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Systems Biology Approach 
to Identify Novel Genomic 
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Pancreatic ductal adenocarcinoma (PDAC) is a lethal malignancy with a 5-year survival rate of <8%. 
Its dismal prognosis stems from inefficient therapeutic modalities owing to the lack of understanding 
about pancreatic cancer pathogenesis. Considering the molecular complexity and heterogeneity of 
PDAC, identification of novel molecular contributors involved in PDAC onset and progression using 
global “omics” analysis will pave the way to improved strategies for disease prevention and therapeutic 
targeting. Meta-analysis of multiple miRNA microarray datasets containing healthy controls (HC), 
chronic pancreatitis (CP) and PDAC cases, identified 13 miRNAs involved in the progression of PDAC. 
These miRNAs showed dysregulation in both tissue as well as blood samples, along with progressive 
decrease in expression from HC to CP to PDAC. Gene-miRNA interaction analysis further elucidated 
5 miRNAs (29a/b, 27a, 130b and 148a) that are significantly downregulated in conjunction with 
concomitant upregulation of their target genes throughout PDAC progression. Among these, miRNA-
29a/b targeted genes were found to be most significantly altered in comparative profiling of HC, CP and 
PDAC, indicating its involvement in malignant evolution. Further, pathway analysis suggested direct 
involvement of miRNA-29a/b in downregulating the key pathways associated with PDAC development 
and metastasis including focal adhesion signaling and extracellular matrix organization. Our systems 
biology data analysis, in combination with real-time PCR validation indicates direct functional 
involvement of miRNA-29a in PDAC progression and is a potential prognostic marker and therapeutic 
candidate for patients with progressive disease.

Pancreatic ductal adenocarcinoma (PDAC) is one of the most lethal solid malignancies with exceptionally low 
survival and an exceedingly high mortality rate1. Its occult nature and the lack of non-invasive sensitive bio-
markers result in diagnosis often after the tumor has advanced locally to the point of being nonresectable or 
metastasized to distant sites2. Along with early and expeditious detection of PDAC, proper prognostic strat-
ification of patients predicated on the basis of non-invasive serum markers will also facilitate better usage of 
novel targets for chemo-preventive strategies. This is a critical step for improving the clinical outcome of PDAC 
patients Serum-based markers (i.e. CA125 and secretory mucins like MUC5AC) and tissue-based proteins (i.e. 
macrophage inhibitory cytokine-1, K-ras, mesothelin, PSCA, mucins, SMAD4 and p53 mutations) have been 
receiving attention as potential PDAC diagnostic and prognostic biomarkers, and many are currently undergoing 
validation for early detection and prediction of PDAC progression3. Elucidating the role of significantly altered 
molecules in the onset and progression of this disease is essential for understanding the disease specific etiology.

miRNAs, a group of small non-coding RNAs, have emerged recently as potential molecular contributors in 
carcinogenesis including initiation, progression and metastasis4. Cancer-related miRNAs, apart from regulating 
the expression of known protein-coding oncogenes and tumor suppressors, behave as oncogenes themselves 
(referred to as oncomirs) as well as acting as tumor suppressors5. miRNAs have previously been reported to 
exhibit exclusively distinct expression profiles in PDAC, chronic pancreatitis (CP) and normal pancreas with each 
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profile associated with distinctive pathology and clinical status6. For example, miRNA-21 levels in serum were 
reported to be significantly associated with overall pancreatic cancer survival7.

In order to have a clear insight into the contribution of a circulating molecular signature to determine pancre-
atic cancer prognosis, analyses should be focused on molecules that show significant distinction in their expres-
sion across the progressive spectrum of disease states. Multidimensional analysis of omics data related to miRNAs 
have assisted in identifying the key therapeutic and prognostic targets for multiple cancers8. Supplementary to 
this, the combination analysis of miRNA and their target genes that are concordantly dysregulated with disease 
progression, more significantly reflect the true pathophysiology of the disease, as compared to gene or miRNA 
analysis alone. Understanding the etiology of the differentially expressed miRNAs and their downstream mRNA 
targets using a systems biology approach will not only lead to a better diagnostic outcome with fewer false posi-
tives, but also will enhance the efficiency and possibilities of designing targeted drugs9.

In the present study, we explored the combined potency of gene and miRNA datasets collected at different 
pancreas statuses (Healthy controls(HC), CP, PDAC and metastatic PDAC (MPDAC)), to identify novel prognos-
tic markers associated with the onset and progression of PDAC. To identify a global PDAC signature, we placed 
emphasis on genes and miRNA that are consistently associated with PDAC in all the data sets, both at the tissue 
as well as the blood/serum level. Further functional and survival analysis of the identified miRNA-mRNA inter-
acting pairs, identified an association with pathways linked to cancer progression and survival. From our analysis, 
miRNA-29a/b emerged as the most efficacious prognostic marker with a decreasing enrichment score from CP to 
PDAC to MPDAC. Thus, indicating its role as a possible tumor suppressor responsible for downregulating genes 
involved in PDAC pathogenesis. Lastly, quantitative Real-Time PCR analysis from serum samples obtained from 
healthy individuals, those diagnosed with chronic pancreatitis, early and late stage PC, clearly demonstrated a 
decreasing trend in the abundance of miRNA-29a/b, thereby corroborating our in-silico analysis.

Results
Analytical approach to identify key miRNAs associated with progression to PDAC.  We per-
formed an integrative meta-analysis on miRNA and mRNA data from CP and PDAC cases to identify the 
miRNAs that are putatively associated with pathophysiology of CP to PDAC. In order to identify the miRNAs 
originating from the pancreas and circulating in blood, we included miRNA studies from both tissue as well as 
the blood in our meta-analysis. Differentially expressed (DE) miRNAs were identified in a status specific manner 
(CP, PDAC, MPDAC), along with their associated target mRNAs. The common DE genes obtained across multi-
ple PDAC datasets capitulate heterogeneity across patients and robustly screen disease related genes. The miRNA 
meta-analysis included the 186 samples from HC, 102 from CP subjects and 226 from PDAC subjects (Table 1). 
The mRNA dataset has 9 transcriptomic profiles from each patient group: HC, CP, PDAC and MPDAC (Table 1). 
Supplementary Fig. S1 shows a schematic of the overall methodology used to identify dysregulated miRNAs 
across the pancreatic disease spectrum.

miRNA meta-signature in progressive pancreatic cancer statuses.  Supervised and unsuper-
vised analyses were performed on normalized miRNA datasets from plasma as well as tissue studies. Principal 
Component Analysis (PCA) results showed a good separation of PDAC and normal samples along the first three 
principal components (PC) in all datasets. PC1 accounted for 10.64–15.83% of the variance and depicted a sig-
nificant separation of PDAC and HC. Interestingly, CP samples depicted heterogeneity and overlapped with both 
normal and PDAC clusters (Supplementary Fig. S2).

The miRNA meta-analysis identified 23 consistently and significantly DE miRNAs; 7 upregulated (miRNA-
218-2*, miRNA-1249, miRNA-1254, miRNA-653, miRNA-132*, miRNA-143*, miRNA-877*) 16 downregu-
lated (miRNA-27b*, miRNA-548d-3p, miRNA-604, miRNA-148a, miRNA-151-3p, miRNA-29b, miRNA-130b, 
miRNA-200c, miRNA-217, miRNA-29a, miRNA-194, miRNA-548b-3p, miRNA-376c, miRNA-335, miRNA-379, 
miRNA-27b) in CP (tissue and plasma) compared to normal, P value ≤ 0.05 (miRNA CP meta-signature). A star 
(asterisk) is appended to the miRNA name to designate less abundant product of mature miRNA (star strand) 
that is opposite of guide strand producing predominant miRNA product10. A Venn diagram and heatmap of the 
top DE miRNAs associated with CP is shown in Fig. 1a. Among these commonly altered miRNAs, miRNA-29 
loss is correlated with a significant increase in extracellular matrix (ECM) deposition which is a major compo-
nent in PDAC stroma11, miRNA-200c is reported as an independent prognostic factor in pancreatic cancer12 and 
miRNA-143 plays a central role in the invasion and metastasis of pancreatic cancer and is also a potential target 
for pancreatic cancer therapy13.

Further meta-analysis of PDAC vs normal miRNA profiles identified 72 consistently and significantly altered 
miRNAs (22 upregulated and 50 downregulated), P value ≤ 0.05. These miRNAs depicted consistent dysregula-
tion between blood/plasma and tissues, therefore might be shed by PDAC tissue into the blood Fig. 1b (i.e. PDAC 

Dataset Source

Samples References

HC CP PDAC MPDAC Publications PMID

miRNA

GSE24279 (Dataset I) Tissue 22 27 136 0 Bauer, A. S. et al.77 22511932

GSE31568 (Dataset II) Blood 70 38 45 0 Keller, A. et al.78 21892151

GSE61741 (Dataset III) Blood 94 37 45 0 Keller, A. et al.79 25465851

mRNA E-EMBL-6 (Dataset IV) Tissue 9 9 9 9 Abdollahi, A. et al.80 17652168

Table 1.  List of pancreatic ductal adenocarcinoma omics datasets used in this study.
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meta-signature). The heatmap clearly depicts the uniform upregulation or downregulation of different miRNAs 
across-datasets. Thirteen miRNAs were found to be consistently dysregulated both during CP and PDAC condi-
tions in at least 2 out of 3 datasets (Fig. 1c). Interestingly, these common miRNAs were downregulated in tissue 
and blood samples (dataset 1 versus II and III) as depicted in the heatmap (Fig. 1c). miRNA-130b, 148a, 151-3p, 
194, 200c, 217, 29a, 29b, 548d-3p, 604, 335, 379, 27b were all found to be downregulated in CP and PDAC groups 
as compared to HC, P value < 0.05 (Table 2). Notably, none of the upregulated miRNAs were common in both 
the groups.

Further, we also analyzed miRNAs dysregulated in CP and PDAC specific to tissue or blood. In tissue, 43 (22 
downregulated and 21 upregulated) and 66 miRNAs (35 downregulated and 31 upregulated) are significantly mod-
ulated in CP and PDAC respectively and 40 (20 upregulated and 20 downregulated) were commonly dysregulated 
in both CP and PDAC (Supplementary Table S1). Interestingly in blood, 69 miRNAs (29 downregulated and 40 
upregulated) were commonly altered in CP and PDAC as compared to normal samples (Supplementary Table S2).

Deciphering progressively dysregulated genes across CP to PDAC.  Supervised and unsupervised 
analyses were performed on normalized gene expression data. The gene expression profiles were obtained from 
nine healthy individuals, nine patients with PDAC, nine patients with CP and nine patients with MPDAC. These 
samples were collected after surgical resection and represented as CP, PDAC and MPDAC respectively in this 
study. PCA results showed good separation of HC, CP, PDAC and MPDAC samples along the first three PCs 
(Supplementary Fig. S2). Interestingly, 11.43% variance was found to be contributed by PC1. In comparison to 
HC, 622 DE genes were identified in CP, 1808 DE genes were identified in PDAC and 1623 DE genes were iden-
tified in MPDAC. As seen in Venn diagram, 372 genes were common across CP and PDAC groups; 477 genes 
across CP and MPDAC groups while 969 genes common across MPDAC and PDAC groups (Fig. 2a). Notably, 
323 genes (234 upregulated and 89 downregulated) were commonly dysregulated in all the groups i.e. CP, PDAC 
and MPDAC. Further, we generated a visualization of the data by clustering subjects based on gene expression 
patterns using self-organizing maps (SOM) analysis (Fig. 2b). This analysis allows for the recognition of patterns 
in the gene expression data as well as those which are instrumental in the classification of samples. The SOM 
analysis output showed a striking difference in gene expression patterns amongst patient clusters illustrating 

Figure 1.  Identification of DE miRNAs commonly dysregulated in CP and PDAC subjects in tissue and blood 
datasets. (a) Venn diagram of the miRNA differentially expressed in HC vs CP conditions and common across 
Dataset I, II and III; and a heatmap of the miRNA differentially expressed across Dataset I and Dataset II or III 
where ‘HC’ represents healthy controls and ‘CP’ represent subjects with chronic pancreatitis. (b) Venn diagram 
of the miRNA differentially expressed in HC vs PDAC condition and common across Dataset I, II and III; and 
the heat map of the miRNA differentially expressed between Dataset I and Dataset II or III where ‘HC’ represents 
healthy controls and ‘PDAC’ represent subjects with pancreatic ductal adenocarcinoma. (c) Venn diagram of the 
miRNA common in between HC vs CP and HC vs PDAC condition within Dataset I and Dataset II or III.
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the upregulation and downregulation of genes in each group. This corroborates with the notion that patients 
have differential gene expression with concomitant disease progression. Each patient gene expression cluster is 
represented by the average expression and the variation in the gene expression pattern can be visualized by the 
error bar. 175 upregulated and 82 downregulated genes were further filtered using log fold change (logFC) >1.5 
criteria to identify genes depicting progressive expression correlation with disease status. We define a progressive 
upregulation pattern of genes as a gradual increase in expression from the HC to CP, and then from CP to PDAC. 
In other words, the gene expression values were the lowest in HC, higher in CP, and the highest in PDAC. A sim-
ilar trend was observed for the downregulated genes, as the expression for the downregulated genes decreased 
from HC to CP, and further to PDAC. 217 DE genes (152 upregulated and 65 downregulated) were found to have 
progressive change from HC to CP to PDAC. The expression pattern is depicted by violin plots where the median 
expression decreases from HC to PDAC in the progressively downregulated gene signature, whereas the median 
gene expression increases from HC to PDAC groups in the progressively upregulated gene signature established 
for this study (Fig. 2c and heatmap in Supplementary Fig. S3). These progressively upregulated DE genes depicted 
significant enrichment in gene ontology (GO) categories linked to defense and immune responses, cell and adhe-
sion mechanisms and leukocyte/lymphocyte proliferation (Fig. 2d).

Further pathway analysis of the genes that are downregulated in the CP and PDAC groups were involved 
in glutamine degradation, Staphylococcus aureus infection, viral myocarditis, TCR signaling, phagocytic activ-
ity, generation of second messenger molecules, cytokine signaling in immune system, phosphorylation of CD3 
and TCR zeta chains, adaptive immune system and antigen processing and presentation (Fig. 2e). The analysis 
reveals that the common dysregulated pathways in CP and PDAC groups are associated with the dysregulation 
of multiple immune response-related pathways indicating a key role of the immune system in onset of PDAC or 
progression of CP to PDAC.

Exploring the gene and miRNA axis associated with disease progression.  The meta-analysis of 
transcriptome and regulatory miRNA expression resulted in a large list of DE molecules associated with CP and 
PDAC. Even though the results provide a significant starting point for understanding disease pathophysiology, it 
is difficult to identify disease-driving molecules from a long list of genes alone. Considering this, the interactions 
between microRNA and genes may be instrumental in understanding various regulatory mechanisms. The crosstalk 
between expressed genes and miRNAs was retrieved from experimentally derived miRNA-gene pairs in the MSigDB 
and MIRTarBase databases. To understand this complexity and identify the gene-miRNA interactions in PDAC, we 
analyzed the gene and miRNA expression profiles of CP and PDAC patients. 370 genes were identified to interact 
with 13 miRNAs from the PDAC meta-gene signatures. Hence, expression of these genes is potentially regulated 
by miRNAs. The inverse proportionality postulate between miRNA and gene expression was tested by generating 
biplots of genes with miRNA expression. Bimodal gene-miRNA interaction in CP and PDAC samples depicted that 
132 genes were upregulated by downregulation of their 10 upstream regulatory miRNAs (Fig. 3a). 132 genes that are 
counter-regulated by 10 miRNAs in progression of PDAC depicted significant over-representation to biological pro-
cesses such as cardiovascular and circulatory system development, extracellular matrix organization (ECM) and extra-
cellular structural organization (Fig. 3b). Specific biological processes namely cell migration and localization were 
specific to CP whereas axonogenesis and collagen metabolic processes are significantly expressed in PDAC stages. We 
found that regulation of cell development is upregulated in malignant and non-malignant stages whereas morpho-
genesis of blood vessels and cellular components and vasculature development are specific to malignant stages. The 
upregulated pathways targeted by the common downregulated miRNAs are linked to focal adhesion, ECM receptor 
interaction, ECM organization and collagen formation (Fig. 3c). EPHA2 forward signaling and Phospholipase D 
signaling pathway are specifically upregulated in PDAC whereas VEGFR2 mediated cell proliferation, cGMP-PKG 
signaling pathway, platelet activation and integrins in angiogenesis are upregulated in MPDAC stage.

Dataset I Dataset II Dataset III

CP PDAC CP PDAC CP PDAC

logFC P.Value logFC P.Value logFC P.Value logFC P.Value logFC P.Value logFC P.Value

hsa-miR-130b −0.93 0.00 −1.66 0.00 −0.14 0.04 −0.14 0.03 −0.24 0.00 −0.27 0.00

hsa-miR-148a −1.06 0.00 −2.09 0.00 −0.32 0.00 −0.25 0.00 −0.28 0.00 −0.28 0.00

hsa-miR-151-3p −0.36 0.00 −0.23 0.00 −0.33 0.00 −0.30 0.00 −0.28 0.00 −0.20 0.01

hsa-miR-194 −0.95 0.00 −0.77 0.00 −0.12 0.01 −0.11 0.01 −0.10 0.02 −0.10 0.01

hsa-miR-200c −0.70 0.00 −1.09 0.00 −0.20 0.04 −0.19 0.04 −0.21 0.03 −0.20 0.02

hsa-miR-217 −1.19 0.00 −2.42 0.00 −0.19 0.04 NA NA −0.21 0.01 −0.20 0.00

hsa-miR-29A −0.19 0.04 −0.23 0.00 −0.17 0.04 −0.24 0.00 −0.19 0.02 −0.26 0.00

hsa-miR-29B −0.55 0.00 −0.47 0.00 −0.25 0.01 −0.28 0.00 −0.24 0.00 −0.22 0.00

hsa-miR-548d-3p −0.19 0.04 −0.14 0.05 −0.53 0.00 −0.39 0.01 −0.49 0.00 −0.50 0.00

hsa-miR-604 −0.25 0.03 −0.37 0.00 −0.53 0.00 −0.37 0.00 −0.48 0.00 −0.30 0.01

hsa-miR-335 −0.47 0.00 −0.51 0.00 NA NA NA NA −0.17 0.02 −0.19 0.01

hsa-miR-379 −0.32 0.00 −0.35 0.00 NA NA NA NA −0.39 0.03 −0.46 0.01

hsa-miR-27b −0.34 0.00 −0.49 0.00 NA NA NA NA −0.30 0.00 −0.15 0.04

Table 2.  Log Fold Change and P-values of DE miRNA common in HC vs CP and HC vs PDAC conditions in 
Dataset I and Dataset II/Dataset III.
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Transcription factors (TFs) are commonly deregulated in the pathogenesis of human cancer and they can be 
used as drug targets14. To better understand the pathogenesis of PDAC, we further performed TF enrichment 
analysis. Interestingly, the analysis identified enrichment of multiple TFs including TCF4, WT1, CEBPD, CEBPB, 
SUZ12, and ZFP281 across all stages of pancreatic cancer progression (Supplementary Fig. S4a). CEBPB and 
CEBPD are CCAAT/Enhancer binding protein have biological roles in inflammation15. WT1 is an oncogene and 
is important for normal cellular development and cell survival16. SUZ12 has been known to promote the prolif-
eration of gastric cancer and also in metastasis17. The analysis also identified enrichment of eight TFs including 
MYB, NUCKS1 NRF2 and SOX2 targets in PDAC and MPDAC stages (Supplementary Fig. S4b). NRF2 and 
SOX2 TFs are key for tumor progression and inhibiting them effectively reduces metastasis18–21. Additionally, 
over-representation of multiple TF targets were found for only PDAC (e.g. KDM2B, HNF4A) and MPDAC 
(PU1, TP63) stages (Supplementary Fig. S4c). KDM2B22,23 and HNF4A24 are potential therapeutic targets and 
well-known for their role in cancer progression. The upregulated TFs in MPDAC are known to be involved in 
shorter survival of cancer patients (PU125), metastasis (TP6326), vasculogenesis (FLI-127) and cellular functions 
including cell proliferation, DNA damage and repair, apoptosis and stress response (FOXO128,29).

Enrichment of negatively regulated genes under miRNA regulatory controls.  The significance 
of the negatively regulated genes and miRNA obtained from the meta-analysis was assessed using a gene-set 
enrichment analysis (GSEA) approach. The enrichment of upregulated DE genes controlled by 10 of the 13 down-
regulated miRNAs was assessed using GSEA (Supplementary Fig. S5). The DE genes from the three comparisons 
of Dataset IV viz. HC vs CP, HC vs PDAC and HC vs MPDAC, were retrieved separately for these 10 miRNAs.

The target genes for most (7 out of 10) of miRNAs involved in progression of the pancreatic cancer depicted 
significant enrichment in PDAC (nominal P-value ≤ 0.05) (Supplementary Table S3). Figure 3d shows the GSEA 
enrichment scores and the number of genes enriched to the corresponding miRNA, as depicted on the y-axis 
respectively. The miRNA-130b, 148a, 27b and 29a/b had a negative enrichment score >2 but the maximum 
increase in the number of enriched genes from CP to PDAC (1.3 fold) was observed for miRNA-29a/b (Fig. 3e).

Figure 2.  Identification of dysregulated genes in tissue datasets. (a) Venn diagram of the common mRNAs in 
HC vs CP; HC vs PDAC and HC vs MPDAC comparisons. (b) Partitioning of samples on the basis of expression 
profile of genes using SOM clustering method. We identified two strikingly opposite expression patterns (black 
ellipses). ‘n’ represents the number of samples clustered. (c) Violin plots representing the two patterns observed 
in SOM partitioning. (d) Top 20 GO categories of DE mRNA common across all conditions (blue bar). (e) Top 
20 Pathway categories of DE mRNA common in DE progressive mRNA in all conditions.
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To represent the influence of miRNA-29a/b in the advancement of disease, we next visualized the effect of 
the miRNA on the regulation of genes associated with the progression of pancreatic cancer. The set of 132 upreg-
ulated genes that are targets of 10 miRNAs were used for this purpose, similar to GSEA enrichment analysis. 
We selected the mRNA targets of miRNA-29a/b for the CP group and used ingenuity pathway analysis (IPA) 
(QIAGEN Inc., https://www.qiagenbio-informatics.com/products/ingenuity-pathway-analysis)30, to build the 
knowledge-based network using miRNA-29a/b as a seed (Fig. 4a). Further, we added the mRNAs that were tar-
geted by miRNA-29a/b in PDAC, to the already built interaction network from CP and miRNA-29a/b. From the 
GSEA enrichment we already knew that there were more genes that were regulated by miRNA-29a/b with the 
progression of disease and the knowledgebase network obtained from IPA could validate the network enrichment 
with the disease progression from CP to PDAC. Few DE genes (11 upregulated genes) in CP and PDAC groups 
were common targets of the miRNA-29a/b.

Survival analysis with the identified key regulators in progression of pancreatic cancer.  The significance  
of the miRNA-29a/b in the progression of the pancreatic cancer was further tested using survival analysis in the 
the cancer genome atlas (TCGA) database. The samples were partitioned into two groups at 75th percentile for the 
selected miRNA and survival analysis was performed on the two clusters (Fig. 4b). The results showed that both 
miRNA-29a and miRNA-29b were able to clearly discriminate between better versus poor survivors (P-value 0.06 
and 0.01, respectively), indicating their prognostic role in PDAC. Low miRNA-29a, 29b expression is associated 
with shortened survival time. Also, the hazard rate of the samples with downregulated miRNA-29a and 29b was as 
high as 1.76 and 2.29 respectively, as calculated by cox proportional hazard model. Further, we found that 15 of the 
53 mRNAs targeted by miRNA-29b have hazard ratio of >2 at significant P value < 0.05 (Supplementary Fig. S6).  

Figure 3.  Study of miRNA-mRNA interactions in datasets and their enrichment. (a) Biplot showing inverse 
relationship between miRNA and mRNA. Along x-axis are the Log-fold change of genes and Log-fold change 
of interacting miRNAs are along y-axis. Upregulated genes are denoted in red. (b) Top 30 GO categories of 
negatively regulated genes by miRNA in HC-CP condition (orange bar) vs HC-PDAC condition (green bar) vs 
HC-MPDAC condition (red bar). (c) Top 20 Pathway categories of significantly affected by genes targeted by 
miRNA dysregulated in HC-CP condition (orange bar) vs HC-PDAC condition (green bar) vs HC-MPDAC 
condition (red bar). (Note: The top categories were arranged in descending order as obtained from the 
negatively regulated mRNAs from HC vs PDAC comparison). (d) Enrichment score for miRNA (P value < 0.05) 
shown in line graph and number of genes enriched in each condition shown in bar graph (e) GSEA enrichment 
of negatively regulated genes in HC-PDAC condition by miRNA-29a.
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Overexpression of MAP4K4 and AKAP13 are associated with significant shortened survival time in PDAC 
patients. MAP4K4 a serine/threonine kinase plays significant role in immunity, inflammation, metabolic and 
cardiovascular diseases and have been recognized as actionable cancer therapeutic target31,32. Genetic variation 
and expression of AKAP13, a protein kinase, is associated to regulation of cancer and response to cardiac hyper-
trophy33,34. From other genes CHSY135, TRIB236, IL1RAP37, and KDM2A38 were also known to be actionable can-
cer therapeutic targets. The combined survival analysis of all the 15 genes has a likelihood ratio of 26 and Hazard 
ratio of 2 at a significant P value of 0.04 (Fig. 4c).

Validation of the meta-analysis derived miRNA signature.  From the meta-analysis, network anal-
ysis, and survival analysis data the most potent miRNA that appeared promising for further validation was 
miRNA-29a and miRNA-29b. q-RT PCR analysis was employed on sera samples from a panel of 23 patients (6 
HC, 5 CP, 6 Early PDAC [EPC] and 6 Late PDAC [LPC]). Ct values are inverse to the amount of miRNA detected. 
The Ct counts for miRNA-29a was higher in the LPC cases than the HC and CP cases, indicating that the PDAC 
subjects showed lower abundance of miRNA-29a specifically towards late stage of the disease (Fig. 4d). The figure 
represents the Ct values for the miRNA-29a amount in different stages of cancer with mean and standard error 
of mean in each group. We could not find any significant differences in comparing the Ct values in between HC 
versus CP (P value: 0.411), HC vs EPC (P value: 0.23) and HC vs LPC (P value: 0.29) stages because of very small 
amount of miRNA detected in samples. However, the Ct values were significantly different between EPC vs LPC 
(P value: 0.04).

Discussions
The identification of a molecular signature for the pancreatic cancer progression in humans is quite an intrigu-
ing yet challenging field. However major problems persist, such as the lack of patient samples and insufficient 
studies comparing early stages of cancer to matched healthy cases. As obtaining tissue biopsies will continue to 
be a primary limitation in studies of solid tumors located in an inaccessible organ, tissue-based markers are not 
a practical choice for following disease progression longitudinally. Elucidating the markers that will reflect the 

Figure 4.  Regulatory network, survival analysis and validation of miRNA-29a/b. (a) Co-expression network 
representing progressive increase in the negatively regulated genes by miRNA-29a/b miRNA in HC vs PDAC as 
compared to CP. The networks were generated through the use of IPA (QIAGEN Inc., https://www.qiagenbio-
informatics.com/products/ingenuity-pathway-analysis 30. (b) Survival curve of miRNA-29a and miRNA-
29b with TCGA cohort divided at 75th percentile. (c) Survival curve of additive effect of 15 mRNA markers, 
identified from independent survival analysis, with TCGA cohort divided at median. (d) Ct values obtained 
by RT-PCR analysis for miRNA-29a in the serum sample of CP (chronic Pancreatitis), EPC (Early Pancreatic 
Cancer) and LPC (Late Pancreatic cancer) as compared to HC. The mean and standard error of mean of Ct 
values from each group is shown along with individual samples denoted by a dot. The significant differences  
(p value < 0.05) between groups are marked with asterisk.
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progression of disease and specifically identify the cases with an underlying disease without any clinically evident 
symptoms, is quite challenging. Thus, our study aimed to obtain the circulating markers that could identify the 
progression of pancreatic cancer and can in turn, effectively detect any incipient disease in high risk individu-
als. For the purpose to identify the major regulators of disease from CP and early stages of PDAC, we selected 
only those studies that have microarray data from CP and multiple stages of PDAC along with HC. Further, we 
obtained the miRNA and mRNA studies from blood as well as tissue in order to obtain the circulating markers 
that are consistent with the alterations in tumor expression and have associations with the progression of PDAC 
in humans. As the source of miRNA in blood could be from multiple tissues and organs, hence incorporating 
pancreatic cancer tissue studies in our meta-analysis converged the list of markers specifically altered and secreted 
from pancreas during PDAC development.

These analyses specifically target the identification of key miRNAs involved in the progression of this disease. 
For this purpose, the miRNA studies with the samples from HC, CP and PDAC patients procured from the vari-
ous groups were obtained. The preprocessing of the microarray data using Z normalization brought the data from 
many studies into consistent ranges that allowed the identification of persistently dysregulated miRNAs in CP 
and PDAC in both tissue and blood samples. The HC vs PDAC comparison has a large set of miRNAs common 
in both tissue and blood, but CP subjects overlapping the HC and PDAC subjects (Supplementary Fig. S2) have 
only a few candidate DE miRNAs. The overlap between CP and PDAC was only 13 miRNAs, all being consistently 
expressed in tissue as well as blood. Also, a mRNA study of patients from HC, CP, PDAC and MPDAC groups was 
included. The mRNA study was incorporated to facilitate the understanding of the miRNA-mRNA interaction 
axis and its role in the progression of the disease. The GO analysis of the DE mRNAs shows that the progressive 
DE genes dysregulate the immune system of the host with concomitant progression of disease. It has been shown 
previously that spontaneous cancer development is facilitated by the imbalance of the local immune microenvi-
ronment by the tumor cells in the pancreas39. The DE genes shows significant downregulation in the glutamine 
degradation pathways, the amino acid (AA) to which most cancer cell have an addiction40,41. PDAC cells have 
also been reported to have an AA shortage and the metabolic reprogramming to provide the branched-chain 
AAs starts in very early stages of the PDAC42,43. cGMP-PKG signaling pathways expression, related to malignant 
stage of PDAC, have been known to determine the stimulatory and inhibitory actions in cancer cells and play 
an important role in tumorigenesis44. We also report the unique and common TFS in/across malignant versus 
non-malignant PDAC stages. The expression of TFs unique to stages can be used as markers to identify the 
progression of diseases whereas the markers common between two stages can be used as therapeutic targets e.g. 
NRF2 and SOX2 for metastasis and SUZ12 for progression of PDAC disease.

We performed a multi-step approach integrating the cross-talk between transcriptome and regulatory miRNA 
as well as an interactive pathway network analysis to identify the key regulatory miRNA, circulating in the blood, 
associated with the progression of PDAC. This analysis is important for understanding the controlling cascades 
and cross-talk between gene expression and regulatory mechanisms. The miRNAs identified in this analysis have 
been shown previously to be dysregulated in cancer. For example, miRNA-130b has been previously identified 
as a prognostic marker, which on over-expression, inhibits cell proliferation and invasion in PDAC by targeting 
STAT345,46. The downregulated expression of miRNA-148a has been detected in various cancers including gastric, 
colorectal, pancreatic, liver, esophageal, breast, non-small cell lung and urogenital system cancers47. miRNA-217 
functions as a potential tumor suppressor48 and also, the overexpression of miRNA-200c plays an inhibitory role 
in human PDAC stem cells49. miRNA-29b has been shown to critically affect cancer progression by functioning 
as a tumor suppressor50. miRNA-29a has been mentioned as a potential therapeutic agent to target PDAC as the 
restored expression of this miRNA blocks autophagic flux by inhibiting expression of key autophagic proteins51. 
The analysis only could identify the miRNAs that are commonly downregulated in both CP and PDAC and that 
might reduce diagnostic efficacy of markers. We believe with the availability of highly sensitive miRNA and 
mRNA quantification technologies such as droplet PCR, Nanostring, and single cell genomics in last decade pro-
vided highly sensitive tools to explore efficacy of downregulated molecules as biomarkers52–56.

In the past multiple studies have performed the integrative analysis on transcriptome, SNPs, the proteome 
and non-coding RNAs57–59 to identify PDAC prognostic and diagnostics markers based on molecules that are 
alerted across multiple genomic spaces. The identification of robust biomarkers achieved minimal success due to 
limited number of studies, lack of paired samples, and minimal correlation between transcriptome and proteome 
data. Therefore, in this study we attempted to identify robust miRNAs associated with PDAC pathophysiology 
and progression based on meta-analysis of miRNA, and genes as well as using their robust regulatory interaction 
information. Our study doesn’t incorporate additional mutation and proteome analysis due to limited availability. 
This information could be used to further refine the results to identify robust biomarkers of PDAC pathophysiol-
ogy. Though, we believe that with our sound computational approach, we have identified some key molecules and 
pathways involved in pathophysiology and the progression of pancreatic cancer.

In conventional analysis, most of these miRNAs would be weighted equally in their role in progression of 
PDAC, whereas our systems-level analysis revealed that miRNA-29a/b plays a significantly more prominent role. 
The progressively decreasing enrichment score of miRNA-29a/b alongside the concomitant increasing trend in 
enrichment of its mRNA targets across CP to PDAC to MPDAC cases, rationalized our focus on this particular 
miRNA for the rest of our studies. Study of the pathophysiological role of miRNA-29 revealed that miRNA-29a is 
the most abundantly expressed miRNA-29 family member in the human pancreas and pancreatic stellate cells11. 
Thus, our wet-lab validation focused on identifying the expression pattern of miRNA-29a in human serum sam-
ples, which depicted a similar decreasing trend in the abundance of miRNA-29a from HC and CP to PDAC cases. 
From our system-biology approach and wet-lab validation, miRNA-29a emerged as a potential circulating marker 
for the progression of PDAC. Also, we could identify MAP4K4 and AKAP13 as the prognostic markers from the 
mRNAs targeted by miRNA29a. These markers could be further tested for their efficacy for their use as prognostic 
markers or as therapeutic targets in pancreatic cancer.
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GSEA and network analysis revealed that the interacting mRNAs for the miRNA-29a/b were involved 
in regulating the ECM matrix organization and focal adhesion of cells, thereby indicating a potential role of 
miRNA-29a/b in regulating the pathways essential for progression of PDAC. miRNA-29 also plays a critical role 
in regulating tumor stromal deposition and cancer growth, thereby implying that modulation of miRNA-29 
expression may be a therapeutically beneficial target to enhance the efficacy of chemotherapy for the improved 
treatment of PDAC11.

Conclusions
In the present study, our goal was to identify the circulating miRNAs which play a crucial regulatory role in driving 
the progression of PDAC. Using multi-omics studies, we were able to pin down one such miRNA family, miRNA-
29, and more specifically, its family member miRNA-29a, as a potential prognostic candidate marker for PDAC 
progression. Considering the associated trends in miRNA-mRNA interactions across various disease statuses, 
miRNA-29a/b was found to downregulate the pathways associated with focal adhesion and ECM organization in 
the cells, which are necessary for cancer progression and metastasis. Although, both miRNA-29a and miRNA-29b 
were able to differentiate poor survivors from better survivors in silico, the RT-PCR results revealed better per-
formance of miRNA-29a from serum samples in identifying PDAC from CP and discriminating early versus late 
PDAC. This is likely because of its higher abundance in the pancreas as compared to the other members of its fam-
ily. This validation strengthened our preliminary finding that miRNA-29a has prognostic potential and can be used 
as a diagnostic marker for PDAC progression, however this needs to be further validated in a larger cohort study. In 
addition, considering its substantial role in regulating molecular pathways involved in metastasis, miRNA-29a can 
be used as a potential therapeutic target to complement current chemotherapeutic strategies.

Methods
Data collection and processing.  Raw transcriptome data on miRNA and mRNA were obtained from 
public repositories, namely Gene Expression Omnibus (GEO)60 and ArrayExpress61, and were normalized using 
R statistical software and Bioconductor packages in a platform-specific manner. The information about datasets 
used in the study along with their sample details is listed in Table 1. The meta-analysis of plasma and tissue 
miRNA data was based on three published studies containing pancreatic adenocarcinoma (PDAC), Chronic 
Pancreatitis (CP) and healthy control (HC). CP samples are obtained from patients only suffering with CP and 
not from adjacent tissues of patients suffering with PDAC. As the focus of the current study was to identify 
miRNA and genes associated with progression of CP to PDAC, we have only included studies with samples from 
CP, PDAC and HC. The normalized intensities were obtained from Febit microarray data from the GEO data-
base using GEO-R approach and were Z-normalized using ClusterSim package in R62. The gene signatures were 
identified from Dataset IV with samples from HC, CP, PDAC and Metastatic-PDAC (MPDAC). The normalized 
intensities were obtained for Affymetrix HG_U95Av2 micrarray data from ArrayExpress and were z-normalized. 
Z-normalization was preferred approach for meta-analysis as it results in relatively transforming data to same 
scale independent of approach and platform used for generating data.

Quality control and unsupervised analysis.  The quality of the normalized array data was assessed using 
the arrayQualityMetrics package63 from Bioconductor. Technical Outliers were identified on inter-array expres-
sion distances (mean absolute distance of the M-value for each pair of arrays). Samples with greater than 10% 
outliers were not included in the study. Unsupervised analysis was performed using principal component analysis 
(PCA) to further ascertain the quality of datasets and identify outliers without biological relevance. PCA projects 
multivariate data objects onto a lower dimensional space while retaining as much of the original variance as pos-
sible64. PCA methodology captures the inherent gene expression patterns in the data and identifies the correlation 
among biologically distinct samples.

Supervised analysis to identify differentially expressed molecules.  Differentially expressed (DE) 
molecules (genes and miRNA) between 1) CP and HC; 2) PDAC and HC were identified using the limma package 
from the Bioconductor project65. Similarly, we have also identified differentially expressed genes associated with 
metastatic pancreatic cancer by comparing HC and MPDAC using similar approach. The sample groups were 
compared by fitting a linear model for each variable (normalized expression values) and applying empirical Bayes 
smoothing to identify differentially expressed molecules66. The miRNA with P- value < 0.0551, were considered 
significantly differentially expressed whereas the mRNA with absolute fold change ≥1.5 and multiple test cor-
rected P-value < 0.0551, were considered significantly differentially expressed. The lists of differentially expressed 
gene/miRNA from different datasets and group comparisons (e.g. CP vs PDAC, CP vs HC, HC vs MPDAC) were 
compared using Venn diagrams in R.

miRNA-mRNA counter regulation analysis.  For identification of miRNA and their target that are dys-
regulated in PDAC, we performed miRNA target prediction analysis. The information about experimentally val-
idated miRNA–gene interacting pairs were retrieved from the MSigDB67 and miRTarBase68 databases. miRNA 
play important gene-regulatory roles in multiple cancers by pairing to protein-coding genes to direct their post-
transcriptional repression. Multiple genome level studies depicted counter regulation relationship between genes 
and miRNA expression which means that upregulation of miRNA leads to downregulation of target genes and 
vice versa. The miRNA-mRNA interactions were retrieved separately for the different conditions, CP and PDAC 
corresponding to the DE miRNA in these groups. The patterns of expression between target genes and miRNA 
were determined by generating biplots on the basis of fold change of differentially expressed targeted genes and 
interacting miRNAs.
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Pathway analysis.  The analysis of the biological pathways and Ontologies for the genes was performed 
using ToppGene algorithm69. ToppGene performs functional category enrichment analysis and candidate gene 
prioritization based on functional annotations and a protein interactions network. ToppFun detects functional 
enrichment of the provided gene list based on transcriptome, proteome, regulome (TFBS and miRNA), ontol-
ogies (GO terms), phenotype (human disease and mouse phenotype), pharmacome (Drug-Gene associations), 
literature co-citation, and other features. The functional categories and pathways with FDR <0.05 were consid-
ered significantly enriched.

Gene set enrichment analysis.  Gene set enrichment analysis (GSEA)70 was performed to evaluate enrich-
ment of dysregulated miRNAs target genes enrichment in CP, PDAC and MPDAC groups as compared to HC. 
The target genes expression profiles were generated from Dataset IV. The DE miRNA common between CP and 
PDAC groups were used for the GSEA analysis. During the enrichment analysis, the miRNA and target with 
opposite or counter-regulated enrichment were considered relevant as in most of cases miRNAs negatively regu-
late the expression of target genes. The enriched gene sets with nominal P value (NPV) <0.05 after 1000 random 
permutations were considered significant to eliminate the false positives hits.

Transcription factor enrichment analysis.  To explore the role of transcription factors in the pathophys-
iology of the pancreatic cancer we performed enrichment analysis on dysregulated genes that are targeted by 
differently expressed miRNAs from various comparisons: (1) HC vs. CP (2) CP vs. PDAC and (3) PDAC vs. 
MPDAC. We used Enrichr71 to perform the enrichment analysis of transcription factors. Enrichr is a comprehen-
sive resource for pathways, Gene ontology categories and curated gene sets for enrichment analysis. Enrichr has 
multiple resources for transcription factor enrichment including ChEA72, TRANSFAC73, ENCODE74, ARCHS475. 
In this study, we have used ChEA database for enrichment analysis that contain putative targets for transcription 
factors based on experimental profiling of transcription factors binding sites. The transcription factor with mul-
tiple test corrected P value < 0.01 are considered significantly affected.

Network analysis.  To further understand the molecular mechanism of PC progression, we performed a 
system biology analysis on constitutively altered transcripts across various pancreatic disease status (HC, CP, 
PDAC and MPDAC). The systems biology analysis was performed using a master regulator approach that assists 
in identifying the key transcriptional regulators that might be responsible for the progression of disease. Initially, 
we generated an interactive network of genes and miRNA using Ingenuity Pathway Analysis (IPA) (Qiagen) 
software (QIAGEN Inc., https://www.qiagenbioinformatics.com/products/ingenuitypathway-analysis)30. The 
software uses literature curated Protein-Protein, Protein-DNA and Protein-RNA interactions along with genes 
and miRNA interactions to generate interactive network. We developed separate networks for CP, PDAC and 
MPDAC groups of miRNA and target genes that are dysregulated in each of these statuses. To determine the 
relative importance of gene-miRNA interaction in disease progression from CP-PDAC-MPDAC, we performed 
hierarchical network analysis. The hierarchical network analysis identifies miRNA and their target genes depicted 
significant increase in differential expression progressively from CP to PDAC and MPDAC.

Survival analysis.  To determine the association of key miRNAs with survival in PC, we performed sur-
vival analysis using the TCGA database (https://cancergenome.nih.gov/). The survival analysis was performed 
on PDAC miRNA of 185 patients. Survival analysis was performed on the basis of individual miRNA expression 
using the Kaplan-Meier (K-M) approach76. The normalized expression data for each gene was divided into high 
(upper quartile) and low (lower quartile) groups. The survival analysis was performed using K-M analysis from 
survival package in R. The results of the survival analysis were visualized using K-M survival curves with log rank 
testing. The results were considered significant if the P value from the log rank test were below 0.05. The effects of 
miRNA on the event were calculated using univariate Cox proportional hazard model without any adjustments. 
Further, to identify the prognostic gene marker from the genes targeted by miRNA29b, we performed survival 
analysis of the same using TCGA database (https://cancergenome.nih.gov/). The survival analysis for genes was 
performed on PDAC miRNA of 179 patients. The analysis is performed using K-M approach and univariate Cox 
proportional hazard model as discussed above. The normalized expression data for each gene was divided into 
high and low groups based on median. The association with survival is considered significant i.e. P value from the 
log rank test below 0.05.

Assessment of relative mi-RNA levels in patient sera.  RNA was isolated from the serum of 23 subjects  
(6 HC, 5 CP, 6 Early PDAC [EPC] and 6 Late PDAC [LPC]) using MAGMAX RNA Purification kit. Proteinase K 
digestion and DNase treatment were carried on the sample before eluting the total RNA as per the manufacturer’s 
protocol. 100ul volume was taken for each serum sample and the concentration of total RNA ranged from 0.5–
2.0 ng/ul. cDNA was prepared using TaqMan Advanced miRNA cDNA synthesis kit. TaqMan advanced miRNA 
assays (Thermo Fisher Scientific) were designed for hsa-miRNA-29a. Each serum sample was analyzed in inde-
pendent triplicates. Ct values of miRNA-29a were plotted for each sample with mean along with standard error 
of mean. The significance of difference in miRNA-29a expression across groups was calculated using Wilcoxon 
test in ggpubr R package.
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