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Role of partial molar enthalpy 
of oxides on Soret effect in high-
temperature CaO–SiO2 melts
Masahiro Shimizu1, Jun Matsuoka2, Hiroshi Kato1, Takeyuki Kato1, Masayuki Nishi1, 
Heidy Visbal1, Kohji Nagashima1, Masaaki Sakakura3, Yasuhiko Shimotsuma1, Hiroki Itasaka4, 
Kazuyuki Hirao5 & Kiyotaka Miura1

The Soret effect or thermodiffusion is the temperature-gradient driven diffusion in a multicomponent 
system. Two important conclusions have been obtained for the Soret effect in multicomponent 
silicate melts: first, the SiO2 component concentrates in the hot region; and second, heavier 
isotopes concentrate in the cold region more than lighter isotopes. For the second point, the isotope 
fractionation can be explained by the classical mechanical collisions between pairs of particles. 
However, as for the first point, no physical model has been reported to answer why the SiO2 component 
concentrates in the hot region. We try to address this issue by simulating the composition dependence 
of the Soret effect in CaO–SiO2 melts with nonequilibrium molecular dynamics and determining through 
a comparison of the results with those calculated from the Kempers model that partial molar enthalpy is 
one of the dominant factors in this phenomenon.

The Soret effect was discovered by C. Ludwig1 and tested by C. Soret2. Although it has been over 150 years, and 
the Soret effect can be quantitatively explained by the Chapman’s theory3 for the case of molecular gases, the 
mechanism of the Soret effect in liquid remains controversial4–6. The Soret coefficient indicates whether the com-
ponents diffuse toward hot or cold region and provides the separation degree of the components between hot and 
cold regions. Neglecting convection, the flux under a temperature gradient in a binary system can be written as 
follows7:
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where x is the position, n1 is the mole fraction of the species 1, ρ is the mass density, T is the temperature, and DM 
and DT are the mutual and thermal diffusion coefficients, respectively. In the steady state, the flux J = 0 and the 
Soret coefficient can be written as follows:
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A positive Soret coefficient means that the diffusion species concentrate in the cold region, whereas a negative 
value means they concentrate in the hot region. The relation soret,1 soret,2σ σ= −  should be valid in the binary system.

The Soret effect in silicate melts is important in the field of glass and earth sciences, where silicate is a repre-
sentative component, because it causes the spatial inhomogeneity of the composition in a glass melting container 
and in the Earth’s interior. Many reports on the Soret effect of silicate melts were released8–12, but the domi-
nant factor to determine the Soret coefficients remained controversial. In 2010, Huang et al. suggested that the 
Soret coefficient in silicate melts is expressed by an additive function of the mass- and chemical-effect terms. The 
mass-effect term is expressed by the variable of mass, charge, and radius of ion. However, the explicit function for 
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the chemical-effect term is unclear10. In 2011, Dominiques et al. suggested that the electric energy barrier and the 
vibrational zero-point energy in the activation process of ion diffusion are important factors in determining the 
Soret coefficient11. When tackling this issue, determining the diffusion species in silicate melts is difficult because 
silicate melts generally contain many structure types (e.g., bridging, nonbridging, and free oxygen, Qn unit (n 
is the number of bridging oxygen per SiO4 unit), and network ring size13). Furthermore, the chemical reaction 
of the Si–O network14 and the electric neutrality constraint among ions15 make the diffusion process compli-
cated. The diffusion and viscous flow units in silicate melts are also unclear. Therefore, it is difficult to employ 
the kinetic approach, as similar was done for the Artola4 and Eslamian5 models, where the Soret coefficient was 
discussed using the activation energy of the diffusion or viscous flow process of molecular liquid. There has been 
an approach from a different angle; Kempers model16,17 is a thermodynamic model mainly used for the molecular 
gas and liquid system. This model will be effective in dealing with the problem of silicate melt complexity because 
it does not need to determine the diffusion species. Kempers said that factors contributing the Soret effect are a 
function of thermodynamic parameters, such as the partial molar enthalpy, partial molar volume, and chemical 
potential.

The present study discusses the dominant factor contributing to the Soret effect in a CaO–SiO2 system. We use 
the nonequilibrium molecular dynamics (NEMD) simulation since we can neglect the convection effect caused 
by gravity and surface tension. Inspired by Kempers16,17, we also employ a thermodynamic approach to the Soret 
effect in silicate melts. We then compare the simulation result with that of a Kempers model, where we take the 
segregation limit as the standard state of the thermodynamic parameters to adjust the original Kempers model16,17 
to the silicate melts.

Results
Soret coefficient calculated from the NEMD simulation.  We simulated the Soret effect of mCaO-(1 
− m)SiO2 (m = 0.5, 0.6, 0.7, 0.8, and 0.9) melts with the NEMD simulation using approximately 12000 particles at 
pressure of about 100 MPa(see Method section). The hot region and cold region in the simulation box was kept to 
be 2200 K and 1800 K, respectively, and linear temperature gradient was obtained. We conducted 22 simulations 
with different compositions and initial ion positions as shown in Table 1. First, we focus on Run No. 1~21. We 
waited for the time period of θ under temperature gradient before sampling the mole-fraction distribution, where 
θ is characteristic time described in Methods section. The sampling period was 2θ.

Figure 1 shows mole-fraction distribution and fitted line under the temperature gradient. The variation of 
the mole-fraction distribution even in the same composition of the system is mainly due to the small number 
of particles in the system (apporoximately 12000 particles). Every fitted line for 0.9CaO-0.1SiO2 has a negative 
gradient, while every fitted line for 0.7CaO-0.3SiO2, 0.6CaO-0.4SiO2, and 0.7CaO-0.3SiO2 has a positive gradient. 
This means that the SiO2-concentrated region is changed with SiO2 content of the system; the SiO2 concentrates in 
hot side in a SiO2-rich melt, while SiO2 concentrates in cold side in a SiO2-poor melt. As shown in Fig. 1, the devi-
ation of mole fraction from linear relationship against temperature increases with decreasing SiO2 content, which 
should be due to the small number of Si ions in the simulation box in the SiO2-poor melt. To improve statistics 
for 0.9CaO-0.1SiO2, we conducted a simulation with longer sampling times as shown in Fig. 2. The mole-fraction 
distribution becomes linear with increasing the sampling time. The Si ions will move around the simulation box 
during the long-time sampling, which will be the reason why we obtained linear relationship. The small differ-
ence of plotted data between the 33.25 ns and 42.75 ns in Fig. 2(b) indicates that the concentration distribution 
is almost converged. This supports the negative gradient of mole fraction of SiO2 in the 0.9CaO-0.1SiO2 system.

In this study, we take the SiO2 and CaO as component 1 and 2, respectively. Since the gradient of the fitted line 
corresponds to the ∂n/∂T, by using the Eq. (2), we calculated the Soret coefficients of SiO2 component and sum-
marized them in Table 1. The positive and negative values of the Soret coefficient mean the SiO2 concentrates in 
cold region and hot region, respectively. We have reported the Soret effect in 50CaO–50SiO2 by a laser irradiation 
experiment18, where the SiO2 component concentrated in cold side under temperature gradient. This is qualita-
tively consistent with the result of NEMD simulation shown in Fig. 1(h).

Derivation of Kempers model and adjustment to the binary silicate melt.  Kempers proposed a 
model to calculate the thermodynamic effect of the Soret effect16,17. Kempers assumed the two-bulb apparatus, 
which have equal and constant volumes, as shown in Fig. 3. The system has two components and the bulb A and 
bulb B are kept to be homogeneous temperature of TA = T + ΔT/2 and TB = T − ΔT/2, respectively. T is the aver-
age temperature, and ΔT is positive value and indicates the temperature difference between bulb A and bulb B.

Kempers assumed that the canonical partition function of the whole system(Ztotal) will be maximum at steady 
state under a temperature gradient:

.Zmaximum { } (3)total

Generally, Ztotal = zA × zB, where zA and zB are the canonical partition function of the partial system of bulb A 
and bulb B, respectively. By using the thermodynamic relationship,

Z F
T

exp
R

,
(4)

=


−





where Z is canonical partition function, F is the Helmholtz free energy, R is gas constant, T is temperature, we can 
modify condition (3) to
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where N is number of the component, v is the partial molar volume, i is the number of component. The (6) and (7) 
express law of conservation of mass and equal volume of each bulb, respectively. By using the method of Lagrange 
multiplier for (5) under the condition of (6) and (7) and approximation v1

A = v1
B = v1, v2

A = v2
B = v2, where v1 and 

v2 are the average partial molar volume of bulb A and bulb B, we can obtain the following condition for steady 
state under a temperature gradient:
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Run No. composition
Initial ion 
positions

Ion number in a simulation 
box

Pressure / 
MPa

Simulation period

σSiO2 /10−4 
K−1Si Ca O Total

Waiting 
period under 
temperature 
gradient 
before 
sampling / ns

Sampling 
period 
/ ns

1 0.9CaO-0.1SiO2 1 600 5400 6600 12600 148.5 2.38 4.75 3.83

2 0.9CaO-0.1SiO2 2 600 5400 6600 12600 146.1 2.38 4.75 1.34

3 0.9CaO-0.1SiO2 3 600 5400 6600 12600 144.3 2.38 4.75 1.47

4 0.9CaO-0.1SiO2 4 600 5400 6600 12600 146.0 2.38 4.75 3.96

5 0.9CaO-0.1SiO2 5 600 5400 6600 12600 144.5 2.38 4.75 1.29

6 0.9CaO-0.1SiO2 6 600 5400 6600 12600 146.1 2.38 4.75 2.16

7 0.9CaO-0.1SiO2 7 600 5400 6600 12600 147.6 2.38 4.75 2.70

Average No.1~7 146.2 (1.5) 2.40 (1.14)

8 0.8CaO-0.2SiO2 8 1120 4480 6720 12320 130.6 2.76 5.52 0.23

9 0.8CaO-0.2SiO2 9 1120 4480 6720 12320 130.1 2.76 5.52 0.48

10 0.8CaO-0.2SiO2 10 1120 4480 6720 12320 133.0 2.76 5.52 1.82

11 0.8CaO-0.2SiO2 11 1120 4480 6720 12320 130.7 2.76 5.52 1.10

12 0.8CaO-0.2SiO2 12 1120 4480 6720 12320 128.5 2.76 5.52 −0.99

Average No.8~12 130.6 (1.6) 0.53(1.04)

13 0.7CaO-0.3SiO2 13 1620 3780 7020 12420 138.2 4.04 8.08 −2.97

14 0.7CaO-0.3SiO2 14 1620 3780 7020 12420 138.0 4.04 8.08 −1.70

15 0.7CaO-0.3SiO2 15 1620 3780 7020 12420 139.4 4.04 8.08 −1.93

Average No.13~15 138.6 (0.8) −2.20(0.67)

16 0.6CaO-0.4SiO2 16 2080 3120 7280 12480 139.2 6.45 12.90 −3.79

17 0.6CaO-0.4SiO2 17 2080 3120 7280 12480 138.9 6.45 12.90 −4.23

18 0.6CaO-0.4SiO2 18 2080 3120 7280 12480 139.6 6.45 12.90 −3.43

Average No.16~18 139.2 (0.4) −3.82(0.40)

19 0.5CaO-0.5SiO2 19 2500 2500 7500 12500 132.0 8.79 17.58 −7.71

20 0.5CaO-0.5SiO2 20 2500 2500 7500 12500 130.4 8.79 17.58 −8.70

21 0.5CaO-0.5SiO2 21 2500 2500 7500 12500 131.9 8.79 17.58 −8.28

Average No.19~21 131.4 (0.9) −8.29(0.52)

22*1 0.9CaO-0.1SiO2 22 600 5400 6600 12600

143.6

2.38

4.75 0.96

145.6 14.25 1.47

142.0 23.75 1.93

143.1 33.25 2.30

144.3 42.75 1.90

Table 1.  Summary of the NEMD conditions and results. The values in brackets in the average row are the 
standard deviation. *1Different sampling time in a run.
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where μ is chemical potential.
By using Taylor expansion, we obtain the following relationship:

Figure 1.  Mole-fraction distributions and fitted lines of SiO2 obtained with NEMD. (a–c)0.9CaO-0.1SiO2. 
(d–e)0.8CaO-0.2SiO2. (f)0.7CaO-0.3SiO2. (g)0.8CaO-0.2SiO2. (h) 0.9CaO-0.1SiO2. The 21 simulations were 
conducted for CaO-SiO2 system, and initial ion positions are different from each other. The waiting and 
sampling period are θ and 2θ, respectively.
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where p is pressure. A relationship for the molar enthalpy of component is:
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By the Eqs (9–12), we can obtain the relation between Soret coefficient and thermodynamic parameters:
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In this study, we assume that the mixing thermodynamic parameters of the two components of binary glass 
melts should be important for the Soret effect. Under this assumption, we use the departure of thermodynamic 
parameters from the segregation limit of liquid mixture. We modify the Eq. (13) to the following one:

Figure 2.  NEMD results obtained with different sampling times for 0.9CaO-0.1SiO2. (a) sampling time of 2θ, 
6θ, and 10θ. (b) sampling time of 14θ and 18θ. This corresponds to the Run No. 22 in Table 1.

Figure 3.  Two-bulb apparatus for the Soret effect.
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where h° and μ° are partial molar enthalpy and chemical potential of pure liquid state at a given temperature. In 
this study, we set SiO2 and CaO to component 1 and 2, respectively.

Theoretical value obtained with Kempers model.  To obtain the thermodynamic parameters which 
appears in Eq. (14), separately from the NEMD simulation, we calculated thermodynamic parameters with 
EMD simulation under same pressure and temperature as NEMD simulation. V(volume), U(internal energy), 
H(enthalpy), HSL (enthalpy of segregation limit), ΔHMix(enthalpy of mixing), ΔSMix(entropy of mixing), and 
ΔGMix (Gibbs energy of mixing) of the system under T = 2000 K and about P = 100 MPa were shown in Table 2. 
ΔHMix was calculated by H − HSL. ΔSMix was calculated using a model proposed by P.L. Lin19. The HSL can be 
calculated by simple addition of enthalpy of the pure liquid state: mHCaO + (1 − m)HSiO2, where m, HCaO, and 
HSiO2 are mole fraction of CaO, enthalpy of pure CaO liquid and pure SiO2 liquid, respectively. By using V, ΔHMix, 
and ΔGMix, we calculated v(partial molar volume), h − h°(departure of partial molar enthalpy from pure liquid 
state), and μ − μ° (departure of chemical potential from pure liquid state) of the mixture, respectively. Finally, 
we obtained Soret coefficient of Kempers model(σSiO2

Kempers) using Eq. (14). Figure 4 shows the mole-fraction 
dependence of thermodynamic factors which appear in Eq. (14). The h − h° of the SiO2 increases monotonically 
with increase of SiO2 content, whereas that of the CaO decreases. The h − h° has cross over point of CaO and SiO2 
around 0.39SiO2. The v and xSiO2{∂(μSiO2 − μSiO2°)/∂xSiO2} changes gradually with the SiO2 mole fraction.

Summary of the NEMD simulation and the Kempers model.  We summarize the results of NEMD 
and Kempers theoretical model in Fig. 5. Both values monotonically decreases with the increasing mole frac-
tion of SiO2 and obtained the turning point of the sign of the Soret coefficient, with the difference of 0.23 for 
the NEMD and 0.36 for the Kempers model. Both Soret coefficients seem to change in parallel against the mole 
fraction of SiO2. As shown in Fig. 5, the value of lowest edge of the error bar and the value of long-time sampling 
in 0.9CaO-0.1SiO2 are located above zero, which indicates the SiO2 concentrates in the cold region. The standard 
deviation increases with decreasing SiO2 content. The large variation of the Soret coefficient in low-SiO2 content 
should be due to the small number of Si ions in the simulation box.

Discussion
Comparison of the NEMD result with the Kempers model.  The difference between the NEMD sim-
ulation and the theoretical model was almost not dependent on the composition, that is, the values changed in 
parallel. Kempers said that there are two contributions to the Soret effect: thermodynamic contribution from 
attraction/repulsion and kinetic contribution from collision interaction between components in Soret effect. Based 
on this idea, the difference between the NEMD simulation and the theoretical model may come from the kinetic 
factor because we have already considered the thermodynamic contribution in the Kempers model (Eq. (14)).  
The kinetic factor comes from the collision behavior, and should be expressed as a function of the factors of dif-
fusion species, such as size, mass, and bond strength. Lacks12 discussed the contribution of ion mass to the Soret 
effect caused between isotopes, called isotope fractionation, in silicate melts, and suggested that this contribu-
tion to the Soret effect is quantified by scaling relation based on the Chapman–Enskog theory3. The qualitative 

Composition P/MPa V/cm3 mol−1 U/kJ mol−1 H/kJ mol−1 HSL/kJ mol−1
ΔHMix = H−HSL/
kJ mol−1 ΔSMix/J mol−1

ΔGMix = ΔHMix 
−TΔSMix/kJ mol−1

SiO2 107.9 23.97 −5006.4 −5006.4 −5006.4 0 0 0

0.4CaO-0.6SiO2 134.5 23.58 −3693.6 −3693.6 −3666.6 −27.00 6.55 −40.11

0.5CaO-0.5SiO2 138.4 23.43 −3362.6 −3362.6 −3331.6 −30.96 6.49 −43.93

0.6CaO-0.4SiO2 141.1 23.21 −3029.9 −3029.9 −2996.7 −33.25 5.92 −45.08

0.7CaO-0.3SiO2 139.1 22.92 −2693.6 −2693.6 −2661.7 −31.93 5.05 −42.03

0.8CaO-0.2SiO2 131.4 22.55 −2353.4 −2353.4 −2326.7 −26.66 4.07 −34.80

0.9CaO-0.1SiO2 149.5 22.09 −2007.9 −2007.9 −1991.8 −16.09 2.66 −21.40

CaO 136.0 21.60 −1656.8 −1656.8 −1656.8 0 0 0

Composition hCaO−hCaO°/J 
mol−1

hSiO2−hSiO2°/J 
mol−1

μSiO2−μSiO2°/J 
mol−1

nSiO2{∂(μSiO2−μSiO2°) 
/∂nSiO2}/kJ mol−1 vCaO/cm3 mol−1 vSiO2/cm3 mol−1 σSiO2

Kempers/10−4 
K−1

0.5CaO-0.5SiO2 −47.55 −14.86 −31.52 71.49 22.54 24.33 −2.453

0.6CaO-0.4SiO2 −35.08 −30.26 −49.24 86.72 22.20 24.75 −0.488

0.7CaO-0.3SiO2 −22.46 −53.91 −76.12 98.31 21.91 25.27 1.362

0.8CaO-0.2SiO2 −11.23 −87.90 −116.33 97.03 21.72 25.85 3.700

0.9CaO-0.1SiO2 −3.10 −134.50 −175.02 69.86 21.62 26.40 9.153

Table 2.  Summary of thermodynamic parameters for Kempers model and Soret coefficient obtained by the 
model. All simulations were conducted at 2000 K and about 100 MPa. The superscript of Mix and SL means 
conditions of mixture and segregation limit, respectively.
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Figure 4.  Thermodynamic factors for Kempers model obtained with EMD simulation under non-temperature 
gradient condition at 2000K and about 100 MPa. (a) Partial molar volume, (b) departure of partial molar 
enthalpy of mixture from pure liquid state, and (c) xSiO2{∂(μSiO2 − μSiO2°)/∂xSiO2}.

Figure 5.  Soret coefficients obtained by NEMD and Kempers model. The error bars indicate standard 
deviation. The green point indicates the result obtained with the 42.75 ns long-time sampling.
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explanation for this is: the penetration depth of the heavier ion from the hot region to the cold region is longer 
than that of the lighter ion because the former can easily scatter lighter ions. In this study, the diffusion units in 
the system should be Si−O network, Ca ion, and free O ion. The Si–O network and may act as a heavier diffusion 
unit than Ca and free O ions, which in turn may contribute to the positive shift to the Soret coefficient of SiO2. 
However, this cannot explain the deviation tendency of the NEMD from the Kempers model. In contrast, anal-
ogous to this discussion, the Si–O network behaved as a large-diffusion species compared to Ca and free O ions. 
The penetration depth of the Si–O network from the hot region to the cold region was shorter than that of the 
Ca and free O ions because collision frequently occurred in the case of the large-diffusion species. Therefore, the 
Si–O network will easily concentrate in the hot region through this contribution, and the Soret coefficient of SiO2 
obtained from the NEMD is shifted to a negative direction from that predicted by the Kempers model. We think 
that the size effect may be larger than the mass effect in the system.

Important role of partial molar enthalpy.  The sign of the Soret coefficient in Kempers model (Eq. (14)) 
is determined by the term of (h2 − h2°)/v2− (h1 − h1°)/v1. As shown in Fig. 3, the h − h° is drastically changed with 
composition and cross over point is observed around 0.39SiO2 and the change of the value of partial molar vol-
ume(v) is small. (h2 − h2°) − (h1 − h1°) > 0 in the SiO2 content less than 0.39SiO2 mole fraction, which indicates 
that (h2 − h2°)/v2− (h1 − h1°)/v1 > 0 at low SiO2 content because the difference between v1 and v2 is small in this 
system. (h2 − h2°)/v2− (h1 − h1°)/v1 > 0 results in positive Soret coefficient of SiO2 in the Kempers model, while, in 
high SiO2 content system, (h2 − h2°)/v2− (h1 − h1°)/v1 < 0, which results in negative Soret coefficient. Neglecting 
the factor contributing to the parallel shift of Soret coefficient and focusing on Eq. (14), we obtain the conclusion 
that the sign change mainly comes from the magnitude relationship of h − h° between the two components. In 
other words, the main factor to determine the diffusion direction of SiO2 component is departure of partial molar 
enthalpy of mixture from pure liquid state. This discussion may be applied to other binary silicate system.

In conclusion, both of NEMD and Kempers model showed a monotonic decrease of the Soret coefficient 
of SiO2 and a sign change of that at low SiO2 content. The difference between the two results may be caused by 
a kinetic factor. According to the Eq. (14) of the Kempers model, mole-fraction dependence of partial molar 
enthalpy of SiO2 and CaO should be the cause of the sign change. As a future work, we should confirm the sign 
change in Soret coefficient at low SiO2 content binary silicate system, experimentally.

Methods
NEMD simulation.  The simulation method was similar to that in our previous report20, but the details had 
some differences. We employed the potential proposed by Seo21. The potential was developed for CaO-SiO2 sys-
tem and is an extended version of the potential for SiO2 proposed by Tsuneyuki22 to CaO-SiO2 system. The poten-
tial function is expressed as:
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where z is the effective ionic charge, ε0 is the dielectric constant of a vacuum, a, b, and c are the characteristic 
parameters of each ion, f is the standard force, and r is the distance between the ion pair (i and j). The first, second, 
and third term express the coulomb interaction, short-range repulsion, and dispersion force, respectively.

We used the Leap-frog Verlet algorithm and Ewald sum to treat the Coulomb interaction and the periodic 
boundary condition23. We separated the cubic simulation box with a periodic boundary condition into eight slices 
(Supplementary Fig. 1). The first slice was a cold slice kept at 1800 K, while the fifth slice was a hot slice kept at 
2200 K. An almost linear temperature gradient was produced, and the particle number was approximately 12,000. 
The characteristic time for the system to the 95% steady state was calculated as follows9:

θ
π

=
−x x
D (16)

hot cold
2

Si

where x denotes the coordinates parallel to the temperature gradient in the simulation box, and DSi is the 
self-diffusion coefficient of Si (Supplementary Table 1). After the temperature gradient control started, we waited 
for θ until the system closed to the steady state. Then, in the Run No. 1 ~ 21, we sampled the mole fraction dis-
tribution of each atom for the time period of 2θ. In the Run No. 22, we sampled with different time periods as 
shown in Table 1. The system pressure was controlled at approximately 100 MPa in every simulation. The Soret 
coefficient was calculated from the mole fraction distribution with the gradient of the fitted line of the data in 
Fig. 1 and Eq. (2).

The information of structure at 2000 K and approximately 100 MPa is shown in Supplementary Fig. 2.
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