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Quantum entanglement is one of important resources for quantum communication. Entanglement
criteria help us detect entangled states. One of important criteria is the local uncertainty relation (LUR)
entanglement criteria, which is studied extensively. However, all existent LUR criteria are dependent on
the chosen observables. In the paper, applying the uncertainty principle, we improve the LUR criteria to
obtain entanglement criteria for multipartite Gaussian states, which are independent on observalbes.

Entanglement, as an important resource in quantum communication, has been focused on extensively in both
finite dimensional and infinite dimensional (esp. continuous variable) quantum systems!. It is one of core prob-
lems to decide whether or not a given quantum state is entangled. As we know, continuous variable (CV) quan-
tum systems are fundamental and important from theoretical and experimental views. In particular, Gaussian
states can be theoretically easy to manage and experimentally easy to produce®. Recently the topics on entangle-
ment of Gaussian states have been developed rapidly. Some different conditions for entanglement of bipartite
Gaussian states are extended from the finite dimensional case, such as, the criterion of the positivity of the partial
transpose and additional separability criteria for covariance matrices®’, the computable cross norm (CCN) or
realignment criterion®’. The above mentioned criteria are also generalized to the multipartite Gaussian states'-!>.
Furthermore, other techniques are also used to build the entanglement criteria for multi partite Gaussian
states!4-16,

Entanglement criteria based on uncertainty relations have been studied in multi partite continuous variable
systems'’~%2, Such a technique is found by Duan, Giedke, Cirac and Zoller'” and the so-called local uncertainty
relation (LUR) criteria are developed by Hofmann and Takeuchi'®. Roughly speaking, if one want to determine
whether or not a CV state is entangled by LUR, it needs to check whether or not the state violates an inequality
dependent on chosen observables and parameters. For example, Loock and Furusawa?! improve the LUR and
says that: for an N-party and N-mode CV state p, p is separable if for arbitrary scalar hy, h,, ..., hy, £, 5 - > En

((AGY), + (AP, > f(hy, hyy oo by, 85 €r -5 &)

wheredi = YN hg, 7 =N, &P, (%, p,) is the pair of the position and momentum operators in the ith mode
(party) and fis a computable function. The criteria in?! are available for N- -party and N-mode CV states (that is,
there is only one mode in each party) and dependent on observables i and v. However, all of the above criteria are
dependent on the choice of observables. In the present paper, improving the LUR criteria, we devote to building
an entanglement criterion of Gaussian states, which is independent on observables. Furthermore, it is mentioned
that the criterion in?! is available for N-party and N-mode CV states (that is, there is only one mode in each
party). The criterion in the present paper can be executed for N-party systems with arbitrary modes in each party
(See Theorem 2.1 and Corollary 2.2).

Next let us introduce some definitions and notations about Gaussian states. The characteristic function x of an
arbitrary n-mode density operator p is defined as
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X,(A) = tr(pD(A)),

where A € R*and D(\) = @7, D()\;) = @1, exp(\d; — \;*,) is the n-mode Weyl displacement operator®.
Here, &, and 4, are the creation and annihilation operators in the ith mode satisfying the canonical commutation
relation

N At oATY A a1
[a;, aj] 76,7 and [ai,aj] = [4; aj] =0.

Letp = ﬁ f X, (MD(— A)d?"\. pis called a Gaussian state if y,,()) is of the form

X, (A) = exp

>

i\ — %/\Tw\

wherey € M,,(R)and m € R*" denote the covariance matrix (CM) and the mean of p, respectively.  fulfills the
Robertson-Schrédinger uncertainty relation

i
-2y,
7 2

where ] = @/, Jand ], = (i)l (1)) Let p. and g, be the position operator and momentum operator on the ith

mode,

A A ~ 1T
4%%%@@%?wmm%u

n

R=[R, R, ... Ry, =

then the CM of p can be calculated as follows:
7= 3T = (rlpR; = m) (R = m))),

where m;=tr(pR)) is the jth coordinate of the displacement vector m. Note that entanglement of a Gaussian state
is independent on its displacement, so we assume that all Gaussian states is with zero displacement in the paper.
We also recall that a multipartite quantum state pon H; ® H, ® --- ® H,,is fully separable if there exist quantum
state pk(i) on H;such that p = fP(x)pi(l) ® pi(z) ® - ® pi(”)dx, where P(x) >0 and fP(x)dx =1

Results
Entanglement criteria for multipartite Gaussian states. Let H), H,, ..., H, be complex separable

infinite dimensional Hilbert spaces, there are s; modes in each H,; for arbitrary integers s; and i. Set

RSV RPCY o (D)
Hy X175 %50 0 X

5(1)  5(1) 5(1)
by b

. 2@ £ £ ()
Hy: %7, %7, s X
5(2) 5(2) 5(2)
BB B

H,: £, ", .., 2"

5(n)  (n) 5(n)

pl" ,p2” , ...,pSn”

where (J?]fi), ﬁj@) is the pair of the position and momentum operators in the jth mode of the ith party. Sometime
wewrite(q, §,, gy --- - .4, s, )= @&, ﬁl(l)’ PO , 135(:))' Denote by S(H) the set of all quantum states on

H. We have the following main result.

Theorem 2.1 Let p € S(H, ® H,-- ® H,) with covariance matrix , and the 2%s) x (2stj) matrix

N B i . - @, (in (i —
M, = (my) =~ — J. If pis fully separable, then for two sets of arbitrary real numbers{a;"} and {3;"} (i=1, ..., n

andj=1,...,s),
FMp,a,g = (M 8))pxn = 0.

where
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Proof. See the method section.

The following example helps us understand how to obtain the matrix T, , ;defined in Theorem 2.1 from M,,.
o0,

M1 Mag | M3 Mg (M5 Mg

Moy Mag |23 Mag |25 126

31 132|133 134 | 135 1M36

N
g1 Mg2 | T043 T44 | TNys5 TTl4e
Ms1 M2 |53 M54 |55 Mg
\m(il Me2 |13 Meq | Tes g6 6x6
(Oégl))zmu + (5%1))277%22 - a§1)6§1) Oég )a§ )m13 + ﬁ§1)6§2)m24 *
. (af)?mss + (817 2mas — oy 6"
* * *

3x3

Next we will design a optimization program for entanglement criteria of Gaussian states. Firstly, we have the
following corollary from Theorem 2.1.

Corollary 2.2 There exists entanglement among H, , H, ,

i ,Him(ile{l,Z,...,n},isgitifsgt,mgn) if the
scalar

Nipiyi (M) <0,

ipsigse iy,

where

N . = min min min |IL@, i, ..., i
ip5ipseensd ( ) 1<l<m11<k<11{a(‘)} {,6(‘)}| k( JEIR > l)‘)

|T4(iys i, ..., §)| is the kth leading principal minor of the submatrix T'(i\, i, ..., 1)) of Ty, 5 Ui iy, ..., iy) is obtained
)2,
by removing the sth row and the sth column ofl"M apforallse{l, 2, ...,n]\{iy, iy, ..., ij}.
Applying the Corollary 2.2, we can detect entanglement of a multi- party Gaussian state by solving the following
optimization problem.

Let p € S(H; ® H,--- ® H,) with M To detect whether or not there exists entangle-

= (m u)(zz X2 Ts)

ment among the given parts H;, H, , ..., H, ,itis the key to minimize |I'y(i}, iy, ..., ij)| in Corollary 2.2 for any
fixed [, k.

Minimize: |L(i, iy, ..., i)

Subjectto: {a} CR,{B} CR, (i=1,...,mj=1,..,5) (oP)

We design the following steps to solve the OP problem. . ‘
S1. We compute and collect leading principal minors |Iy(iy, iy, ..., )|, it is a polynomial p({aj(’k)}, { ﬁj('k)}) with
25K _,s;, variables {a; iy 4 ,Bj(’k)};
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S2. We compute partial derivative dp/ Oa; () and op/ 8,3(”<) of p({a; iy B; (i} for each variable respectively;

S3. We get stationary points of the equatlon set consist of op/ ,8 (o’ f/ ﬁ (i — o

$4. We compute the local minimal values of polynomial p({a; ’k) { B; ’k)}) on all stationary points. Finally we
obtain the minimal value of [T'y(i}, iy, ..., i})|.

Now, we consider an example of the multi-mode pure symmetric Gaussian state is introduced in?. Arbitrary
a 5-mode pure symmetric Gaussian state p, has the following covariance matrix:

a 0 ¢ 0 ¢, 0 ¢ 0 ¢ 0
00 a 0 ¢ 0 c¢c; 0 ¢, 0 ¢
¢ 0 a0 ¢ 0 ¢ 0 ¢ O
0 ¢, 0a 0 ¢ 0¢c 0c
e10 ¢ 0 a 0 ¢ 0 ¢ 0
== o ¢, 0 ¢, 0 a 0 ¢ 0 ¢
g0 ¢ 0 ¢ 0 a0 ¢ O
0 ¢c; 0 ¢, 0 ¢c; O a 0 ¢
g0 ¢ 0 ¢, 0 ¢, 0 a0
0 ¢c; 0 ¢, 0 ¢; O ¢, 0 a (1)

where a>1and

3@ - 1)+ (@ - 1)(254% — 9) o — 3(a® — 1) — A/ (a® — 1)(254> — 9)

1= 8a > 2T 8a

In?*, entanglement of the above state in the case a=1.2 is discussed'®. Here we take a=1.1.

We first deal with the partition 1|2|3]4|5, that is, five modes and five parties. In order to determine when the
state p, with the covariance matrix in Eq. (1) is entangled, it follows from Theorem 2.1 and Corollary 2.2 that we
need to check when the following matrix I';, which is restructured by M, = ] is not positive for some real
scalars o;and 3, i=1,2, 3,4, 5

ﬂ(alz + 512) —of qaa; + b6, aoas + 66,05 ooy + 6016 aoas + 60,55

s + 688, alag + 87) — anfy  canas + B0, €050 + 65, €005 + €305

L= aoas+ B8 Qs+ 68,8, alad + ) — a8y casay + 60,8, €005 + 60305
ooy + 605, €050 + €356 sy + 608 alef + 8)) — afy  cyas + 68,8
€0as + 60,05 €055 + €505 a5 + 60505 amas + B8 alad + B83) — asBs (2)

When a=1.1, we calculate and obtain that the minimal values of 2 x 2 five leading principal minors of I'; are
all negative by Mathematica. So I' is not positive. It follows that the corresponding symmetric Gaussian state is
entangled in the partition 1]2|3|4]5.

Furthermore, now if one want to ask whether or not there exists entanglement among the second, fourth and
fifth mode. Then we only need to check positivity of the following I';:

11(0422 + ﬂzz) — B, amay t 665 10,05 + €583,085
conoy + 6By8  alad + B — aBy  coyas + 68,8
005 + 60,55 coyas + 68,0 alas + 035) — asfs (3)

When a = 1.1, the matrix (3) is not positive, and so there exists entanglement between the second, fourth and
fifth mode, similar to the discussion of the case of partition 1|2|3|4|5.

Discussion

The local uncertainty relation (LUR) criterion is one of important classes of entanglement criteria for the con-
tinuous variable system. It is dependent on chosen observables. Here, we improve LUR criteria and obtain
observable-independent entanglement criteria for arbitrary multi-party and multi-mode Gaussian states. In particular,
the criteria can be implemented by a by a minimum optimization computer program. It is also mentioned that one of
the further open problems is to discuss the computational complexity of the optimization procedure of the OP problem.

Methods
Before the proof of Theorem 2.1, we need the following lemmas. The following lemma can be checked
straightforwardly.

Lemma 1. Let

5 (k) Sk R

= ai(k)xi(k)
i=1

(k) k(A k

= ﬂi( )P%( )

i=1
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Then
[X(k) B ] [zk:ai(k)ﬁi(k)]l;
i=1
X© 5™ = 0, (k = m);
Qgm _ gme®,

XX =X"%X

A(k) A ~ k
P( )P(m) P(m)P( )

Lemma 2. Let {t}! | be a set of arbitrary real numbers. Let

U =

A(k)
vV =

andp € S(H, ® H, ® -+ ® H,). If p is fully separable, then

(AUP + (AV? = 3

k=1\i=1

LA )
Eai( )/81‘( )]tk

Proof. Since p is fully separable,

p= fp(x)pi(l) 2p? @ - @ pMdx.

Writing (A); = tr(Ap, g o, Dg..o pi(")), and as we know that entanglement of Gaussian states is independ-

ent on the mean, w ehave
BUP +@VE = [R>S @E R, + 2R
k=1
+ 326 (R, &+ 2, (BB, | - (U — (v
I<j I<j
= Jreoa SRR+ g )
+Zzntj<f<“)>,-<X”)>,-+22tztj<ﬁ(”>,-<13°')>,- — (U2, — (V)
I<j I<j
_ f Plx 2302 4 g <P(k)>,~2)]
+ [Py @&y + tk<P(k)),-2)]
k=1
= [Pwdx S A%™7 + 2y )]
k=1
n k 2 n k 2
+ f P SoaX )|+ [Ztkuﬁ( )>,»] ‘ — (U} - (VR
k=1 k=1
k=1\k=
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Proof of Theorem 2.1. On the one hand, it follows from Lemma 0.2 that

AU+ AV > Y
k—1

Kk ak|2
Zai By |t

i=1

Note that entanglement of a Gaussian state is independent on its first moment (i.e., the mean) of a Gaussian

state, so we assume that (U) =0= (V). On the other hand,

AU? + AV?
= (UY) = (U + (V*) — (V)

- <[z:;1t,-(23f o5 + ([SraSne)) - wr - o

- r[ oo VaE s (o)p} !
+30 t,t]tr[(zr;zlzhleam ah0>f,g>fy>)p]

+3 tr[(zz.,hzlﬁ(’)ﬁ(') QFS <z>) }

+ Z,zjtztjtr[(zm S 898950 o>) ]

— Z:‘:ltil . ha (O (')tr( NI (t)p)
+ Zt Z P ja (’)ah(’)[tr(x(’)x(/)p)]
i=j

SDBUD DHNCE )
+ ot BB G o).

l¢]

Nownote that £, 0 — qu s, 2me l,p(’) = qZSlJr e Hm,andM = (my) withm;; = tr(qiqu), Mokt 1,2k+27~
(G, 1o, ,P) + 2 o> Maksaokrr = Wdy 54y ,p) — 7 We complete the proof. o
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