacteria®®. This particular RNASeq analysis was performed using genes that
are commonly present in both PAO1 and MDR strains. Therefore, transcriptional responses specific to the MDR
strains could not be observed. Nevertheless, our results led us to hypothesize that MDR strains may be less viru-
lent than their AS counterparts.

RNASeq analysis revealed a unique feature of an MDR strain. The MexAB-OprM efflux pump is
the major efflux pump contributing to the non-specific spatial exclusion of incoming antibiotics in P. aerugi-
nosa. Expression of the MexAB-OprM operon is controlled by NalC and NalD%*. Our RNASeq analysis indi-
cated that transcript levels of mexA, mexB, and oprM were not always upregulated in all MDR strains. Among
the three MDR strains, Y82 displayed levels of transcription comparable with those of PAO1 and Y31, two
antibiotic-sensitive control strains, while the Y71 and Y89 strains exhibited upregulated expression (Fig. 3A).
Of note, transcription of the nalC gene, encoding a negative regulator of MexAB-OprM expression, was found
to occur actively in Y82 (Fig. 3B). Inactive nalC expression was detected in the Y71 and Y89 strains, and these
findings are consistent with previous results using other antibiotic-resistant P. aeruginosa strains*>*’. In addi-
tion, an amino acid substitution mutation (W48R) in NalD protein, another negative regulator of MexAB-OprM
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aadB Y71_4780 | 100 534/534 Aminoglycoside resistance
blaOXA-1 Y71_4781 100 831/831 (3-lactam resistance
aac(6’)-31 Y71_4782 98.65 519/519 Aminoglycoside resistance
e aph(3/)-Vla Y71_4787 | 98.97 780/780 Aminoglycoside resistance
sull Y71_4790 | 100 852/852 Sulphonamide resistance
cmx Y71_4792 99.83 1176/1176 Phenicol resistance
sull Y82_4660 | 100 852/852 Sulphonamide resistance
v82 aac(6”)-31 Y82_4665 | 98.65 519/519 Aminoglycoside resistance
blaOXA-1 Y82_4666 100 831/831 (3-lactam resistance
aadB Y82_4667 | 100 534/534 Aminoglycoside resistance
aadB Y89_4691 | 100 534/534 Aminoglycoside resistance
blaOXA-1 Y89_4692 100 831/831 (3-lactam resistance
89 aac(6”)-31 Y89_4693 | 98.65 519/519 Aminoglycoside resistance
aph(3’)-Via Y89_4698 | 98.97 780/780 Aminoglycoside resistance
sull Y89_4701 100 852/852 Sulfonamide resistance
cmx Y89_4703 | 99.83 1176/1176 Phenicol resistance

Table 3. Presence of genetic markers for antibiotic resistance in each MDR strain. *These antibiotic-resistant
genes were taken from the ResFinder database and the Comprehensive Antibiotic Resistance Database (CARD).
bIdentity is the best matching percentage between the antibiotic-resistant gene presented in ResFinder or CARD
and the corresponding gene of the input genome. ‘Query is the gene length based on the database, and HSP is
the gene length of the corresponding gene of the input genome.

Y71 gyrA T831
Y82 Fluoroquinolone resistance Target mutation gyrA T831
Y89 gyrA T831
Y71 297a.a/443a.a
Y82 Carbapenem resistance Deletion on oprD 338a.a/443a.a
Y89 297a.a/443a.a

Table 4. Presence of mutations for antibiotic resistance in each MDR strain.

expression®®, was only detected in the Y71 and Y89 strains (Fig. 3C). These results demonstrate that the Y82 strain
has developed antibiotic resistance mechanisms that are independent of the MexAB-OprM system.

MDR strains were significantly less virulent than the two antibiotic-sensitive strains.  QS-mediated
virulence. With the availability of the genome sequences, we compared the promoter sequences of 45 genes
selected to be related to QS (Table S1). We also compared the protein sequences of these 45 genes with the cor-
responding proteins in PAO1. Among the three MDR strains, Y82 was found to exhibit considerable variations
in the lasI, phzM, hcnABC, and aprA promoter regions, with a complete deletion of the hcnABC gene cluster
(Table S1), suggesting that mutations in QS-related genes occurred extensively in the Y82 strain. Table S2 shows
the transcript levels of the 45 genes in each strain. As was expected from the mutation of the lasI gene promoter,
Y82 produced significantly lower levels of lasI transcript, while active lasI gene transcriptions were detected in
the two other MDR strains (Table S2, green box). Consistent with this mRNA analysis, Y82 produced the smallest
amount of C12-HSL, an autoinducer produced by the LasI protein (Fig. 4A). When culture supernatants were
assessed for elastase activity, however, all three MDR strains produced markedly decreased elastase activities
(Fig. 4B). This indicates that some other mutations are responsible for the defective elastase production in the
Y71 and Y89 strains. Of note, these two MDR strains were found to produce LasR with a point mutation of A189T
(Fig. 4C). The 189" and 231°* amino acid residues, conserved in LasR, SdiA, and TraR, three different LuxR
homologues®, fall in the DNA binding domain of the protein*’. Therefore, the protein with this particular amino
acid polymorphism is predicted to be less active in DNA binding. Pyocyanin production, another important
event controlled by QS in P. aeruginosa, was also abrogated specifically in the MDR strains, but not in the PAO1
and Y31 strains (Fig. 4D). Because elastase and pyocyanin are two major QS-mediated virulence determinants,
our results strongly suggest that overall QS capability is significantly impaired in MDR strains. Consistent with
these in vitro results, mice infected with each of the MDR strains exhibited significantly better survival than did
the PAO1- or Y31-infected groups (Fig. 4E). Not a single mouse perished by infection with Y82 or Y89, while all
six mice were killed by PAO1 at the same infection dose (~2.5 x 107 cells). Moreover, the numbers of bacterial
cells recovered from the mouse lungs were markedly decreased in mice infected with Y71, Y82, or Y89 (Fig. 4F),
indicating that these MDR strains were cleared by host airway immunity. The mice lung histology results fur-
ther corroborate that the three MDR strains had attenuated virulence, since the elevated infiltration of immune
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Figure 2. Transcriptome comparison between MDR versus antibiotic-susceptible strains. (A) Seventy-eight
genes that satisfied two parameters (fold change >2, FDR < 0.05) were selected among the antibiotic-susceptible
(PAO1,Y31) and MDR strains (Y71, Y82, Y89) by the edgeR tool. These genes were lined up next to the heat
map. TMM-normalized read counts of samples were converted to log2. After each gene was averaged from five
samples, the average was subtracted from the read count of each gene. If the last calculated value was high, it was
displayed in the heat map in red; when it was low, it was displayed in blue, as shown in the Color Key (top left).
Hierarchical clustering was performed on the basis of genes and samples. (B) 64 genes that exhibited decreased
expression (>2-fold) in the MDR strains were used for a functional gene network using STRING. The box
drawn with the solid line was the group related to quorum sensing, and box drawn with the dashed line was the
group related to the type VI secretion system.

cells observed in PAO1- and Y31-infected lung tissues indicated that these bacterial strains were more virulent
(Fig. S1). These results further confirm that the virulence potentials of our MDR strains were significantly lower
than those of the two AS strains.

Type VI secretion system (T6SS).  P. aeruginosa has three T6SSs composed of H1-, H2-, and H3-T6SS. H1-T6SS
plays a role in anti-prokaryotic activity, whereas the H2- and H3-T6SSs target both eukaryotic and prokaryotic
cells*l. The various effector proteins of T6SS pass through Hcp tubes with spikes consisting of VgrG protein at the
end and are transferred to target cells*>*. Transcriptions of H2-T6SS-related genes (PA1656, PA1657, PA1658,
PA1659, PA1660, PA1661, PA1662, PA1663, and PA1665) of the MDR strains were significantly downregulated
compared with those of AS strains (Fig. 2). To assess the T6SS-mediated anti-prokaryotic activities of MDR vs.
AS strains, we performed a bacterial competition assay using Vibrio cholerae V52 strain as prey. The choice of
V52 strain, a T6SS-positive strain, was based on a previous report showing that P. aeruginosa T6SS is induced by
T6SS-mediated counterattack®. All five P. aeruginosa strains were capable of killing the prey strain, although the
degree of killing varied among the strains (Fig. 5A). Of note, all three MDR strains were less capable of killing the
prey strain than were the two AS strains (Fig. 5A). After 5hr of incubation with each of three MDR strains, ~10®
viable V. cholerae cells were invariably recovered, while ~1.5 x 10° cells were detected when incubated for 5hr in
the absence of a P. aeruginosa predator strain. In contrast, ~107 and ~1 X 10° prey cells remained viable after the
incubations with PAO1 and Y31, respectively (Fig. 5A). It is unclear why the Y31 strain exhibited exceptionally
robust killing activity. These results indicate that the predictions proposed from the RNASeq analysis are well
validated in our bacterial competition assays.

Swarming motility. Bacterial swarming motility is associated with P. aeruginosa virulence. A mutant defec-
tive in swarming motility exhibited attenuated in vivo virulence*, and virulence-associated genes were actively
expressed in swarming bacteria®*. When bacterial strains were allowed to swarm on 0.5% agar plates, the PAO1
and Y31 strains exhibited robust swarming, while the three MDR strains were less active in their swarming motil-
ities (Fig. 5B).

Iron acquisition capability. Iron acquisition is also important for bacterial survival and virulence. P. aeruginosa
produces siderophores for iron uptake, such as pyoverdine and pyochelin, which show high affinities to ferric
iron*®. Figure S2 shows the arrangement of genes involved in the synthesis of pyoverdine and its receptor FpvA
in PAO1 and the three MDR strains. Of note, the pyoverdine gene cluster found in PAO1 was not present in the
three MDR strains (Table S3). Instead, they commonly possessed a gene cluster, which was predicted to play a
similar function (Fig. S2, Table S3). Due to the differences in gene arrangements among strains, it was thought
that examining the transcript levels of component genes would not be meaningful. Therefore, we performed a
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Figure 3. Elevated expressions of mexAB-oprM genes in Y71 and Y89. TMM-normalized read counts of the
mexAB-oprM operon (A) and nalC gene (B) in RNASeq results with bacteria of the exponential phase. RNA
extractions and sequence analysis were performed as described in Experimental Procedures. (C) NalD protein
sequences of PAO1, Y31, Y71, Y82, and Y89 were compared with CLUSTALW.

chrome azurol sulphonate (CAS) assay to detect the siderophore activity in bacterial culture supernatants. The
three MDR strains exhibited iron acquisition activities substantially lower than those of PAO1 and Y31 (Fig. 5C).
Because no major differences in the gene clusters for pyochelin and putative nicotianamine siderophores*® were
observed between strains (data not shown), the overall reduction in the iron acquisition activities is likely attrib-
uted to the defective pyoverdine activities of the MDR strains.

Transcriptional responses of MDR strains to antibiotic stresses. Our results shown in Table 3
demonstrate the presence of ARGs (antibiotic-resistant genes) in the MDR strains. In addition to these
well-characterized ARGs, our comparative genomic analysis also revealed that certain genes were uniquely
and commonly present in all three MDR strains. To better understand the roles of these MDR-specific genes in
mounting antibiotic resistance, we analyzed how actively and instantly the transcriptions of such genes occur
upon antibiotic stresses. To this end, we treated MDR strains with a mixture of three different antibiotics (imipe-
nem, tobramycin, and ciprofloxacin) at sub-MIC concentrations and extracted RNA for RNASeq analysis.

For this purpose, we sorted out a list of MDR-unique genes through several steps (Fig. S3). First, 169 genes
were selected that (i) were invariably present in all three MDR strains and (ii) exhibited active transcriptions as
measured by RNASeq analysis. Among the 169 genes, 53 were excluded because they were found to be pres-
ent in other AS P. aeruginosa strains, such as PA14*” and VRFPA07%. Exclusion of these genes was based on
clustering under both conditions (>95% sequence similarity with >95% gene length coverage (S95L95) and
>50% sequence similarity with >50% gene length coverage (S50L50)) by the Blast-2.2.26 algorithm*. Genes
that cluster only among MDR strains under both conditions were selected as MDR strain-specific genes. Then,
52 additional genes that are present in prophage clusters and encode transposases were removed from the list,
because they were not presumed to be related to antibiotic resistance. Through this process, we selected 64 genes
that are specifically present in our MDR strains and predicted to be involved in antibiotic resistance (Fig. S3). Of
note is that 55 of these 64 genes were also found to be present in other antibiotic-resistant P. aeruginosa strains
(n=70) reported elsewhere (Table $4)!>134850-53 ‘When the 64 genes were examined for presence in the genomes
of these 70 strains, 55 were identified to be present in more than one strain (Fig. 6). At high threshold conditions
(>95% sequence similarity with >95% gene length coverage), Y82_0292 and Y82_0304, encoding excinuclease
ABC subunit A and glyoxalase (Table S5), were invariably found in the same 25 strains among the 70 reference
strains. These two are the most abundantly identified genes. When the threshold was lowered to >70% sequence
similarity and >70% gene length coverage, the Y82_5575 gene was found in 44 strains. Y82_4666, which codes

SCIENTIFICREPORTS| (2019) 9:487 | DOI:10.1038/s41598-018-37422-9 6



www.nature.com/scientificreports/

A , :
— A189T A231V
: *
o —
"6 Y31 EKEVLQWCAIGKTSWEISVICNCSEANVNFHMGNIRRKFGVTSRRVAAIMAVNLGLITL
> Y82 EKEVLQWCAIGKTSWEISVICNCSEANVNFHMGNIRRKFGVTSRRVAATMVVNLGLITL
'8 PAO1 EKEVLQWCAIGKTSWEISVICNCSEANVNFHMGNIRRKFGVTSRRVAAIMAVNLGLITL
A Y71 EKEVLQWCTIGKTSWEISVICNCSEANVNFHMGNIRRKFGVTSRRVAAIMAVNLGLITL
o Y89 EKEVLQWCTIGKTSWEISVICNCSEANVNFHMGNIRRKFGVTSRRVAAIMAVNLGLITL
- bbb sl bt
:.i [ LasR sequences ]
o — ][] o
PAO1Y31 Y71 Y82 Y89 PAO1Y31 Y71 Y82 Y89
D E F *hk
100 P=.0628
| — PAO1 104 |P=197

3 801 Y31 1

3

-~ e 84
e 2 o . Y71 e,
E % 60 —y82 P -
o — & 6 RN S—
8 = — Y89 -

2 40 PBS O 4 A v
(=] > = S
° @ 20 2 + T o

v *
0 T T T T 0 T T T T T 200
PAO1Y31 Y71 Y82 Y89 ° 1 20 30 & PAO1Y31 Y71 Y82 Y89 PBS

hours after infection

Figure 4. Decreased QS-mediated virulence and in vivo infectivity in MDR strains. (A) Qualitative analysis

of 3-0x0-C12-HSL production. An E. coli reporter strain harboring the pKDT17 plasmid was incubated with
overnight-grown supernatants of each bacterial strain (indicated at the bottom) for one hour and then subjected
to 3-galactosidase assays. Overnight-grown culture supernatants of each strain were used for elastase (B) and
pyocyanin (D) assays. (C) LasR protein sequences of PAO1, Y31, Y71, Y82, and Y89 were compared with
CLUSTALW. (E) Eight-week-old BALB/C mice (n = 6) were infected with approximately 2.5 x 107 bacterial
cells of indicated strains. Mouse survival rates were monitored following infection. (F) After the death of mouse
or 42 hours of infection, mouse lung was homogenized in PBS and serially diluted for enumerating bacterial
cells. Diluted lung homogenates were spotted on Pseudomonas Isolation Agar. ***p < 0.001 vs. the CFU of the
PAOLl-infected samples.

for OXA-1 family class D 3-lactamase, on the other hand, was present only in strain 63, P. aeruginosa AR_0108
(Fig. 6). It is of particular interest that 10 genomes of strains 5, 14, 15, 16, 17, 25, 27, 28, 31, and 52 contain a com-
mon group of genes (gene group 1, blue font), while another distinct group of genomes (strains 10, 22, 24, 30, 32,
43,58, 66, 67, 68, and 69) harbors a different subset of genes (gene group 2, red font) (Fig. 6). None of the strains,
however, possess these two gene groups together. This result strongly suggests that our MDR strains (Y71, Y82,
and Y89) are unique in genome repertoire among antibiotic-resistant P. aeruginosa strains.

We next calculated the ratios of transcriptions of these 64 genes after vs. before antibiotic cocktail treat-
ment and presented the ratios with color-coded squares (Fig. 7A). Among 64 genes, those encoding aac(6")-31
(Y82_4665), OXA-1 3-lactamase (Y82_4666), and aadB (Y82_4667), which are well-characterized ARGs, were
ranked highest based on mRNA reads even without antibiotic cocktail (AC) treatment (yellow box, Table S5).
Following AC treatment, expression of these three genes was slightly decreased (green box, Table S5). Reflecting
these results, color-coded squares are shown as black for Y82_4665 and Y82_4667 and blue for Y82_4666
(Fig. 7A). Similar to these genes, no significant increases in AC-induced transcription were detected in the major-
ity of the 64 genes (Fig. 7A). Only four genes, Y82_5602, Y82_5603, Y82_6120, and Y82_6122, showed elevated
transcriptions following AC treatment. Together, these results suggest that transcription of MDR-specific genes
does not increase immediately when antibiotic stresses are encountered. Instead, ARGs are constitutively tran-
scribed, albeit in varying degrees, even in the absence of antibiotic stress, rendering MDR P. aeruginosa strains
resistant to future antibiotic attacks (Fig. 7B).

Discussion
A hallmark of P. aeruginosa infections is the emergence of antibiotic-resistant variants. Healthcare authorities in
many countries have already classified P. aeruginosa as a dangerous pathogen, especially for patients in critical
care, and make strenuous efforts to monitor its infections carefully. Here, we provide insights into the physiolog-
ical features of MDR P. aeruginosa clinical isolates and the mechanisms by which they regulate the expression
of ARGs. To date, studies to elucidate antibiotic resistance mechanisms have been performed primarily at the
genomic level. Our findings, whose initial clues became available by delineating MDR-specific transcriptomic
landscapes, add another layer of understanding as to how MDR P. aeruginosa strains regulate their virulence and
respond to antibiotic stresses.

Previous studies have reported conflicting results regarding the relationship between antibiotic resistance
and virulence of P. aeruginosa clinical isolates. A group of antibiotic-resistant P. aeruginosa isolates exhibited
reduced QS-related virulence and attenuated capabilities to disrupt intestinal epithelial cell barrier™**. Similar to
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Figure 5. Decreased Type VI secretion system swarming activities and iron acquisition activities in MDR
strains. (A) Bacterial competition assays with Vibrio cholerae V52 and P. aeruginosa. V. cholerae V52 as prey
of P. aeruginosa strains, PAO1 and clinical isolates were incubated overnight in LB. V52 alone and mixtures

of P. aeruginosa and V52 in a 1:1 ratio were grown on LB agar for 5 hr. Bacteria grown on LB agar plates were
scraped, serially diluted, spread on TCBS agar for selection of V52, and incubated overnight at 37 °C for
enumeration. NC is CFU of V52 alone for 5hr. ***p < 0.001 vs. V52 CFUs after incubation with PAO1. (B)
Overnight-grown P. aeruginosa strains were spot-inoculated on 0.5% agar plate composed of the 0.8% nutrient
broth and 0.5% glucose and incubated overnight at 30 °C. (C) CAS assay for iron acquisition activity. The 10-
fold diluted supernatants from overnight cultures were reacted with CAS solution for 2 hr, and the OD of the
resulting solution was measured at 630 nm. *p < 0.05 vs. iron acquisition activity of PAO1 and Y31.

our results, Gomez-Zorrilla and colleagues showed that mice infected with drug-resistant strains survived better
than those infected with antibiotic-sensitive control strains®®. This trend was evident not only in the analysis of
naturally isolated strains, but was also observed with artificially produced mutant strains. A P. aeruginosa mutant
of the mexR gene that overexpressed the MexAB-OprM efflux pump produced lower amounts of phenazines and
proteases®. Moreover, an oprD deletion mutant with a phenotype of decreased carbapenem uptake displayed
lower virulence in vivo than the wild type PAO1%, but not in PA14 background®. Likewise, antibiotic-resistant
variants of Acinetobacter baumannii, another Gram-negative bacterial species of clinical importance, harbor a
plasmid containing ARGs and a gene encoding a negative regulator of T6SS as well®. On the other hand, there are
a number of studies claiming that antibiotic-resistant P. aeruginosa strains are more virulent. ExoU, an effector
delivered by a type I1I secretion system, is a major virulence determinant that causes alveolar epithelial injury®!.
A molecular epidemiological study demonstrated that the exoU gene is present more frequently in MDR isolates
than in non-MDR isolates®>%. Agnello and colleagues also revealed that a positive correlation exists between the
prevalence of the exoU gene and fluoroquinolone resistance®. Patients infected with exoU-positive MDR isolates
displayed very severe clinical symptoms including lower healing rates®>. Moreover, a higher cytotoxicity toward
cultured epithelial cells was observed in exoU-positive MDR isolates than exoS-positive MDR isolates®>. Taken
together, these results suggest that the exoU gene could be an important marker for predicting the virulence of
MDR P. aeruginosa strains. The MDR strains explored in the present study, however, do not possess the exoU
gene (data not shown). Bacterial evolution occurs in the presence of various selective pressures and proceeds in
a direction to increase survival fitness. In this regard, it will be important to ask how DNA mutations resulting in
antibiotic resistance affect bacterial virulence, and vice versa.

Our sequence analyses at genome and transcriptome levels were complimentary to each other and helped us
to identify a novel mutation leading to antibiotic resistance. A MexAB-OprM efflux pump that spatially excludes
incoming antibiotics plays an important role in conferring antibiotic resistance in P. aeruginosa®. In Y71 and Y89,
the transcript levels of genes coding for the MexAB-OprM system were increased, as measured by our RNASeq
analysis (Fig. 3). The MexAB-OprM operon is negatively regulated by global regulator #nalC, which also negatively
regulates expression of the PA3719 gene. If the nalC gene is deleted, expression of PA3719 increases, and this
product binds to MexR, resulting in inhibition of MexR function as a suppressor of MexAB-OprM expression®.
In Y71 and Y89, however, despite the nalC gene deletion, PA3719 gene transcripts are similar or slightly less than
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Figure 6. Distribution of 64 ARGs in the genomes of 70 different MDR P. aeruginosa strains. Protein sequences
encoded by the 64 ARGs (far left column) were aligned against all protein sequences deduced from genomes of
70 different MDR P. aeruginosa strains (top line), with several thresholds of similarity (S) and length coverage
(L); (§>95% and L > 95%, S > 90% and L > 90%, S > 80% and L > 80%, S > 70% and L > 70%). Seventy MDR
strains are listed in Table S4 with detailed information. Presence of 64 genes in each genome is indicated

with color-coded square boxes. The heat map was constructed by applying the color that satisfied the highest
threshold. The blue-colored and red-colored genes were designated as gene group 1 (GG1) and gene group 2
(GG2), respectively.

those in PAO1 and Y31 (data not shown). Thus, the increased expression levels of MexAB-OprM genes in Y71 and
Y89 were not attributed to the elevated production of PA3719 resulting from the deletion of nalC. This eventually
led us to examine the DNA sequences and mRNA levels of the nalD gene (PA3574) encoding another repressor
of the MexAB-OprM system?®*. In these two strains, the nalD gene was found to have a previously undescribed
mutation causing a single amino acid substitution (W48R) (Fig. 3C). Because the 48™ tryptophan residue is a
conserved amino acid in a putative DNA-binding motif of the protein®®, the mutant protein may be incapable
of binding to the MexAB-OprM promoter. Through the process described so far, we successfully identified a
novel mutation associated with the acquisition of antibiotic resistance, and this was made possible because both
genomes and transcriptomes were analyzed together.

We postulated that antibiotic resistance in MDR strains would be activated via two different routes, which
we termed “reactive” vs. “constitutive” responses, depending on the temporal regulation of ARG expression. In
the reactive response model, expression of ARGs was activated when antibiotic stresses were imposed, whereas
ARGs were prophylactically expressed in the constitutive response model (Fig. 7B). The reactive response model
was proposed based on an idea that activating antibiotic resistance mechanisms is likely an energy-intensive
process. Our results strongly support that antibiotic resistance is mediated mainly by a constitutive response for
the following reasons. First, the 64 genes were actively transcribed even when grown in plain Luria-Bertani (LB)
medium without antibiotics. Second, no additional increases in transcription took place in 60 genes except for
that of four genetic elements (Y82_5602/Y82_5603 operon, Y82_6120, and Y82_6122). Long-term exposure to
high concentrations of antibiotics results in acquisition of antibiotic resistance. During this process, ARGs must
have evolved in such a way that their expression was controlled by promoters with constitutive activity. With
regard to this, it will be important to address (i) how constant transcription of ARGs affects bacterial fitness
under normal conditions and (ii) whether reduced virulence detected in MDR strains is associated with persistent
expressions of ARGs.

In this study, we expanded our understanding of the 64 genes considered to be involved in antibiotic resistance.
Of these 64 genes, 55 were found in 67 of 70 antibiotic-resistant P. aeruginosa strains reported in other studies
(Fig. 6). These results demonstrate that the 64 genes that we sorted may indeed be closely related with antibiotic
resistance in P. aeruginosa. Through the genome-wide comparisons against the genomes of 70 antibiotic-resistant
clinical isolates, we identified two major gene groups (GG1 and GG2) that are prevalently present in the genomes
of antibiotic-resistant P. aeruginosa isolates. Interestingly, most of the 70 reference strains carry either GGI or
GG2, but not both (GGs), while the two GGs co-exist in our MDR strains (Y71, Y82, and Y89). Although it is not
possible to compare antibiotic resistance phenotypes directly between these 70 strains and our MDR strains, the
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Figure 7. Transcriptional responses of 64 ARGs to the treatment with antibiotic cocktail (AC) and constitutive
function of the ARGs to endure antibiotic stresses. (A) The mRNA transcript of each of the 64 genes was
calculated before and after AC treatment in each MDR strain and the ratio of their average values is represented
as a color-coded square. Red and blue squares indicate >2-fold increase or >2-fold decrease in expression
upon AC treatment, respectively. The genes with fold changes between 0.5 and 2 are shown in black squares.
The names of the representative genes were taken from the strain Y82 that has the largest genome among the
MDR strains. Among the MDR strains (Y71, Y82, and Y89), 64 ARGs presented homology of more than 90%.
(B) Potential working models by which ARGs respond to antibiotic stresses. Pacman shapes represent the
expressions of ARGs, and fan shapes represent various antibiotics. The thick cell wall means that the ARG-
expressing bacterial cell is ready to withstand antibiotic stresses.

70 strains were determined to be resistant to three different classes of antibiotics'>'*#%9->*_ On the other hand, the
MDR strains explored in the current study are resistant to at least five different antibiotics (Table 1). Therefore,
one important question is whether stronger resistance to wider ranges of antibiotics is achieved in the presence of
both GGs. Addressing this question may provide a novel genetic trait that could potentially be used as a marker
to predict the resistance of a P. aeruginosa clinical isolate.

In conclusion, we extended the understanding of the physiological characteristics of MDR P. aeruginosa. The
MDR strains analyzed in this study exhibit not only a conserved set of genetic variations responsible for antibiotic
resistance, but also a distinct pattern of ARG distribution, which can potentially be used as a marker for MDR
prediction. Furthermore, RNASeq analysis provided novel insights into their virulence characteristics and tran-
scriptional responses to antibiotic stresses. We hope that the results provided in the present study will stimulate
future investigations to devise new strategies to diagnose and treat MDR P. aeruginosa infections.

Experimental Procedures

Experimental ethics. Experiments using human subjects and experimental animals were performed
in strict accordance with guidelines provided by Yonsei University. Protocols were reviewed and approved by
Institutional Review Board of Yonsei University College of Medicine. The permit number for mouse infection
experiment is 2011-0173-2.

Bacterial strains and growth conditions. Four clinical isolates (Y31, Y71, Y82, and Y89) were derived
from the sputa of four different pneumonia patients, and PAO1 was used as a reference strain. Bacterial cultures
were grown in Mueller Hinton (MH) broth (Difco) and LB medium (1% [w/v] tryptone, 0.5% [w/v] yeast extract,
and 1% [w/v] sodium chloride) at 37°C. All bacterial single colonies on LB or MH plates were picked and inoc-
ulated in LB or MH broth for precultures and grown overnight. Precultures were diluted 100-fold in fresh LB or
MH broth for subculture and incubated at 37 °C and 230 rpm. The incubation time was dependent on the exper-
imental procedures.

Antibiotic susceptibility test (MIC test). The antibiotic susceptibility test was performed by the broth
dilution method®, and ticarcillin (Sigma), tobramycin (Sigma), imipenem (Sigma), ciprofloxacin (Fluka),
piperacillin (Sigma), and tazobactam (Sigma) for adjuvant of peperacillin were used. PAO1 and the four iso-
lates were precultured and subcultured in MH broth depending on the bacterial strains and growth conditions
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presented above. Subcultures were incubated at 37 °C and 220 rpm for 3 hr to reach the exponential phase. The
bacterial medium was adjusted to optical density (OD) 0.1 (the OD 0.1 of all bacteria is approximately 1 x 10®
colony-forming units [CFU]) using fresh MH broth, and this medium was diluted 100-fold and adjusted to a final
density of 1 x 10° CFU. All antibiotics were diluted in MH broth to make 2 x concentrations. The final bacterial
medium (1 ml) and antibiotic-dissolved media (1 ml) were mixed, and these mixtures were incubated overnight
at 37°C and 230 rpm. The MIC results were determined using the Clinical and Laboratory Standards Institute
(CLSI) guidelines.

Genome sequencing and analysis of four isolates. Clinical isolates were precultured and subcultured
in LB medium depending on the bacterial strains and growth conditions presented, and these subcultures were
incubated for 3 hr. To extract high quality bacterial DNA, a genomic DNA extraction kit (Intron) was used fol-
lowing the manufacturer’s protocol. Whole genome sequencing of isolates was performed using PacBio RS 1l
single-molecule real-time (SMRT) sequencing technology. De novo assembly was conducted using the hierar-
chical genome-assembly process pipeline of the SMRT Analysis v2.3.0. Protein-coding genes were predicted by
Prodigal v.2.6.1, and BLAST searches were performed against the UniProt, Pfam, and COG databases’*"* to
annotate predicted genes functionally. Ribosomal RNA and transfer RNA were predicted using Rfam v12.07°.
Prophage regions were identified using the PHAST web-based program’. Whole genome alignment of PAO1 and
the four isolates was performed using Mauve”. ARGs were found by blastp with the ResFinder database®! and
Comprehensive Antibiotic Resistance Database(CARD)?. Identity means the best matching percentage between
an antibiotic resistance gene and the corresponding sequence of input genome. Query is the length of the anti-
biotic resistance gene in the database, and HSP is the length of the corresponding sequence of input genome.
Sequences of gyrA, oprD, nalD, and lasR were analyzed by CLUSTALW?®. The similarities of promoter regions
and ORFs of QS-related genes were compared with PAO1 on nucleotide and amino acid levels.

RNASeq analysis. PAOLI and clinical isolates were precultured and subcultured in LB medium depending on
the bacterial strains and growth conditions presented. Subcultures were grown to the exponential phase, diluted
to a final OD of 0.07, and incubated for 1 hr. In the antibiotic-treated group, an AC composed of imipenem,
tobramycin, and ciprofloxacin was administered at a final OD of 0.07 for Y71, Y82, and Y89 for 1 hr. A combi-
nation of imipenem (1 pg/ml), tobramycin (16 pg/ml), and ciprofloxacin (0.5 ug/ml) was used for stimulation on
Y71 and Y89, but a 2-fold lower AC was used with Y82. Aliquots of each culture (n = 3) were pooled together in
single tubes for RNA extraction. To extract high quality bacterial RNA, an RNeasy Protect kit (Qiagen) was used
with an RNeasy Mini kit (Qiagen) following the manufacturer’s protocol. The isolated RNA was stored at —80°C
until use. The Ribo-Zero rRNA removal kit (Epicentre, USA) was used for ribosomal RNA depletion according
to manufacturer instructions. Libraries for Illumina sequencing were made with the TruSeq Stranded mRNA
sample prep kit (Illumina, USA) following the manufacturer’s protocol. RNA sequencing was performed on the
Mlumina HiSeq2500 platform using single-end 50 bp sequencing (Chunlab, Seoul, Korea). The raw data from
RNA sequencing was aligned to the PAO1 (National Center for Biotechnology [NCBI] Information Bio-Project
accession number PRJNA331) and Y82 whole genome sequence by Bowtie 2 version 2.2.6”7. Differential expres-
sion analysis was performed using edgeR, and normalization between the samples was accomplished with the
trimmed mean of M values (TMM) method’®”*. Genes with FDR <0.05 and fold change >2 were identified as
differentially expressed and these genes were converted to log2. After subtracting the average expression levels
from those of each strain, clustering was performed, and heat maps were created. Network analyses were per-
formed with 2-fold low expressed genes in the MDR strains compared to PAO1 and Y31 using STRING®.

Elastase, pyocyanin, and swarming assays. Production of elastase and pyocyanin and swarming assays
were performed following procedures described elsewhere®!~%.

Bacterial competition assay. PAOI, clinical isolates, and Vibrio cholerae V52 to be used as prey were incu-
bated overnight in LB medium. The bacterial cultures were washed with fresh LB medium and adjusted to 1 ml of
OD 1. The bacterial supernatant was removed by spin down and suspended with 100 pl of fresh LB medium. As
negative control, 10 ul of V52 were inoculated individually on LB agar plates. As competitive groups, each strain
of P. aeruginosa was mixed 1:1 with V52 (10 ul 4 10 ul), and then 20 pl were inoculated on LB agar plates, and all
plates containing only V52 were incubated at 37 °C for 5 hr. Bacteria grown on LB agar plates were scraped with a
sterile scraper and serially diluted with PBS. The serially diluted media of V52 alone and the co-cultured bacteria
were spread on thiosulfate citrate bile salts sucrose (TCBS) agar, a medium for selective growth of V. cholerae, and
incubated overnight at 37°C.

Chrome azurol sulphonate assay. The CAS assay was performed in the same way as in a previous study®*.
PAO1 and clinical isolates were precultured and subcultured in LB medium depending on the bacterial strains
and growth conditions presented. Subcultures were grown overnight and spun down to obtain supernatant. The
overnight supernatant was diluted 10-fold and reacted with CAS solution for 2 hr. The OD of this resultant solu-
tion was measured at 630 nm.

Quantification of 3-oxo0-C12-HSL (PAI-1). To monitor the 3-oxo-C12-HSL, Escherichia coli DH5c har-
boring a reporter plasmid pKDT17% was used. The PAO1 and clinical isolates were precultured and subcultured
in LB medium depending on the bacterial strains and growth conditions presented. Subcultures were grown over-
night. The supernatant was obtained and filtered with a syringe filter with a 0.2 pum-pore hole. E. coli pPKDT17 was
grown overnight in LB medium containing 100 ug/ml ampicillin (Sigma) at 37 °C, washed with fresh LB medium,
and adjusted to an OD at 600 nm (ODyy,) of 0.15. One milliliter of supernatant of E. coli pKDT17 of ODg, 0.15
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was removed, and E. coli pellets were suspended in each supernatant of P. aeruginosa and incubated at 37 °C for
1 hr. Cultured E. coli was used for 3-galactosidase assays to detect an exogenous source of 3-oxo-C12-HSL®.

Sorting antibiotic-resistant genes (ARGs) and transcriptional analysis. In total, 169 genes that sat-
isfied both conditions related to expression level (PAO1 < 3,Y31<3,Y71 >10, Y82 >10, Y89 >10) were selected
by RNASeq results aligned with the Y82 whole genome. All protein sequences of PA14 and VRFPAOQ7 that were
known antibiotic susceptible strains (NCBI Bio-Project accession numbers: PRINA386 and PRINA230365) were
downloaded from the pseudomonas.com website®. The 169 genes and all protein genes of PA14 and VRFPAQ7
were clustered in both conditions of similarity 95% with length 95% (S95L95) and similarity 50% with length 50%
(S50L50) by blastclust®. Genes that clustered only among the MDR strains under both conditions were selected
as MDR-specific genes (116 genes). The prophage regions found using the PHAST website and genes annotated
with transposase that seemed unrelated to antibiotic resistance were excluded, and finally, 64 ARGs that were
possibly related with antibiotic resistance were selected. The fold changes of 64 genes between the AC- treated and
untreated groups were calculated by dividing their expression levels by the average expression level of each gene.

Distribution of 64 ARGs in 70 antibiotic-resistant P. aeruginosa clinical isolates. The 70 genome
sequences of MDR P. aeruginosa clinical isolates were selected from the PATRIC website (64 strains)*® and indi-
vidual studies (6 strains)'>!4851-53 The 64 ARGs and all protein sequences of the 70 MDR isolates were clustered
in four conditions by blastclust (similarity 95% and length 95%, similarity 90% and length 90%, similarity 80%
and length 80%, similarity 70% and length 70%). Each threshold was coded with a different color, and a heat map
was made by covering the highest color clustered with ARG.

In vivo mouse airway infection.  Eight-week-old male BALB/C mice were infected with the bacteria. Each
strain was precultured in LB medium overnight, diluted 100 times with fresh LB medium, and incubated to
the exponential phase state. Bacterial cells were washed with PBS, and mice were infected with 2.5 x 107 CFU
bacteria by intranasal inoculation after being anesthetized intraperitoneally with a mixture of zoletil and rom-
pun. Six mice per group were infected with the bacteria, and five mice were used for the PBS (negative control)
group. Mouse lung was removed after the animal’s death or 42 hours of infection. These lungs were fixed in 10%
formalin and stained with hematoxylin and eosin. To confirm the colonized bacteria in the mouse lungs, each
removed lung was soaked in PBS and homogenized. These homogenized lungs were serially diluted and spotted
on Pseudomonas Isolation Agar plates to confirm CFU.

Statistical Analysis. The data are expressed as the means + standard deviations. Unpaired Student’s t-tests
(two-tailed, unequal variance) were used to analyze the differences between experimental groups. P-values less
than 0.05 were considered statistically significant. All experiments were repeated for reproducibility.

Data Availability

The complete genome sequences of Y31, Y71, Y82, Y89, plasmid of Y89 have been deposited in the NCBI with
accession number CP030910, CP030911, CP030912, CP030913 and CP030914. The transcriptome data have been
deposited in the bioproject via PRJNA479711.
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