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Stable and discriminating features 
are predictive of cancer presence 
and Gleason grade in radical 
prostatectomy specimens: a multi-
site study
Patrick Leo1, Robin Elliott2, Natalie N. C. Shih3, Sanjay Gupta4, Michael Feldman3 & 
Anant Madabhushi1

Site variation in fixation, staining, and scanning can confound automated tissue based image classifiers 
for disease characterization. In this study we incorporated stability into four feature selection 
methods for identifying the most robust and discriminating features for two prostate histopathology 
classification tasks. We evaluated 242 morphology features from N = 212 prostatectomy specimens 
from four sites for automated cancer detection and grading. We quantified instability as the rate of 
significant cross-site feature differences. We mapped feature stability and discriminability using 188 
non-cancerous and 210 cancerous regions via 3-fold cross validation, then held one site out, creating 
independent training and testing sets. In training, one feature set was selected only for discriminability, 
another for discriminability and stability. We trained a classifier with each feature set, testing on the 
hold out site. Experiments were repeated with 117 Gleason grade 3 and 112 grade 4 regions. Stability 
was calculated across non-cancerous regions. Gland shape features yielded the best stability and area 
under the receiver operating curve (AUC) trade-off while co-occurrence texture features were generally 
unstable. Our stability-informed method produced a cancer detection AUC of 0.98 ± 0.05 and increased 
average Gleason grading AUC by 4.38%. Color normalization of the images tended to exacerbate 
feature instability.

There has been a great deal of interest in developing image analytic and feature-based machine learning tools 
for diagnosis and characterization of disease on digitized pathology images1–5. Image feature-based approaches 
typically involve mining several (sometimes hundreds) features from the tissue images and then identifying the 
subset of features most predictive of disease presence or category (e.g. cancer grade). These features are then used 
to train a model to predict image or patient class based on the differences in feature value distribution between 
images or patients of the different categories. The presence of substantial image differences between the training 
and testing sets on account of specimen fixation, sectioning, mounting, staining, or digitization could result in the 
features identified from the training set not generalizing to the validation set. To be clinically useful, a computer 
aided diagnosis algorithm must be able to perform equally well on images from any laboratory and be robust to 
inter-site variation. Hence, the set of features identified and employed in conjunction with the machine classifier 
needs to be robust across multiple sources of variation.

Prior to digitization, site-specific variation in specimen preparation can affect slide appearance. Dye batch, 
manufacturer, and concentration have been shown to significantly affect the slide appearance6. During slide dig-
itization, factors such as the individual whole-slide scanner used, image magnification, and file compression may 
alter the final appearance of the image. Site-specific factors that affect image color, brightness, and contrast also 
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affect the texture features calculated from pixel intensity values. Features derived from nuclei and glands that rely 
on object boundaries are also sensitive to the choice of segmentation scheme employed for extracting boundary 
contours7. Figure 1 reveals how a small variation in segmentation of individual glands can dramatically affect the 
resulting features.

Clearly, there is a need for both standardization of image preparation procedures and identification of features 
which are more and less vulnerable to instability induced by site-specific variations. One way of ensuring feature 
robustness is to tightly control pre-analytic sources of variation such as choice of scanner, section thickness, slide 
preparation, and staining concentrations. However, it is difficult enough controlling for these pre-analytic sources 
of variance within a single site or institution, let alone across multiple sites6,8. Consequently, multiple groups have 
attempted to standardize the acquired tissue image with color normalization and standardization algorithms9–11. 
While a number of these algorithms have shown the ability to improve color consistency within tissue compart-
ments before and after standardization, it is less clear that this approach can adequately ameliorate all additional 
sources of pre-analytic variance such as choice of scanner and slice thickness. In other words, it is not clear that 
color standardization by itself will address the issue of reproducibility and consistency of tissue image derived 
feature measurements.

Since explicitly and comprehensively correcting for every source of pre-analytic variation is not tenable, 
another option is to identify which features are not just predictive but also stable across the multiple sources of 
variation. Most feature selection approaches typically rely on maximizing accuracy, area under the receiver oper-
ating characteristic curve (AUC) or some other discrimination or classification specific performance measure. 
Feature instability on the other hand, has not been explicitly encoded into most feature selection algorithms. 
This is not to suggest that the concept of feature stability has not been previously investigated in the context of 
image classification. Kalousis et al.12, Abeel et al.13, and Parmar et al.14 evaluated the stability of feature selection 
methods, defining selection methods as stable if they assigned features the same weight or rank across multiple 
bootstrapped folds of the training set. Yu et al.15 reviews a number of methods for calculating the similarity of 
two selected sets of features to quantify the agreement between feature selection methods on two datasets. These 
studies used datasets drawn from proteomics, genomics, text mining12, tissue microarrays of leukemia, pros-
tate, colon, lymph nodes13, and computed tomography images of lung cancer14. While these approaches have the 
potential to help identify the appropriate feature selection approach, they do not by themselves provide any real 
insight on the stability of the actual features across multiple different sites. In the digital pathology space, there 
have been recent studies documenting sources of pre-analytic variation that influence the color of the resulting 
tissue scanned images16–18, but little by way of evaluation measures for consistency and reproducibility of tissue 
derived image features.

Figure 1.  Effect of small variation in segmentation on resulting gland derived feature values. In this experiment 
we randomly removed a varying percentage of the total number of glands in a digitized image of a radical 
prostatectomy specimen in order to evaluate the corresponding effect on feature instability. (a) Sample benign 
regions of interest (ROIs) along with automatically identified gland boundaries are shown. Blue glands are those 
randomly selected for removal. (b) Gland sub-graph map, a histomorphometric feature which quantitatively 
captures gland architecture on the digital slide image, is illustrated. The addition of the glands with blue 
boundaries, though representing just 10% of the total number of glands, greatly changes the sub-graph map 
by connecting previously disconnected glands. Clearly, different gland detection algorithms, no matter how 
accurate, are likely to miss at least some percentage of glands in the image and hence choice of algorithm can 
substantially impact resulting features. (c) Plot of the percentage change in six features when removing 0 to 
20% of randomly chosen glands from the region in (a). We systematically removed 0 to 20% of all glands in the 
image, in increments of 1%. For every 1% removal of glands, we ran 10 simulations for what the corresponding 
6 features values might be. The averaged values for each gland removal percentage number is reported in (c). 
The values of the three most stable (solid lines) and unstable (dashed lines) features are shown in (c).
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Leo et al.19 introduced two measures of feature stability, latent instability (LI) and preparation-induced insta-
bility (PI). LI captures the instability from differences in patient population in the absence of site-specific varia-
tion and is calculated by randomly splitting in half the images from a single site, and comparing the distribution 
of feature values in each half with the Wilcoxon rank-sum test. PI represents the rate at which a feature was 
observed to be significantly different in distribution between sites. While both LI and PI were employed in that 
study to quantitatively evaluate the relative instability associated with histomorphometric features for prostate 
cancer diagnosis from digital pathology tissue slide images, the study stopped short of actually using these meas-
ures to perform feature selection.

In this paper we evaluated four feature selection methods, sequential forward selection (SFS), Wilcoxon rank 
sum (WLCX), maximum relevance minimum redundancy (mRMR), and area under the empirical receiver oper-
ating characteristic curve (ROC), to also include feature stability across sites. Our goal was to quantitatively 
identify features which were both accurate and stable and, in two use cases, demonstrate a beneficial or at least 
non-deleterious effect on classifier performance from selecting features only from the subset of features which 
were stable. In the first use case we considered the problem of prostate cancer detection on surgically excised 
radical prostatectomy images obtained from four different sites. The second use case focused on identifying the 
optimal features for distinguishing Gleason grade 4 from Gleason grade 3 patterns. For both problems, the images 
from three sites were used for discovery and identification of the most stable and accurate features while the hold 
out site was used for independent validation.

In this work we primarily focused on gland derived features, using a total of 216 features relating to gland 
morphology and describing the global graph, lumen shape, local sub-graph, and orientation disorder20. Gland 
boundaries were obtained using the method of Nguyen et al.21. Apart from gland shape features, 26 Haralick 
texture features derived from pixel intensity values were also extracted to capture the textural patterns within the 
regions of interest. These features were chosen for their previously demonstrated performance in histopathol-
ogy cancer detection and grading tasks3,20,22–25. For each of the two experiments, cancer detection and grading, 
we identified the most simultaneously stable and discriminating features across the four independent sites and 
also identified which feature selection scheme yielded the most consistently accurate prediction results. We also 
evaluated the performance of the different feature selection algorithms following application of a popular color 
standardization scheme to evaluate the effect of color standardization on feature instability.

Dataset Description
A total of 212 digitized radical prostatectomy specimens were gathered from four sites as illustrated in Table 1. 
Each site contributed a single dataset of images. The NIH Cancer Genome Atlas yielded digitized prostatec-
tomy images from the University of Pittsburgh and Roswell Park. No information regarding the specific scanner 
used for the University of Pittsburgh and Roswell Park slides was available, but the slides from the University 
of Pennsylvania were scanned with an Aperio CS2 and the University Hospitals (UH) Cleveland slides with an 
Aperio SCN400, respectively. The University of Pennsylvania slides were digitized at a 20X magnification (0.5 
microns per pixel), all others were digitized at 40X (0.25 microns per pixel).

Every image was annotated by an expert pathologist as corresponding to cancerous, non-cancerous, homo-
geneous Gleason grade 3, and homogeneous Gleason grade 4 regions. Non-cancerous regions were identified 
by an expert pathologist as those locations on the digitized surgically resected tissue image not containing any 
cancer. Two images from UH Cleveland contained no cancerous regions, though these samples were taken from 
patients with confirmed prostate cancer. Thus these two images contributed only non-cancerous regions to this 
study. Where the pathologist identified multiple regions of a single class on an image, the largest region was used 
for subsequent analysis and interrogation. Figure 2 shows a representative annotated image of a surgically excised 
prostatectomy specimen with pathologist annotations of the different disease categories.

Methods
Gland Segmentation.  Glands were automatically segmented from annotated ROIs using the method of 
Nguyen et al.21. All gland segmentations were performed on images that had been downsized to an equivalent 5X 
magnification. Images were further downsized to 1.25X for feature extraction. Each annotated region of interest 
was processed as a separate image. In the Nguyen segmentation method, k-means clustering with k = 4 is per-
formed on 10,000 randomly chosen pixels from throughout the image in the three dimensional RGB space. The 
four centroids are then assigned the labels nuclei, cytoplasm, stroma, and lumen. Based on these four centroids, 
every pixel in the image is assigned a label based on the centroid it is closest to in the RGB space. The area around 
pixels identified as lumen are segmented and their boundaries smoothed. From the gland boundaries, the cen-
troid of the gland is identified.

Site Patients Cancer regions Non-cancer regions Grade 3 regions Grade 4 regions

Univ. of Pennsylvania 80 80 73 39 44

Univ. of Pittsburgh 35 35 26 24 24

Roswell Park 33 33 26 28 22

UH Cleveland 64 62 63 26 22

Table 1.  Patient dataset.
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Feature extraction.  The five feature families used in this study were chosen based on evidence in the litera-
ture with regard to their ability to identify20 and grade26 prostate cancer.

Global graph.  The global graph features are derived from gland centroid coordinates. This family consists of 51 
descriptors of gland arrangement and density derived measurements from the edges and polygons of Voronoi and 
Delaunay maps as well as architectural measurements such as mean and standard deviation of distance to nearest 
three, five, seven neighbors and number of neighbors in a 40, 60, 80, and 100 micron radius of each gland27.

Gland shape.  The shape features depend on the gland boundary points and capture gland appearance and 
boundary characteristics27. The 25 shape measurements include invariant and Fourier descriptors of boundary 
points, fractal dimension, smoothness, area, and perimeter. The mean, median, standard deviation, and mini-
mum/maximum ratio of these 25 measurements are all calculated, for a total of 100 features.

Gland orientation disorder.  The 39 orientation disorder features quantitatively describe how chaotic the glands 
in an image appear and are derived from an 18 × 18 co-occurrence matrix, corresponding to gland orientation 
angles binned in intervals of 10 degrees from 0 to 180 degrees. Lee et al.20 showed that gland disorder was associ-
ated with increased risk of 5-year biochemical recurrence. Gland orientation is determined from the first princi-
pal component direction of the gland boundary points. Every gland’s orientation angle is the difference between 
the gland’s first principal component vector and a constant arbitrary vector. The co-occurrence matrix is then 
populated with entry (i, j) equaling the number of times a gland of orientation i was found in the same sub-graph 
as a gland of orientation j. The orientation disorder features use gland centroid coordinates for constructing 
neighborhood sub-graphs and gland boundary points for calculating orientation. A co-occurrence matrix is con-
structed for every sub-graph in an image and measures of entropy, variance, and energy are extracted from the 
matrix.

Sub-graph.  26 sub-graph28 features describe the local gland arrangement, packing, and clustering, by connect-
ing nearby glands together into a graph based on the gland centroid coordinates. The sub-graph features include 
sub-graph radius, eccentricity, clustering, path length, ratio of glands in the largest sub-graph to total number of 
glands, and percentage of glands which are isolated.

Haralick.  Unlike the aforementioned features, the 39 Haralick texture features25 depend on pixel intensity val-
ues. The entire annotated region of interest is converted to a grayscale image and all pixels in the region are used 
for feature calculations. These features are drawn from a co-occurrence matrix describing how often pixels of 
various intensities are found near pixels of another intensity. The Haralick features describe the texture, edges, 

Figure 2.  Annotated digitized radical prostatectomy image with corresponding feature maps of three feature 
families (shape, global graph, and sub-graph). (a) Radical prostatectomy specimen with expert pathologist 
annotations for non-cancerous (yellow), cancerous (green), homogeneous Gleason 3 (red) and homogeneous 
Gleason 4 (blue) regions. (b,f,j) Benign, (c,g,k) cancerous, (d,h,l) Gleason 3, and (e,i,m) Gleason 4 regions 
of interest. Visualization of (b–e) automated segmentation using the method of Nguyen et al.21. From these 
segmentations, gland area, perimeter, and boundary descriptors are calculated. (f–i) Delaunay triangulation, 
from which measures of gland arrangement and density such as average and standard deviation of edge length 
and polygon area are extracted. (j–m) Sub-graphs, local graphs of gland architecture from which measurements 
relating to gland packing, average degree and radius of graphs, number of isolated nodes, and clustering 
descriptors are extracted.
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gradients, spots, and homogeneity of the image. As with the gland orientation disorder features, the entropy, 
variance, and energy are calculated from the co-occurrence matrix.

Quantifying feature instability and feature performance.  In this study our goal was to investigate if 
there were features which were both highly accurate and highly stable. Feature instability was calculated using the 
non-cancerous regions of radical prostatectomy specimens from each site. Differences in feature values between 
non-cancerous regions between sites were considered evidence of site-linked instability since it was consid-
ered unlikely that the morphology and texture of these non-cancerous regions would vary across sites without 
site-specific confounding effects.

To determine the relationship between feature instability and discriminability, we first calculated the AUC for 
each of the 242 features in the study. A single feature at a time was used for classification in the cancer detection 
and Gleason grading tasks. Feature AUC was calculated with 100 iterations of 3-fold cross validation using a 
linear discriminant analysis (LDA) classifier. Classification was performed separately for each site and the mean 
AUC across the four sites was used to generate the final AUC for each feature. The PI associated with each feature 
was then computed across all the non-cancerous regions for the the four sites. Each feature had two values, PI 
across non-cancerous regions and mean AUC. Thus each feature was defined by a unique position in the PI-AUC 
space.

Feature selection schemes.  We employed four feature selection schemes, sequential forward selection 
(SFS)29, Wilcoxon rank-sum (WLCX)30, maximum relevance minimum redundancy (mRMR)31, and area under 
the empirical receiver operating characteristic curve32 (ROC). These feature selection methods were selected 
to represent four different approaches to identifying discriminating features. The approaches used are: iterative 
selection (SFS), pure significance testing (WLCX), discriminability and redundancy testing (mRMR), and pure 
accuracy testing (ROC).

Sequential forward selection.  SFS iteratively adds features to the selected set, starting with an empty set. In every 
iteration, the feature which maximizes the objective function when added to the already selected set is added to 
the selected set. Our objective function was AUC in 10 iterations of 3-fold cross validation with a quadratic dis-
criminant analysis (QDA) classifier.

Wilcoxon rank-sum.  The Wilcoxon rank-sum test seeks to evaluate the difference in medians between two dis-
tributions. Given a set of feature values from studies, the first step in scoring the feature is to rank the values from 
least to greatest. Using the ranks and labels of each study (cancer/non-cancer or Gleason 3/Gleason 4), the sum of 
the ranks of studies from each class is computed. Selected features were those which had the largest difference in 
the sum of ranks between the two classes.

Maximum relevance minimum redundancy.  mRMR considers both discriminability and independence when 
selecting features. Beginning from an empty set, the feature with the maximum mutual information with the 
target class and minimum mutual information with already selected features is added to the selected set.

Empirical receiver operating characteristic curve.  The ROC method constructs a classifier for each feature-based 
only on a feature value threshold. By sweeping the threshold from the minimum to maximum feature value and 
using the class labels, a receiver operating characteristic curve can be constructed. If the distributions of a fea-
ture’s values in the two classes have a low degree of overlap, that feature will have a high AUC. The features with 
the greatest AUC were selected. This approach does not correct for features that might be highly correlated with 
respect to each other.

Novel stability-informed feature selection.  For each of the afore-mentioned feature selection methods 
we sought to evaluate whether the inclusion of stability would be non-inferior to and potentially improve classi-
fication performance over not including stability, for each of two prostate cancer diagnosis tasks considered in 
this study. When selecting features for stability as well as discriminability, we excluded from consideration every 
feature which exhibited a PI above a predetermined threshold (PI = 0.25) in the training set. A PI of 0.25 indicates 
that a feature was significantly different between non-cancerous regions of the sites in the training set in 25% of 
comparisons. We then applied the four different feature selection methods (SFS, WLCX, mRMR, ROC) to select 
features from amongst the set of features with a PI < 0.25. This is the discriminability-and-stability-selected fea-
ture selection method θFSsd, SFS WLCX mRMR ROC{ , , , }θ ∈ . To evaluate the added value of inclusion of the 
stability measure, we also used evaluated the four original feature selection methods without the inclusion of the 
stability constraint on the entire set of 242 features. These approaches were designated as FSd.

To evaluate θFSsd we performed hold-one-site-out classification in which three sites were used to train a model 
which was then tested on the hold out site. Feature PI was calculated across the non-cancerous regions of the three 
site cohorts of the training set. Feature discriminability was calculated on all patients in the training set. Using the 
top 5 features, four classifiers, LDA, QDA, support vector machine (SVM) and random forest (RF) were trained on 
the training set and applied to the images from the hold out site. Classifiers were selected to span from 
low-complexity purely linear (LDA) to high-complexity non-linear (RF) with QDA and SVM falling between those 
two extremes. The model resulting from a combination of a feature selection method and a classifier is expressed as 

θ κFSsd
, , θ ∈ SFS WLCX mRMR ROC{ , , , }, LDA QDA SVM RF{ , , , }κ ∈  for discriminability-and-stability selected 

model and FSd
,θ κ for discriminability-selected models.
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Performance measures.  The two metrics we employed to evaluate the features were PI and AUC, both of 
which range from 0 to 1. Since PI measures feature instability, a value of 0 corresponds to an ideal feature which 
is never affected by site variation and a value of 1 corresponds to a feature which is never the same between sites. 
AUC describes the performance of a classifier in terms of its ratio of true positives to false positives at every 
classification-confidence threshold. An AUC of 0.5 is equal to guessing, where a true positive is just as likely as a 
false positive, and an AUC of 1 is an ideal classifier which classified every input correctly.

The ideal feature would have a PI of 0 and an AUC of 1, meaning it would never vary between sites and would 
perfectly separate the two classes of interest. The best features are those which occupy the low-PI, high-AUC 
space while the worst features are found in the high-PI, low-AUC space.

Experiment 1: Cancerous vs. non-cancerous region classification.  Our first experiment was to iden-
tify stable and discriminating features and to evaluate whether FS SFS WLCX mRMR ROC{ , , , }sdθ ∈θ  might allow 
for improvement of cross-site classification performance in the context of a cancer detection problem. In the 
training set, the non-cancerous regions were used to calculate feature instability and feature discriminability, 
which in turn was based on the difference between cancerous and non-cancerous regions.

Experiment 2: Gleason 3 vs. Gleason 4 region classification.  Our second experiment sought to iden-
tify stable and accurate features and use FSsd

θ  in classifying homogeneous Gleason 3 and Gleason 4 regions. 
Homogeneous regions were identified as those that comprised no less than 95% pure Gleason grade 3 or 4 pat-
terns. The total of 229 homogeneous Gleason 3 or Gleason 4 regions were drawn from 157 patients. The 55 
patients without a homogeneous region of either type were not used for calculating feature discriminability. 
Non-cancerous regions from all patients were used to calculate feature instability. The non-cancerous regions 
were used to calculate instability in both experiments since those regions were both numerous and unlikely to be 
affected by other factors such as tumor grade.

Experiment 3: Color normalization.  Our third experiment attempted to evaluate whether color normali-
zation could sufficiently reconcile the site-specific variations induced by different laboratories and institutions. In 
other words the goal was to evaluate whether color normalization by itself could potentially obviate the need for 
considerations of feature stability. The effect of color normalization was evaluated by comparing feature PI values 
before and after normalization. Our chosen method was that of Macenko et al.11. In this method, the optical den-
sity of every pixel is identified. Background pixels, which were pixels with an optical density less than 0.15, were 
removed and this optical density matrix (OD) was then factored into its components V and S with non-negative 
matrix factorization, such that OD = VS. The singular value decomposition (SVD) of the (V, S) points was found 
and the angles between each point and the first SVD direction was calculated. The 1st and 99th percentiles of 
these angles represented the ideal stain vectors. Color deconvolution was performed on the RGB image with the 
two ideal stain vectors to isolate each stain in the image. Pixels were assigned to the hematoxylin or eosin class 
based on which stain intensity was higher in the pixel. The intensity histograms of each stain were then normal-
ized to a template and the deconvolved images were transformed back into an RGB image. Glands were then 
segmented on the normalized images, and feature instability was recalculated from the non-cancerous regions. A 
reduction in a feature’s PI following color normalization would suggest that color normalization had ameliorated 
the variations in image appearance across sites, that is the original image from which the feature was derived

Results
Results of Experiment 1: Cancer vs. non-cancer.  Figure 3 shows the PI-AUC space for 242 features for 
N = 212 patients from all four sites for cancerous vs. non-cancerous region classification. The results shown in 
Fig. 3 were not used in selecting features as Fig. 3 includes all the data, without a training/testing split. Instead, 
Fig. 3 provides insight into where various features and families lie in the PI-AUC space. The best performing 
features were all shape features while the most unstable and least discriminating features were all Haralick and 
global graph features. There was no apparent correlation between feature AUC and instability either in the whole 
feature set or in any feature family.

Many features have an AUC close to 1. Even so, there is great variation both between and within the feature 
families in terms of feature performance (see Table 2). The ROIs shown in Table 2 indicate that features found in 
similar areas of the PI-AUC plot appear to be correlated, suggesting that the AUC-stability trends are related for 
features within a specific feature family.

In cross-site hold-one-site-out classification, FSsd performed nearly as well as FSd, with both having an average 
AUC of 0.98. Table 3 shows detailed results of the performance of each feature selection scheme and classifier.

Results of Experiment 2: Gleason 3 vs. Gleason 4 classification.  Figure 4 shows the PI-AUC space 
for 242 features for N = 157 patients from all four sites for Gleason 3 vs. Gleason 4 classification. As in Fig. 3, 
instability was calculated across the 188 non-cancerous regions. Between Figs 3 and 4, features have the same PI 
but different AUC values. Unlike for Experiment 1, the most stable features were not always the most accurate. 
The best and worst features are shown in Table 4.

In terms of classification, FSsd outperformed FSd in 13 of 16 cases, (Table 5). Mean AUC was 0.74 ± 0.08 with 
θ κFSsd

,  and . ± .0 71 0 10 with FSd
,θ κ SFS WLCX mRMR ROC LDA QDA SVM RF{ , , , }, { , , , }θ κ∈ ∈ . The average 

AUC improvement of FSsd over FSd was 4.38%. FSsd was not universally superior to FSd, though overall every 
classifier and every feature selection method showed a net benefit from including stability. In the 81% of cases 
where FSsd improved AUC over FSd it did so by an average of 5.92%. SFS and WLCX were the feature selection 
schemes which benefited most with FSsd, with average gains of 9.64% and 4.99% respectively. QDA and SVM were 
the classifiers which benefited most from FSsd, with gains of 6.05% and 5.88% respectively.
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Results of Experiment 3: Color normalization.  Color normalization increased feature instability, 
though feature families were affected to varying degrees as illustrated in Fig. 5. Feature instability pre- and 
post-normalization was calculated on all 188 non-cancerous regions from all four sites. Gland orientation disor-
der features showed the greatest increase in instability, with normalization raising average PI from . ± .0 36 0 15 to 
0 54 0 19. ± .  while global graph features were relatively unaffected, though it is worth noting that these features 
were unstable to begin with.

The 10 features which had the largest increases and decreases in their PI values on account of color normali-
zation are shown in Table 6. Several highly accurate and highly stable shape features appeared to become more 
unstable by color normalization. The gland shape and disorder features showed a large increase in median PI 
following normalization Overall color normalization was not found to be effective in reducing feature instability. 
Feature instability across the 188 non-cancerous regions from all four sites was . ± .0 34 0 15 pre-normalization 
and 0 43 0 18. ± .  post-normalization, a 26% increase.

Discussion
The goal of this study was to determine if computer extracted histomorphometric features could be identified 
which were both highly accurate and highly stable for the problems of computer assisted prostate cancer detec-
tion and grading on digitized histopathology images of surgically resected specimens. To this end, we evaluated 
individual feature performance based on a measure of instability, preparation-induced instability score, and a 
measure of discriminability, AUC. We also investigated whether stability information could be used to improve 
the predictive performance of digital pathology classifiers for the problems of cancer detection and grading across 
different sites. Features which were found to be accurate and stable on the training set were used to build a model 
which was tested on the held out set. Lastly, we compared feature instability pre- and post-normalization. A 
reduction in feature instability post-normalization would imply that differences between sites manifest primarily 
as differences in color. Conversely, a lack of such a reduction would suggest that site-specific induced image vari-
ations were not fixable solely by color normalization alone.

In this work we employed the stability metric introduced by us in Leo et al.19 to evaluate feature robustness 
across different sites. Specifically we evaluated preparation-induced instability score, a measure of the observed 
difference between feature value distributions between sites, and employed it for improving cross-site classifi-
cation performance in cancer detection and grading tasks. In our previous study19 we showed that instability in 
histomorphometric features between sites is much higher than what would be expected without inter-site effects, 
even when accounting for differences in patient population. However, that study did not specifically invoke the 
concept of stability for feature selection or for subsequent feature-based classification. In this study we used 
feature stability to identify stable features and select from amongst those the most stable features which would 
provide consistently higher predictive performance across multiple different sites.

Our first experiment, on cancerous vs. non-cancerous region classification found that the most accurate and 
stable features were all from the gland shape family, that Haralick features were generally unstable, and that 
stability-informed selection was not inferior to discriminability-only selection. The instability of the Haralick fea-
ture may owe to the large effect of sample preparation, color, and contrast on image texture. A feature’s instability 
score may be a reflection of how much a small change in segmentation affects the feature’s value. Such variation in 

Figure 3.  (a) PI-AUC plot for 242 features for 212 studies across four sites for cancer vs. non-cancer 
classification. Each feature is represented by a dot, color coded according to feature family. On the X-axis is 
the PI value for each feature in the non-cancerous regions of the four sites. On the Y-axis is the feature’s AUC 
averaged across 100 iterations of 3-fold cross validation across all patients from all four sites. Shown are 242 
features from the global graph (blue), shape (red), disorder (green), sub-graph (yellow), and Haralick (purple) 
feature families. The optimal high-AUC, low-PI space is dominated by shape features while the low-AUC, 
high-PI space comprises Haralick and global graph features. (b) ROIs corresponding to features occupying 
different regions in the PI-AUC space, see Table 2.
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segmentation performance may be due to site-induced variation in image color, contrast, and sharpness as well as 
tissue preservation quality and appearance. In the arrangement-variant features (e.g. features of orientation dis-
order or architecture), the addition or removal of just a few glands in certain locations may cause a large variation 
in the feature value as graphs shift. For arrangement-invariant features (e.g. those based on average gland shape), 
where every gland is compared with its neighbors, an added or removed gland can also affect the feature values 
of neighboring glands. Location dependence and neighbor dependence mean that small differences in segmenta-
tion, such as those produced by site variation, have a large effect on the value of these features.

Several other studies have produced high accuracies in cancer detection using features we found to be unsta-
ble. In Lee et al.20, gland orientation disorder features outperformed gland global graph, gland shape, and image 
texture features in both cancer detection and biochemical recurrence prediction in cross validation on a single 
site. In our study, some disorder features were highly accurate, with single-feature AUCs of 0.90, but many shape 
features were more accurate. Other studies have found Haralick and other texture features to be predictive in pros-
tate cancer detection20,26,33,34, breast tissue cancer detection and grading24 and lung cancer detection35. Though 
these studies did not perform cross-site independent validation, our findings that gland disorder and Haralick 
features were highly unstable suggests that these features may not generalize well in cross-site tasks. It could be 
beneficial for future studies to perform cross-site validation as feature instability may mean that single-site results 
are not a good predictor of cross-site results.

1: High AUC (>0.94), low PI (<0.1) 2: Low AUC (<0.67), high PI (>0.59)

(S) Mean distance ratio (G) Voronoi area std. deviation

(S) Mean smoothness (G) Voronoi chord std. deviation

(S) Mean invariant moment 1 (G) Delaunay side length min/max

(S) Mean invariant moment 2 (G) Delaunay triangle area min/max

(S) Mean invariant moment 4 (G) Delaunay triangle area std. deviation

(S) Std. deviation distance ratio (G) Voronoi polygon area

(S) Std. deviation smoothness (SG) Number of end nodes

(S) Std. deviation Fourier descriptor 1 (H) Mean average intensity

(S) Std. deviation Fourier descriptor 2 (H) Mean entropy

(S) Std. deviation Fourier descriptor 3 (H) Std. deviation entropy

(S) Std. deviation Fourier descriptor 4 (H) Mean information measure 1

(S) Std. deviation Fourier descriptor 5 4: High AUC (>0.82), low PI (<0.05) graph

(S) Std. deviation Fourier descriptor 8 (G) Std. deviation neighbors in 40 micron radius

(S) Mean invariant moment 6 (G) Std. deviation neighbors in 60 micron radius

3: Low AUC (<0.5), low PI (<0.1) shape (G) Std. deviation neighbors in 80 micron radius

(S) Mean fractal dimension (G) Std. deviation neighbors in 100 micron radius

(S) Mean Fourier descriptor 2 6: High AUC (>0.85) disorder

(S) Mean Fourier descriptor 5 (D) Std. deviation tensor contrast energy

(S) Median invariant moment 7 (D) Mean tensor contrast inverse moment

(S) Median fractal dimension (D) Std. deviation tensor contrast inverse moment

(S) Median Fourier descriptor 1 (D) Mean tensor contrast average

(S) Median Fourier descriptor 2 (D) Std. deviation tensor contrast average

(S) Min/max invariant moment 6 (D) Std. deviation tensor contrast variance

(S) Min/max invariant moment 7 (D) Mean tensor contrast entropy

(S) Min/max Fourier descriptor 7 (D) Mean tensor contrast entropy

(S) Min/max Fourier descriptor 9 (D) Std. deviation tensor intensity average

5: Mid AUC (<0.64, >0.56) disorder (D) Mean tensor contrast entropy

(D) Range tensor contrast energy (D) Std. deviation tensor intensity variance

(D) Range tensor contrast inverse moment (D) Mean tensor intensity entropy

(D) Range tensor contrast variance (D) Std. deviation tensor intensity entropy

(D) Range tensor contrast entropy (D) Mean tensor entropy

(D) Range tensor intensity average (D) Mean tensor energy

(D) Range tensor intensity variance (D) Std. deviation tensor energy

(D) Range tensor intensity entropy (D) Mean tensor correlation

(D) Range tensor entropy (D) Std. deviation tensor correlation

(D) Range tensor correlation (D) Mean tensor information measure 2

(D) Range tensor information measure 1 (D) Std. deviation tensor information measure 2

Table 2.  70 features found in ROIs of the PI-AUC space shown in Fig. 3(b). Feature PI and AUC values were 
found by using all 212 patients from all four sites. PI is calculated across non-cancerous regions and AUC is 
the mean from 100 iterations of 3-fold cross validation for the cancer vs. non-cancer classification task. Cross 
validation was performed independently for each site.
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The second experiment, on Gleason 3 vs. Gleason 4 classification, found that the most accurate and stable 
features were a mix of shape and sub-graph features, that the most unstable and inaccurate features were Haralick 
and global graph, and that stability-informed selection improved classification AUC in 13 of 16 cases. Our goal 
was not to create the best possible automated Gleason grade classifier. Instead, our goal was to attempt to show-
case that considering stability in feature selection can improve cross-site classifier robustness across a range of 
feature selection methods and classifiers. While other studies in this area have reported accuracies above 0.80, 
they differed from our study in the use of nuclei features26, manually segmented glands36,37, biopsy samples38, or 
high grade vs. low grade classification34. Additionally, none of these studies evaluated studies from across multiple 
different sites. These studies found that texture26,34,38 and shape36–38 features were predictive of high versus low 
Gleason grade. We found shape features and some texture features to be predictive, though while shape features 
were highly stable, texture features were highly unstable. To our knowledge, no other study has used such a large 
dataset to explicitly evaluate cross-site classification of Gleason 3 and Gleason 4 regions. Gleason 3 and 4 repre-
sent the most commonly occurring low and intermediate prostate cancer patterns found39 and also the source of 
most of the inter-reader variability when it comes to grading prostate cancer pathology specimens40.

SFS WLCX

FSsd FSd % Improvement FSsd FSd % Improvement

LDA 0.99 (0.01) 0.99 (0.01) −0.15 0.96 (0.04) 0.97 (0.04) −0.22

QDA 0.98 (0.02) 0.99 (0.02) −0.11 0.95 (0.04) 0.96 (0.05) −1.18

SVM 0.98 (0.01) 0.99 (0.01) −0.68 0.96 (0.03) 0.97 (0.04) −0.36

RF 0.98 (0.02) 0.99 (0.01) −0.84 0.95 (0.03) 0.96 (0.03) −1.63

mRMR ROC

FSsd FSd % Improvement FSsd FSd % Improvement

LDA 0.99 (0.01) 0.99 (0.01) −0.37 0.99 (0.01) 0.99 (0.01) 0.00

QDA 0.96 (0.04) 0.98 (0.02) −2.32 0.98 (0.03) 0.98 (0.05) 0.00

SVM 0.97 (0.02) 0.99 (0.01) −1.50 0.98 (0.02) 0.98 (0.01) −0.03

RF 0.99 (0.01) 0.99 (0.01) 0.16 0.98 (0.00) 0.99 (0.00) −0.66

Table 3.  Mean (standard deviation) of AUC for the cancer vs. non-cancer classification problem across the four 
hold-one-site-out folds with θ κFSsd

,  and θ κFSd
,  θ ∈ SFS WLCX mRMR ROC{ , , , }, LDA QDA SVM RF{ , , , }κ ∈ . For 

each classifier model, the top 5 most stable and discriminating or most discriminating features were employed 
for constructing FSsd and FSd respectively. For every feature selection-classification pair four models were 
trained and validated, one model for every possible combination of three of the four sites. The three chosen sites 
were combined and used for training and the held out site was used for validation. The improvement between 
FSsd and FSd is shown. A positive improvement indicates that FSsd outperformed FSd. Note that for this particular 
problem, the prediction AUC for all models were very high, nearly perfect in most cases.

Figure 4.  (a) PI-AUC plot for 242 features for 157 studies across four sites for Gleason 3 vs. Gleason 4 
classification. Each feature is represented by a dot, color coded according to feature family. On the X-axis is 
the PI value for each feature in the non-cancerous regions of the four sites. On the Y-axis is the feature’s AUC 
averaged across 100 iterations of 3-fold cross validation across all patients from all four sites. Shown are 242 
features from the global graph (blue), shape (red), disorder (green), sub-graph (yellow), and Haralick (purple) 
feature families. The optimal high-AUC, low-PI space comprises shape and sub-graph features while the low-
AUC, high-PI space comprises chiefly Haralick and global graph features (b) ROIs corresponding to features 
occupying different regions in the PI-AUC space, see Table 4.
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Interestingly, when invoking stability constrained feature selection, the resulting features tended to outper-
form the non-stability informed methods despite employing far fewer features. As was shown in Figs 3 and 4, 
many highly discriminating features were excluded based off the stability constraint. Despite the limited feature 
set, in Gleason grading the stability-informed method outperformed the discriminability-alone method 81% of 
the time with an average AUC improvement of 4.38% when the stability criterion was also invoked.

Our third experiment found that color normalization did not reduce overall feature instability, suggesting 
that differences between sites are not contained to variation in color. Our results are consistent with Leo et al.19 
which used a different color normalization scheme and found that normalization did not resolve feature insta-
bility. There is precedent for worse standardization following color normalization. Janowczyk et al.9 compared 
nuclei segmentation performance under six different color normalization schemes, including the method used 
in this study. That study found that segmentation was not always improved by normalization and that image con-
tent affected which normalization method performed best. These findings, along with our results, suggest color 

1: High AUC (>0.6), low PI (<0.1) 2: Low AUC (<0.55), high PI (>0.66)

(S) Mean invariant moment 1 (G) Voronoi perimeter average

(S) Std. deviation Fourier descriptor 2 (G) Delaunay side length std. deviation

(S) Std. deviation Fourier descriptor 3 (G) Delaunay side length average

(S) Median invariant moment 1 (G) Delaunay triangle area std. deviation

(S) Median invariant moment 6 (G) Delaunay triangle area average

(S) Median fractal dimension (G) Delaunay triangle area disorder

(SG) Mean of edge length 4: High AUC (>0.6), medium PI (>0.1)

(SG) Skewness of edge length (SG) Average eccentricity

(SG) Kurtosis of edge length (SG) Diameter

3: High AUC (>0.55) disorder (SG) Radius

(D) Mean tensor contrast inverse moment (SG) Average eccentricity 90th percentile

(D) Mean tensor contrast entropy (SG) Diameter 90th percentile

(D) Mean tensor intensity entropy (SG) Radius 90th percentile

(D) Mean tensor entropy (SG) Average path length

(D) Mean tensor energy (SG) Clustering coefficient C

(D) Mean tensor correlation (SG) Clustering coefficient D

(D) Mean tensor information measure 2 (SG) Clustering coefficient E

Table 4.  32 features found in ROIs of the PI-AUC space shown in Fig. 4(b). Feature PI values were found by 
using all 188 non-cancerous regions from all four sites. PI is calculated across non-cancerous regions and AUC 
is the mean from 100 iterations of 3-fold cross validation for the Gleason 3 vs. Gleason 4 classification task. 
Cross validation was performed independently for each site. The family of each feature is indicated as graph (G), 
shape (S), disorder (D), sub-graph (SG) or Haralick (H).

SFS WLCX

FSsd FSd % Improvement FSsd FSd % Improvement

LDA 0.75 (0.07) 0.67 (0.06) 11.71 0.74 (0.05) 0.71 (0.10) 4.28

QDA 0.77 (0.04) 0.69 (0.09) 11.58 0.70 (0.06) 0.69 (0.06) 1.91

SVM 0.71 (0.08) 0.65 (0.10) 8.99 0.71 (0.05) 0.67 (0.09) 6.93

RF 0.72 (0.06) 0.68 (0.10) 6.29 0.76 (0.04) 0.71 (0.07) 6.84

mRMR ROC

FSsd FSd % Improvement FSsd FSd % Improvement

LDA 0.71 (0.03) 0.71 (0.02) −0.66 0.70 (0.08) 0.70 (0.05) −0.15

QDA 0.66 (0.06) 0.60 (0.08) 8.76 0.71 (0.05) 0.69 (0.07) 1.96

SVM 0.64 (0.06) 0.60 (0.08) 6.30 0.72 (0.06) 0.71 (0.08) 1.31

RF 0.68 (0.04) 0.72 (0.06) −6.02 0.74 (0.03) 0.74 (0.07) 0.04

Table 5.  Mean (standard deviation) of AUC for the Gleason 3 vs. Gleason 4 classification problem across the four 
hold-one-site-out folds with θ κFSsd

,  and θ κFSd
,  θ ∈ SFS WLCX mRMR ROC{ , , , }, LDA QDA SVM RF{ , , , }κ ∈ . For 

each classifier model, the top 5 most stable and discriminating or most discriminating features were employed for 
constructing FSsd and FSd respectively. For every feature selection-classification pair four models were trained and 
validated, one model for every possible combination of three of the four sites. The three chosen sites were 
combined and used for training and the held out site was used for validation. The improvement between FSsd and 
FSd is shown. A positive improvement indicates that FSsd outperformed FSd. Improvement in FSsd over FSd 
occurred in 13 of the 16 cases, with the average improvement in those 13 scenarios being 5.92% compared to 
2.28% when FSd was superior compared to FSsd.
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normalization may not necessarily resolve the problems of feature stability on account of variations induced by 
different sites and labs. These findings may be specific to the color normalization method chosen, it is possible 
that other color normalization methods would have produced different results.

The lack of stability improvement following color normalization suggests that fixation, preservation, and 
mounting may cause differences in morphology that extend beyond inducing just differences in color appearance. 
A site that injects formalin into tissue immediately after surgery will produce tissue with less autolysis than a site 
that just places the tissue in a formalin bath, a difference which may affect the quantitative descriptors extracted 
from that tissue. Immunohistochemical expression and quality of tissue DNA have been shown to be affected by 
formalin injection and excessively long fixation time41. Though these factors have not been shown to alter the 
visual appearance of the tissue in the judgment of human observers, QH methods may be more affected by these 
subtle changes.

Limitations of this study include that we examined only one gland segmentation method, used only 
two types of features, gland morphology and Haralick texture, had one model training/validation division, 
hold-one-site-out, did not directly integrate stability into feature selection, and used only one color normaliza-
tion method. Because our features were extracted only from gland lumen, regions of the Gleason 4 tissue with 
fused glands without lumen were not fully characterized by our features. These regions contributed to feature 
values only through the absence of lumen and the resulting effects on features of gland arrangement and density. 

Figure 5.  (a) Boxplots of mean red, green, and blue intensities in 188 non-cancerous regions pre- (left boxes) 
and post- (right boxes) color normalization. While our chosen normalization method works in the stain vector 
space, not in the RGB space, the range and variation of mean color intensities decreased after normalization, 
especially in the green channel. This suggests that normalization has reduced the variation in color across 
the images. (b) Feature PI by family before (lighter bars) and after (darker bars) color normalization. PI was 
measured across the 188 non-cancerous regions of the four sites before and after those regions were normalized. 
Color normalization increased instability in every feature family with an especially strong effect on the disorder 
features. These results suggest that color normalization is inadequate to resolve the problem of feature instability 
from site variation and may even worsen instability.

Stabilized by normalization Destabilized by normalization

Feature PI change Feature PI change

(S) Std. deviation distance ratio −0.59 (S) Min/max Fourier descriptor 9 0.58

(S) Std. deviation area ratio −0.59 (S) Median perimeter ratio 0.56

(G) Voronoi chord std. deviation −0.55 (S) Median Fourier descriptor 8 0.54

(G) Voronoi perimeter std. deviation −0.54 (S) Median invariant moment 1 0.49

(S) Std. deviation of std. deviation of distance −0.54 (S) Min/max Fourier descriptor 1 0.46

(G) Voronoi area min/max −0.46 (D) Mean tensor contrast average 0.45

(G) Voronoi area disorder −0.45 (H) Mean energy 0.44

(D) Range of tensor information measure 1 −0.43 (S) Median Fourier descriptor 7 0.44

(S) Std. deviation of variance of distance −0.40 (S) Median invariant moment 2 0.43

(G) Voronoi chord disorder −0.37 (S) Mean invariant moment 1 0.42

Table 6.  20 features which showed an improvement (left column) or worsening (right column) in instability 
following color normalization. N = 188 non-cancerous regions from 188 patients across all four sites were color 
normalized to a template and instability across the four sites was calculated before and after normalization. 
The 10 features with the largest absolute PI change pre- and post-normalization in each direction are shown. A 
negative PI change signifies a reduction in feature instability. The family of each feature is listed as graph (G), 
shape (S), disorder (D), sub-graph (SG), and Haralick (H).
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Additionally, while our annotations were as precise as possible, any Gleason 3 glands in the Gleason 4 regions 
would contribute to the feature values of those regions. Methods for characterizing glands that do not rely on 
luminal analysis may better capture the morphology of Gleason 4 regions. Future work in this area will use other 
methods of incorporating stability into feature selection in ways beyond a simple threshold and examining the 
utility of stability information for other classification tasks in other problems in digital pathology.

In this study we demonstrated a novel method for identifying features which are both discriminating and 
stable across site variation. We then showed that our method is useful for problems of cancer detection and 
grading and can improve model performance on independent validation sets. Feature stability is a critical and 
under-investigated component in the development of computer aided diagnosis systems. By leveraging stability 
information from multiple sites and incorporating that information into feature selection it may be possible to 
mitigate the effects of inter-site variation. Given the difficulty in standardizing laboratory procedures and equip-
ment and the lack of success of color normalization methods in reducing feature instability in this study, clinically 
useful classifiers may need to consider feature instability in the model training process.
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