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The quantum Zeno and anti-
Zeno effects with non-selective 
projective measurements
Mehwish Majeed & Adam Zaman Chaudhry

In studies of the quantum Zeno and anti-Zeno effects, it is usual to consider rapid projective 
measurements with equal time intervals being performed on the system to check whether or not 
the system is in the initial state. These projective measurements are selective measurements in 
the sense that the measurement results are read out and only the case where all the measurement 
results correspond to the initial state is considered in the analysis of the effect of the measurements. 
In this paper, we extend such a treatment to consider the effect of repeated non-selective projective 
measurements – only the final measurement is required to correspond to the initial state, while we do 
not know the results of the intermediate measurements. We present a general formalism to derive the 
effective decay rate of the initial quantum state with such nonselective measurements. Importantly, 
we show that there is a difference between using non-selective projective measurements and the 
usual approach of considering only selective measurements only if we go beyond the weak system-
environment coupling regime in models other than the usual population decay models. As such, we 
then apply our formalism to investigate the quantum Zeno and anti-Zeno effects for three exactly 
solvable system-environment models: a single two-level system undergoing dephasing, a single 
two-level system interacting with an environment of two-level systems and a large spin undergoing 
dephasing. Our results show that the quantum Zeno and anti-Zeno effects in the presence of non-
selective projective measurements can differ very significantly as compared to the repeated selective 
measurement scenario.

If a quantum system is subjected to repeated projective measurements, then the evolution of the quantum sys-
tem slows down. This effect is known as the quantum Zeno effect (QZE)1. On the other hand, a more ubiquitous 
phenomenon under realistic conditions is the opposite effect - the acceleration of the quantum state evolution 
via the repeated measurements, known as the quantum anti-Zeno effect (QAZE)2,3. Both the QZE and the QAZE 
have attracted considerable attention4–46 and studies have been performed by considering a variety of experimen-
tal setups such trapped ions4, cold atomic gas8, nanomechanical oscillators19 and superconducting qubits40. The 
general scenario - see, for example, refs2,3,8,10–12,16,17,19–21,30 - is to prepare initially an excited state of the system. 
This excited state then decays due to the system’s interaction with the surrounding environment. The idea is to 
repeatedly check via repeated projective measurements whether or not the system is still in the excited state or 
not. Each projective measurement prepares the initial state and any other measurement result is rejected. This 
scenario can be generalized to go beyond such population decay models in the sense that dephasing can also be 
taken into account31 and arbitrary system-environment models can be considered41.

In this paper, we go beyond such selective projective measurements usually considered in the analysis of the 
QZE and the QAZE. First, we consider ‘unsuccessful’ measurements as well. In this case, we do read off the meas-
urement results of the projective measurements, but we do not require the measurement results to correspond 
to the initial state for every measurement. Only the final measurement is required to do so. Second, rather than 
performing selective measurements, we can consider non-selective projective measurements where we do per-
form the measurements, but we do not read out the measurement results. Once again, only the final measurement 
is required to be a selective measurement corresponding to the initial state. A similar measurement strategy has 
been followed before to study the quantum Zeno and anti-Zeno effects for a harmonic oscillator coupled to a har-
monic oscillator environment45. For both of the above scenarios, the same final survival probability is obtained. 
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In particular, we show that our expression for the final survival probability reduces to the expression obtained 
using the usual repeated selective projective measurement scheme if the system-environment coupling is evalu-
ated using only first-order time-dependent perturbation theory and higher order terms are neglected. Our work 
is therefore a rare example of an investigation of the QZE and the QAZE beyond the weak system-environment 
coupling regime42,43. As a consequence, the usual perturbative techniques cannot be used and we use exactly solv-
able models to analyze the effect of the non-selective projective measurements. We consider three such models. 
First, we consider a single two-level system undergoing dephasing via its interaction with an environment con-
sisting of harmonic oscillators. Second, we consider a single two-level system interacting with an environment 
consisting of many two-level systems. Third, we consider a large spin (or, equivalently, more than one two-level 
system) interacting with an environment of harmonic oscillators and undergoing dephasing. Using the expres-
sion for the final survival probability, we can define an effective decay rate in analogy with the usual studies of the 
quantum Zeno and anti-Zeno effects. The behavior of the effective decay rate allows us to investigate the effect of 
performing non-selective projective measurements instead of the usual selective measurement scheme. We show 
that the QZE and QAZE are considerably modified. In particular, the QZE and the QAZE effects now depend on 
the number of measurements performed. The effective decay rates are now reduced; moreover, the measurement 
rates corresponding to the crossover from the QZE regime to the QAZE regime and vice versa can also change.

Results
Background.  Before presenting our results, it is useful to recap the basic theory41. The approach usually fol-
lowed is that at initial time t = 0, the system quantum state ρ0 is prepared. The system then interacts with the 
environment and evolves for time τ to the state ρ0(τ). A projective measurement is then performed at time τ to 
check whether or not the system is still in the state ρ0. Let this probability be s00. We also note that since we are 
interested in the system evolution due to the system-environment interaction only, the evolution due to the free 
system Hamiltonian is removed just before performing the projective measurement by applying a suitable unitary 
operator on a very short timescale31,41,43,44,47. The system state is then reset to ρ0 and following another time inter-
val τ, another measurement is performed. The probability that the system is still in the initial state ρ0 is 

τ =S M s( ) M
00  if system-environment correlation effects are neglected. We can then define an effective decay rate 

Γ(τ) via S(Mτ) = e−Γ(τ)Mτ. In this case, Γ(τ) is then found to be − = − −
τ τ

s sln ln(1 )1
00

1
01 , where s01 is the prob-

ability that the system, after a measurement, ends up in a state ρ1 orthogonal to the initial state ρ0. We emphasize 
that Γ(τ) is an effective decay rate which, in general, is not constant, thereby indicating non-exponential decay. 
For weak system-environment coupling strength, we expect the transition probability s01 to be small, leading to 
Γ(τ) ≈ s01/τ. The probability s01 can then be calculated perturbatively to show that the effective decay rate depends 
on the overlap of the spectral density of the environment and an ‘effective’ filter function that depends on the 
measurements performed, the measurement interval and the system-environment model being considered41. The 
effective decay rate Γ(τ) can then be plotted as a function of the measurement interval τ. When Γ(τ) is an increas-
ing function of τ, we are in the Zeno regime, since in this case, decreasing the measurement interval decreases the 
effective decay rate. If the opposite is true, then we are in the anti-Zeno regime2,12,21,31,41,43,44.

The formalism.  We now modify the scheme presented above to first take into account ‘unsuccessful’ meas-
urement results as well. We no longer demand that every measurement result corresponds to the initial state. 
Intermediate measurement results can correspond to state(s) other than the initial state - these measurements 
are what we refer to as unsuccessful measurements. We keep track of the result of every measurement and only 
the final measurement result should correspond to the initial state. For simplicity, we consider here the case of a 
two-level system - higher dimensional systems can be treated in a similar manner as done later when we study 
the large spin pure dephasing model. The two-level system is initially prepared in the state ρ0. We now perform 
repeated measurements on the system with time interval τ to check the state of the quantum system. Just after 
each measurement, the state of the system could be ρ0, or it could be the state ρ1, which is orthogonal to ρ0, due to 
the system’s interaction with the environment. As before, s01 as the transition probability that the system ends up 
in state ρ1 if it started in state ρ0. In a similar manner, we can define s10 (s11) as the transition probability that the 
system ends up in state ρ0 (ρ1) if it started in state ρ1. We are interested in what happens after M measurements; 
that is, what is the probability that the system is still in state ρ0 after M measurements? Calling this probability 
S(Mτ), if we neglect any system-environment correlation effects, we can write

∑τ = … .
… −

− − −
S M s s s s s( )

(1)i i i
i i i i i i i i0 0

M
M M M

1 2 1
1 1 2 2 3 2 1 1

This probability can be further evaluated using matrix multiplication (see the Methods section). The final 
result is

τ =
− − +

+
.S M s s s s

s s
( ) (1 )

(2)

M
01 01 10 10

01 10

We emphasize that this result is independent of the details of the system-environment model - the only 
assumption is that the system-environment coupling is not so strong that system-environment correlation effects 
become very significant31. This expression can also be cast in a more illuminating form. Noting that

∑− − = + − +
=

( )s s M
k

s s(1 ) 1 ( 1) ( ) ,M

k

M
M k

01 10
1

01 10
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we get

∑τ = − + −


 +



 + .

=

−
+S M Ms s M

k s s( ) 1 ( 1) 1 ( )
(3)k

M
k k

01 01
1

1
1

01 10

We can perform simple checks on our results. We first set s10 = 0. Then it is obvious that τ =S M s( ) M
00  in this 

case - once the system makes a transition to the state ρ1, it cannot make a transition back to ρ0. Equation (2) 
reproduces this result and, using M

k s( 1) 1k
M k k Ms s

s1
1 1

01
(1 ) 1M

01 01

01
∑ −



 +



 ==

− + + − − , so does Eq. (3). Furthermore, for 

M = 2, it is obvious that we should get τ = + = − + +S M s s s s s s s( ) 1 2 ( )00
2

01 10 01 01 01 10 . One can check that we 
get the same result using Eqs (2) and (3). We should also point out that as τ → 0, we expect that the transition 
probability s01 → 0, leading to S(Mτ) → 1. This is the quantum Zeno effect beyond the simple repeated selective 
projective measurement case.

Let us now consider non-selective projective measurements where, after every time interval τ, we perform a 
projective measurement on the system as before, but now we do not read the measurement results. We know from 
measurement theory that if the state just before the measurement is ρ, then the state just after the measurement is 
ρ ρ′ = ∑ P Pi i i, where Pi are the projection operators onto the eigenstates of the observable being measured48,49. It 
follows that if the initial state is ρ0, the system state just after the first non-selective measurement is ρ∑ si i i01 1 1

. The 
state just after the second non-selective measurement is ρ∑ s si i i i i i01 2 1 1 2 2

. Similarly, just after M − 1 non-selective 
measurements, the state of the system is ρ∑ …… − − − −

s s s si i i i i i i i i i i0M M M M1 2 1 1 1 2 2 3 2 1 1
. The probability that a final selective 

measurement leads to ρ0 is then

∑τ = …
… −

− − −
S M s s s s s( ) ,

i i i
i i i i i i i i0 0

M
M M M

1 2 1
1 1 2 2 3 2 1 1

which is the same as Eq. (1). Thus, if we do not read off the measurement results, we obtain exactly the same 
results as before for the effective decay rate. Whether or not we read the measurement results makes no differ-
ence. Let us also comment that the final survival probability as given in Eq. (1) can be considered as the sum over 
all possible ‘histories’ of going from the state ρ0 to state ρ0

50,51. Moreover, if Eq. (1) is cast in terms of probabil-
ity amplitudes instead of probabilities with only one non-selective projective measurement, then it essentially 
reduces to the Ersak equation used to explain non-exponential decay52–54. Variants of Eq. (1) have also been 
considered under the guise of quantum recurrence and the quantum first detection problem55–58.

We now illustrate the effect of repeated non-selective projective measurements using our formalism. Before 
doing so however, it is useful to note that Eq. (3) shows the dependence of the total survival probability on 
the system-environment coupling strength in a very transparent manner. Suppose that the system-environment 
coupling is very weak. Then s01 and s10 are very small and can be calculated using first order time-dependent 
perturbation theory41. It follows that S(Mτ) ≈ 1 − Ms01, which corresponds to Γ(τ) = s01/τ. This is the usual result 
for the decay rate in the weak coupling regime. Thus considering non-selective projective measurements only has 
an effect on the total survival probability and hence the effective decay rate, if we go beyond simple first-order 
perturbation theory. Consequently, we now illustrate the effect of considering unsuccessful measurements using 
exactly solvable models where we can calculate s01 and s10 exactly in regimes beyond the applicability of first order 
perturbation theory.

Single spin pure dephasing model.  We first study a single spin-1/2 particle interacting with an environ-
ment of harmonic oscillators. The total system-environment Hamiltonian is (we set ℏ = 1 throughout)59

∑ ∑
ω

σ ω
σ

= + + +† ⁎ †H b b g b g b
2 2 ( ),

(4)z
k

k k k
z

k
k k k k

0

where the system Hamiltonian is σ= ωHS z2
0 , the environment Hamiltonian is ω= ∑ †H b bB k k k k, while 

system-environment interaction Hamiltonian is = ∑ +σ ⁎ †H g b g b( )SB k k k k k2
z . Here ω0 is the energy spacing of 

two-level system and ωk denote the frequencies of the harmonic oscillator, while bk and †bk  are the annihilation 
and creation operators for the harmonic oscillators, with gk is the coupling strength between the central spin 
system and the environment oscillators. An important feature of this model is that only the off-diagonal elements 
of the system density matrix (in the σz eigenbasis) change in time, which is why this model is referred to as the 
pure dephasing model.

Consider the initial state of the two-level system to be ψ = +θ φ θ( ) ( )e e gcos sini
0 2 2

 with 〈e|g〉 = 0. The 
states g ( e ) are the ground (excited) states of the spin-1/2 particle and θ and φ are parameters characterizing the 
state ψ0 . The state orthogonal to this state is ψ = −θ φ θ( ) ( )e e gsin cosi

1 2 2
. At time intervals τ, we perform 

non-selective projective measurements in the basis { ψ0 , ψ1 }. If the state of the system is ρ0 = ψ0  ψ0 , the prob-
ability that the system ends up in state ρ1 = ψ1  ψ1  a time interval τ later (after removal of the evolution due to the 
system Hamiltonian) is (see the Methods section)

θ= − .γ− τs e1
2

sin (1 )01
2 ( )
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Here γ ω βωτ = ∑ − τ
ω

| |
( ) [1 cos( )]coth( /2)k

g
k k

k

k

2

2
 describes the environment-induced dephasing, that is the 

loss of coherence between the states e  and g . To perform the sum over the oscillator modes, we will replace the 
sum by an integral via ∫ ω ω∑ | | … → …

∞g d J( ) ( )( )k k
2

0
59. Throughout, we will use an Ohmic spectral density 

with an exponential cutoff to illustrate our results, that is, ω ω= ω ω−J G e( ) / c, where G is the dimensionless 
system-environment coupling strength and ωc is the cutoff frequency. We have also assumed that the initial 
system-environment state is ρ0 ⊗ ρB, with ρ = β−e Z/B

H
B

B  and = β−Z eTr[ ]B
HB .

In a similar manner, we find that if the system state is ρ1, the probability that after time interval τ the system 
state is found to be ρ0 is

θ= − .γ− τs e1
2

sin (1 )10
2 ( )

Thus, in this case, the transition probabilities are the same. Let us denote s01 = s10 = s. Using Eq. (2) gives the 
following form of survival probability

τ = + − .S M s( ) 1
2

[1 (1 2 ) ] (5)
M

The corresponding effective decay rate is

τ
θΓ τ = − 




+ − − 



.γ− τ{ }M
e( ) 1 ln 1

2
1 [1 sin (1 )]

(6)
M2 ( )

This expression should be compared with that obtained by performing only selective measurements. In the 
latter case, we simply have

τ
τ

θΓ = −






− −





.γ− τe( ) 1 ln 1 1

2
sin (1 )

(7)
2 ( )

In Fig. 1, we show the behavior of the decay rate Γ(τ) as a function of measurement interval τ with weak 
[Fig. 1(a)] and relatively strong [Fig. 1(b)] system-environment coupling strength at low temperatures. It is clear 
that we observe both the quantum Zeno and anti-Zeno regimes. For smaller values of τ, the effective decay rate 
Γ(τ) decreases as the measurement interval τ is reduced, meaning that shorter measurement interval τ helps to 
protect the state of quantum system, thus putting us in quantum Zeno regime. However for larger values of τ, 
the opposite situation takes place, namely, effective decay rate increases as the τ decreases, hence indicating the 
anti-Zeno regime for both selective and non-selective projective measurements. Furthermore, especially with 
relatively strong system-environment coupling, only three measurements can bring out a significant difference 
between performing non-selective measurements and performing only selective measurements (compare the 
small-dashed, red curve with the large-dashed, magenta curve). We notice that as we increase the number of 
non-selective measurements, the effective decay rate reduces. The value of τ for which we make a transition from 
the Zeno regime to the anti-Zeno regime also shifts to a lower value. These trends become more prominent with 
stronger system-environment coupling [compare Fig. 1(a,b)].

Spin interacting with spin environment.  We now consider a single spin-1/2 particle interacting with an 
environment of N other spin-1/2 particles. Our total system-environment Hamiltonian is60,61

∑ ∑σ σ σ
σ

σ=
ε

+
Δ

+
ε

+ ⊗
= =

H g
2 2 2 2

,
(8)z x

i

N
i

z
i z

i

N

i z
i

1

( )

1

( )

Figure 1.  Effective decay rate for single spin pure dephasing model. (a) Behavior of Γ(τ) versus τ for the initial 
state of the central spin ψ0  with only selective measurements (small-dashed, red curve) and with non-selective 
projective measurements with M = 3 (large-dashed, magenta curve), M = 5 (solid, blue curve) and M = 10 (dot-
dashed, black curve). We work in dimensionless units with ℏ = 1. Here we have set θ = π/2, φ = 0, ω0 = 1, β = 10, 
ωc = 10 and G = 0.1. (b) Same as (a), except that now G = 0.5.
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where the first term is the central spin Hamiltonian is HS, the environment Hamiltonian HB is given by the second 
term, while the third term describes the the system-environment interaction HSB. Here Δ and ε denote the tun-
neling amplitude and the energy spacing of the central spin system respectively, σm (m = x, y, z) are the standard 
Pauli spin operators as before, εi is the energy spacing in case of ith environmental spin and gi describes the inter-
action strength between the central spin system and the ith environmental spin. An important feature of this 
model is that now both the diagonal and off-diagonal elements of the central spin density matrix change with 
time. The dynamics given by this model can also be solved exactly with the initial system environment state given 
by ρtot(0) = ρS(0)⊗ρB where ρ = β−e Z/B

H
B

B  is the thermal equilibrium state of the environment. We defer the 
details to the Methods section, but it is pertinent to note here that the key to solving this system-environment 
Hamiltonian is that the environment Hamiltonian HB commutes with the environment part of the 
system-environment interaction Hamiltonian. The joint eigenstates can be written as n  = n1 n2 … nN , with 
ni = 0(1) denoting the spin up (down) state (along the z direction). The initial state of the central spin that we 
choose is ρ σ= +(1 )x0

1
2 . Correspondingly, ρ σ= −(1 )x1

1
2 . The probability that, starting from the state ρ0, after 

time τ we find the state ρ1 is given by (see the Methods section)

τ τ τ τ τ τ= − − −s p n p n p n1
2

[1 ( ) ( ) ( ) ( ) ( ) ( )], (9)x x y y z z01

where

∑ ∑

∑

τ =
Ω

ζ Ω + Δ τ =
Ω

ζ Ω

τ =
Ω

Δζ Ω

p
Z

c t p
Z

c t

p
Z

c sin t

( ) 1
4

( cos(2 ) ), ( ) 1
2

sin(2 ),

( ) 1
2

( ),
(10)

x
B n

n

n
n n y

B n

n

n
n n

z
B n

n

n
n n

2
2 2

2
2

and

τ τ ε ε

ε

= Ωτ +
Ω

Ω
Δ − τ =

Ω
Ωτ Ωτ τ

=
Δ Ωτ

Ω
.

n n n( ) [cos ( ) sin ( )
4

( )], ( ) sin( ) cos( ), ( )

2
sin ( )

(11)

x y z
2

2

2
2 2

2

2

He re  = βη−c en
/2n  w i t h  η ε= ∑ −= ( 1)n i

N n
i1

i ,  = ∑Z cB n n ,  ζ n  =  ε  +  G n  w i t h  = ∑ −=G g( 1)n i
N n

i1
i , 

ζΩ = + Δ( )n n
2 1

4
2 2  and εΩ = + Δ( )2 1

4
2 2 . We also find that s01 = s10. Consequently, denoting s01 = s and using Eq. 

(2), we get

τ = + −S M s( ) 1
2

[1 (1 2 ) ],M

leading to the effective decay rate

τ
τ

τ τ τ τ τ τΓ = −











+ + +











.( )M
p n p n p n( ) 1 ln 1

2
1 ( ) ( ) ( ) ( ) ( ) ( )

(12)x x y y z z
M

This result should be compared with repeated selective measurements where the effective decay rate is inde-
pendent of number of measurements and has the form

τ
τ

τ τ τ τ τ τΓ = − 


+ + + 


.{ }( )p n p n p n( ) 1 ln 1
2

1 ( ) ( ) ( ) ( ) ( ) ( )x x y y z z

In Fig. 2, the effective decay rate Γ(τ) with the spin environment has been plotted as a function of the meas-
urement interval τ for different values of system-environment parameters, again at very low temperatures. The 
small-dashed red curve is the decay rate if we perform only selective measurements, while with non-selective 
projective measurements, the large-dashed magenta curve is the decay rate for M = 3, solid blue curve is the decay 
rate for M = 5 and dot-dashed black curve is the decay rate for M = 10. Let us first focus on the inset of Fig. 2. As 
mentioned before, for very weak system-environment coupling, s01 and s10 approach to zero; consequently, the 
effective decay rate will be τΓ ≈ −

τ
s( ) 1

10, independent of the number of measurements. Thus, both selective and 
non-selective measurements lead to the same effective decay rate in such a case, independent of the number of 
measurements. This is precisely the case in the inset where the curves overlap. However, with stronger 
system-environment coupling strength, higher order terms in Eq. (3) also contribute, making the effective decay 
rate different for the selective and non-selective cases. This is illustrated in the main figure of Fig. 2(a). With both 
selective and non-selective projective measurements, there exist distinct multiple quantum Zeno and anti-Zeno 
regimes, that is, sometimes decay rate decreases by decreasing the measurements interval τ (meaning that we are 
in the quantum Zeno regime), while sometimes it increases by decreasing the τ (meaning that we are in the 
anti-Zeno regime). For repeated non-selective projective measurements, we clearly see that once again the effec-
tive decay rate Γ(τ) is lower compared to only selective measurements and the decay rate further reduces as the 
number of measurements is increased. Moreover, as before in our study of the single spin pure dephasing model, 
the peak value of the decay rate is shifted to the smaller values of τ. With even stronger system-environment cou-
pling strength, these differences become even more pronounced, as illustrated in Fig. 2(b). With selective 
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measurements, multiple quantum Zeno to anti-Zeno transitions exist, but these transitions are less with 
non-selective measurements due to the smaller values of effective decay rates. Consequently, the differences in the 
effective decay rates translate to very significant differences in the final survival probabilities.

Large spin pure dephasing model.  To further illustrate our formalism, we now consider a scenario 
beyond a simple two-level system. We consider in particular a spin J = 1 particle interacting with harmonic oscil-
lator environment. Such a model can describe the physics of two spin-1/2 particles interacting a common har-
monic oscillator environment. The system-environment Hamiltonian is now

∑ ∑ω ω= + + +† ⁎ †H J b b J g b g b( ),
(13)z

k
k k k z

k
k k k k0

where Jz is is the usual angular momentum operator and the remaining parameters are described as before. For 
the simplicity of presentation, let us suppose that we repeatedly measure the operator Jx. The initial system state 
that we prepare is the eigenstate of Jx, with eigenvalue +1. Written in the standard Jz eigenbasis, this state is

ρ =












.

1
4

1 2 1
2 2 2

1 2 1
0

The other two orthogonal eigenstates of Jx are

ρ =






−

−






1
2

1 0 1
0 0 0
1 0 1

,1

and

ρ =







−
− −

−






.

1
4

1 2 1
2 2 2

1 2 1
2

Knowing the Hamiltonian, we can work out the system density matrix at any time exactly. Assuming that the 
initial system-environment state is ρ ⊗ β−e Z(0) /S

H
B

B , the result, written in the Jz eigenbasis after the removal of 
the evolution due to HS, is (see the Methods section)

ρ τ ρ= .δ τ γ τ− − − −e e[ ( )] [ (0)]S lm S lm
i l m l m( )( ) ( )( )2 2 2

Here γ(τ) is the decoherence factor defined before and δ τ ω τ ω τ ω= ∑ | | −g( ) (sin( ) )/k k k k k
2 2 describes the 

indirect interaction between the two two-level systems due to the common environment. It is then simple to work 
out that

= − = = =γ τ−s e s s s1
4

[1 ] , (14)01
4 ( )

10 12 21

and

Figure 2.  Effective decay rate for the spin-spin environment model. (a) Behavior of Γ(τ) versus τ for the initial 
state of central system σ+(1 )x

1
2

 with M = 1 (small-dashed, red curve), M = 3 (large-dashed, magenta curve), 
M = 5 (solid, blue curve) and M = 10 (dot-dashed, black curve) for the spin environment. We work in 
dimensionless units so that ℏ = 1. For simplicity, level spacing εi and coupling strength gi are chosen to have the 
same value for every environment. Here we have set ε = 1, Δ = 2, β = 10, εi = 1, gi = 0.01 and the number of 
environmental spins is considered to be N = 100. The inset shows the effective decay rate with the same system-
environment parameters, except that now gi = 0.001). (b) Same as (a), except that now gi = 0.1, with zoomed-up 
inset plot.
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δ τ= + − = .γ τ γ τ− −s e e s1
8

[3 4 cos[ ( )] ] (15)02
4 ( ) ( )

20

Our objective to now evaluate Eq. (1) in this case. The result is (see the Methods section)

τ = + − + − −S M s s s( ) 1
6

[2 (1 3 ) 3(1 2 ) ], (16)
M M

01 01 02

and the corresponding effective decay rate is

τ
τ

δ τΓ = −











+ + +











.γ τ γ τ− −

M
e e( ) 1 ln 1

6
2 1

4
(1 3 ) 3(cos[ ( )] )

(17)M
M M4 ( ) ( )

In contrast, for selective measurements, the effective decay rate is

τ
τ

δ τΓ = − + + .γ τ γ τ− −{ }e e( ) 1 ln 1
8

[3 4 4 cos[ ( )] ]4 ( ) ( )

The key difference now as compared to the single spin pure dephasing model is the presence of the δ(τ) 
term that describes the effect of the indirect interaction between the spins. In Fig. 3, we illustrate the behavior 
of the effective decay rate Γ(τ) as a function of the measurement interval τ. If we perform selective measure-
ments with relatively weak system-environment coupling strength, it is clear that we observe distinct Zeno and 
anti-Zeno regimes [see Fig. 3(a)]. Comparing with the single spin case, we note that the indirect interaction 
between the spins is responsible for the multiple Zeno and anti-Zeno transitions. However, with non-selective 
projective measurements, we largely observe one Zeno regime and one anti-Zeno regime. This is because, as 
before, the non-selective measurements lead to a lowering of the effective decay rate and the measurement inter-
val at which the peak effective decay rate occurs shifts to lower values as well. However, for smaller values of τ, the 
indirect interaction plays a relatively smaller role - it can be checked that δ(τ) → 0 as τ → 0. On the other hand, 
for stronger system-environment coupling strength, as illustrated in Fig. 3(b), the decoherence factor γ(τ) plays 
a more dominant role as compared to the indirect interaction δ(τ). Consequently, there are now less clear cut 
multiple Zeno and anti-Zeno regimes.

Discussion
In this paper, we have generalized the treatment of the quantum Zeno and anti-Zeno effects by considering 
non-selective projective measurements. We have worked out a general formalism for calculating the effective 
decay rate of a quantum state subjected to repeated non-selective measurements. Importantly, we have shown 
that non-selective measurements lead to a different effective decay rate as compared to the usual strategy of using 
only selective measurements if we go beyond the weak system-environment coupling regime. To illustrate our 
formalism, we also worked out the effective decay rate for three exactly solvable system-environment models. 
These included a single spin interacting with a harmonic oscillator environment, a single spin interacting with a 
spin environment and two spins interacting with a harmonic oscillator environment. Using these exactly solvable 
models, we found that non-selective projective measurements can qualitatively alter the analysis of the quantum 
Zeno and anti-Zeno effects. In particular, non-selective measurements considerably reduce the effective decay 
rate and the transition from Zeno to anti-Zeno regimes (and vice versa) is also altered. Our results should be 
important in the study of the effect of repeated measurements if we go beyond the weak system-environment 
coupling regime.

Figure 3.  Effective decay rate for the large spin pure dephasing model with J = 1. (a) Behavior of Γ(τ) versus τ 
for the initial state ρ0 (spin up in the x direction) with only selective measurements (small-dashed, red curve) 
and using non-selective projective measurements with M = 3 (large-dashed, magenta curve), M = 5 (solid, blue 
curve) and M = 10 (dot-dashed, black curve). Here we have set ω0 = 1, β = 10, ωc = 10 and G = 0.1. (b) Same as 
(a), except that now G = 0.5.
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Methods
Finding the final survival probability.  To evaluate Eq. (1), we can employ matrix multiplication. Define 
the matrix   as

 =





−
−





.

s s
s s

1
1

01 01

10 10

Then it is straightforward to see that τ =S M( ) [ ]M
00, that is, S(Mτ) is simply the top-left element of the 

matrix M. Our problem is then to M. This can be done via diagonalization. Define = −D U U1 , where D is a 
diagonal matrix with the eigenvalues of   as its diagonal elements and U is a matrix with eigenvectors of   as its 
columns. Then,

=


 − −



 =







− 




=

+ −
− ( )D s s U

s
s U

s s
s s
s s

1 0
0 1 ,

1

1 1
, 1 ,

01 10

01

10
1

01 10

10 01

10 10

and = −UD UM M 1  is

 =







− − +
+

− − −
+

− − −
+

+ − −
+







.

s s s s
s s

s s s s
s s

s s s s
s s

s s s s
s s

(1 ) (1 )

(1 ) (1 )
M

M M

M M

01 01 10 10

01 10

01 01 01 10

01 01

10 10 01 10

01 01

01 10 01 10

01 01

Consequently, we can read off that S(Mτ) is as given in Eq. (2).
A very similar method can be employed for a higher dimensional system. Consider, for example, a three 

dimensional systems as is the case for the large spin pure dephasing model. In this case, we construct

 =






− −
− −

− −






.

s s s s
s s s s
s s s s

1
1

1

01 02 01 02

10 10 12 12

20 21 20 21

Then, once again, S(Mτ) is simply the top-left element of the matrix M . Again, the task is to simply diagonal-
ize  . However, in this case, the algebra is much more cumbersome for the general case. Fortunately, for the pure 
dephasing model, s01 = s10 = s12 = s21 and s20 = s02, which leads to great simplifications. In this case, following the 
same method as above,

=





−

− −






=







−
−






=






−

−






−D s

s s
U U

1 0 0
0 1 3 0
0 0 1 2

,
1 1 1
1 2 0
1 1 1

, 1
6

2 2 2
1 1 2
3 0 3

,01

01 02

1

and the top left element of  = −UD UM M 1 is then given by Eq. (16).

Derivation of the spin density matrix with harmonic oscillator environment.  Let us now, for 
completeness, outline how to find the system density matrix with the system-environment Hamiltonian given in 
Eq. (13). Further details can be found, for example, in ref.62. The single spin density matrix can then be found by 
simply setting the spin size to 1/2. Our first goal is to find the total unitary time-evolution operator U(τ). To this 
end, it is useful to first write U(τ) = UF(τ)UI(τ), where τ = τ− +U e( )F

i H H( )S B  is the free unitary time time evolution 
operator and UI(τ) is the time evolution due to the system-environment interaction. One can then show, using the 
Magnus expansion, that †τ α τ α τ δ τ= ∑ − −∗U J b b iJ( ) exp[ ( ( ) ( )) ( )]I z k k k k k z

2 , where α τ ω= − ω τg e( ) (1 )/k k
i

k
k  and 

δ τ ω τ ω τ ω= ∑ | | −g( ) (sin( ) )/k k k k k
2 2. With the time evolution operator found, we can write the system density 

matrix ρS(τ) in terms of Jz eigenbasis as ρ τ τ ρ τ= †U U P[ ( )] Tr [ ( ) (0) ( ) ]S lm S B lm, tot . Here Plm = l m , where l  is the 
eigenstate of operator Jz with eigenvalue l. Assuming an initially uncorrelated system-environment state with the 
environment in thermal equilibrium, that is, ρtot(0) = ρS(0) ⊗ ρB with ρ = β−e Z/B

H
B

B  and = β−Z eTr[ ]B
HB , we 

obtain ρ τ ρ= ω τ δ τ τ− − − − −e e e[ ( )] [ (0)]S lm
i l m i l m

S lm
R( ) ( )( ) ( )lm0

2 2
, with τ α τ α τ= − ∑ −† ⁎R l m b b( ) ( ) [ ( ) ( )]lm k k k k k  

and ρ =τ τ− −e eTr [ ]B
R

B
R( ) ( )lm lm  is the average over the thermal states of the bath in equilibrium. This average is 

found to be ρ ω τ βω ω= −∑ − | | −τ−e l m gTr [ ] exp[ ( ) (1 cos( )) coth( /2)/ ]B
R

B k k k k k
( ) 2 2 2lm . Consequently, all in all, 

we have

ρ τ ρ= ω τ δ τ γ τ− − − − − −e e e[ ( )] [ (0)] ,S lm
i l m i l m

S lm
l m( ) ( )( ) ( )( )0

2 2 2

with γ τ ω τ βω ω= ∑ | | −g( ) (1 cos( ))coth( /2)/k k k k k
2 2.

We are really interested in finding the transition probabilities. Suppose that the initial system state is ρ0. Then 
the probability that a measurement at time τ yields the state ρ1 (after removal of the evolution due to HS) is
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∑ ρ ρ= .δ τ γ τ− − − −s e e [ ] [ ]
lm

i l m l m
lm ml01

( )( ) ( )( )
0 1

2 2 2

Other survival probabilities can be calculated in an analogous manner.

Solving the central spin-spin environment model.  We now outline how to find the spin dynamics with 
system-environment model given in Eq. (8). Details can be found in ref.61. We first write the interaction term 
between the central system and the environment as σ= ⊗H BzSB

1
2

, where B is the environment operator, defined 
to be σ= ∑ =B gi

N
i z

i
1

( ). The eigenstates of environment operator B can be expressed as the products of the eigenba-
sis 0i and 1i of ith environment spin operator σz

i( ), where 0  labels the spin ‘up’ and 1  the spin ‘down’ state of the 
environment. As such, the eigenstates of environment operator B can be written as n  ≡ n1 n2 … nN , with ni = 0, 
1. Explicitly B n  = Gn n , with = ∑ −=G g( 1)n i

N n
i1

i . Similarly, σ η∑ =ε
= n ni

N
z

i
n1 2

( ) 1
2

i , with η ε= ∑ −= ( 1)n i
N n

i1
i . 

Since the environment states n n  commutes with the total Hamiltonian [see Eq. (8)], we can find the unitary 
time-evolution operator for the total system by introducing the completeness relation over the environment states 
n  i.e, τ = ∑ η τ τ

=
− − − +U e e n n( ) ,n

i i H H
0

2 1 /2 ( )N
n S SB

∑τ τ=
=

−
U U nn( ) ( ) ,

(18)n
n

0

2 1N

where τ τ τ σ σ=






Ω − Ω +






η ζ−
Ω

Δ( )U e( ) cos( ) sin( )n
i t

n
i

n z x
/2

2 2
n

n

n , with ζn = ε + Gn and ζΩ = + Δ( )n n
2 1

4
2 2 . For sim-

plicity, we choose the initial system-environment state as ρ ρ= ⊗ β−e Z(0) (0) /S
H

Btot
B , where ρ ρ σ= = +(0) (1 )S x0

1
2

 
is the initial state of of central system and ρ = β−e Z/B

H
B

B  is the thermal equilibrium state of environment with 
= β−Z eTr [ ]B B

HB . Correspondingly, ρ σ= −(1 )x1
1
2

 (the state orthogonal to initial state of system). Now the density 
matrix of central spin system at some time τ is ρS(τ) = TrB[e−iHτρtot(0)eiHτ], where TrB is the trace over the states of 
environment. Using Eq. (18), we get ρ τ ρ= ∑ =

− †c U t U( ) ( ) (0)S Z n n n S n
1

0
2 1

B

N , Here we have defined = βη−c en
/2n , leading 

to = ∑Z cB n n. Further simplification leads to

ρ τ τ σ τ σ τ σ= + + +( )p p p( ) 1
2

1 ( ) ( ) ( ) ,S x x y y z z

where px(τ), py(τ) and pz(τ) are defined in Eq. (10). The central spin system density matrix just before the meas-
urement but after the removal of evolution due to free spin system Hamiltonian is then

ρ τ τ σ τ τ σ τ τ σ τ= + + +( )p n p n p n( ) 1
2

1 ( ) ( ) ( ) ( ) ( ) ( ) ,S x x x y y y z z z

with nx(τ), ny(τ) and nz(τ) defined in Eq. (11). The probability s01 can then be calculated in a straightforward 
manner leading to Eq. (9), while the calculation of s10 is very similar and gives the same result.
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