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Profilin-1 (PFN1) is a 140-amino-acid protein with two distinct binding sites——one for actin and
one for poly-L-proline (PLP). The best-described function of PFN1 is to catalyze actin elongation
and polymerization. Thus far, eight DNA mutations in the PFN1 gene encoding the PFN1 protein
. are associated with human amyotrophic lateral sclerosis (ALS). We and others recently showed that
. two of these mutations (Gly118Val or G118V and Cys71Gly or C71G) cause ALS in rodents. In vitro
. studies suggested that Met114Thr and Thrl09Met cause the protein to behave abnormally and
cause neurotoxicity. The mechanism by which a single amino acid change in human PFN1 causes the
degeneration of motor neurons is not known. In this study, we investigated the structural perturbations
of PFN1 caused by each ALS-associated mutation. We used molecular dynamics simulations to assess
how these mutations alter the secondary and tertiary structures of human PFN1. Herein, we present
. ourinsilico data and analysis on the effect of G118V and T109M mutations on PFN1 and its interactions
. with actin and PLP. The substitution of valine for glycine reduces the conformational flexibility of the
. loop region between the a-helix and 3-strand and enhances the hydrophobicity of the region. Our in
. silico analysis of TI09M indicates that this mutation alters the shape of the PLP-binding site and reduces
- the flexibility of this site. Simulation studies of PFN1 in its wild type (WT) and mutant forms (both
G118V and T1L09M mutants) revealed differential fluctuation patterns and the formation of salt bridges
and hydrogen bonds between critical residues that may shed light on differences between WT and
mutant PFN1. In particular, we hypothesize that the flexibility of the actin- and PLP-binding sites in WT
. PFN1 may allow the protein to adopt slightly different conformations in its free and bound forms. These
- findings provide new insights into how each of these mutations in PFN1 might increase its propensity
. for misfolding and aggregation, leading to its dysfunction.

: Amyotrophic lateral sclerosis (ALS) is a progressive and fatal degenerative disorder of motor neurons. Studies
. of mouse models carrying ALS mutations (e.g., SOD1, TARDP-43, and FUS) have significantly expanded our
. understanding of ALS over the last 20 years. Multiple cellular pathologies (e.g., aggregation of mutant SOD1,
: TDP43, FUS, and ubiqulin 2; mitochondrial dysfunction; neuroinflammation; and oxidative damage) lead to the
: progressive loss of motor neurons, resulting in the paralysis and death of voluntary muscles. Available preclinical
. and clinical models have not led to any interventions that block motor-neuron death or slow the progression of
© ALS. Further studies are needed to identify the mechanism by which these mutations cause disease and to expe-
. dite the development of effective treatments for people with ALS.
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The new mutant PFN1 mouse models for ALS that we have created based on familial ALS (fALS) linked PFN1
is an indispensable tool for studying the gene-specific and ALS disease-specific mechanisms of motor neuron
degeneration'. Eight mutations in PFNI were found to be associated with fALS!~. All of the PENI mutations,
except E117G, are specific to a subset of fALS patients®, as are the SOD1 and TDP-43 mutations. Interestingly,
PENI mutations are also found in cases of sporadic ALS (sALS) (e.g., a novel nonsynonymous p.R136W muta-
tion identified in a Chinese female with early-onset sALS)°. Mutations in PFNI represent a novel mechanism
underlying ALS, evidenced by the linkage of common polymorphisms in PFN1, tubulin A4A, dynactin, periph-
erin, and neurofilament genes to ALS!*"'%. Importantly, the discovery of PFN1 mutations in ALS*? has led to the
development of PFN1 mouse models of the disease'. These models prove that mutations in PFN1 associated with
ALS are causal for the disease and provide an extraordinary opportunity to study how PFNI mutations confer
neurotoxicity.

Here, we examined in detail two of the eight PENI mutations associated with ALS (T109M and G118V), and
our study sheds light on how these mutations cause ALS and whether there are two different mechanisms at play.
The crystal structure of bovine PFN1 in complex with actin and poly-L-proline (PLP), shows that the G118V
mutation is located within the actin-binding site, and the T109M mutation near the PLP-binding site. We postu-
late that the mutation in the actin-binding motif affects the interaction between profilin-1 and actin and dysreg-
ulates the dynamics of actin polymerization. On the other hand, we predict that mutations in the PLP-binding
motif affect the interaction between PEN1 and PLP and many other ligands binding at this site!>!7.

PENL1 is a key enzyme in actin polymerization and its dynamics are critically important for all basic cellular
activities. We are interested in understanding the structural changes in PEN1 that are caused by ALS-associated
mutations. In neurons, proper PFNI function is essential during development and is implicated in the forma-
tion and maintenance of the neuronal cytoskeleton, growth-cone formation, synaptogenesis, synaptic activities,
shape and morphological dynamics, and the growth of dendrites and axons. Additionally, the actin-binding and
PLP-binding motifs are critical for the multiple functions of PFN1, including actin elongation, polymerization,
and dynamics, as well as for interactions with diverse ligands and binding partners (over 50 of which have been
described)!>""7. Although PFN1 was discovered 30 years ago and has been studied extensively, its potential role in
motor neuron disease generated renewed interest in its biology. We hypothesize that the ALS-linked mutations in
PFEN1 disrupt de novo structural dynamics for PEN1 tertiary and quaternary assembly. This would disrupt actin
polymerization and other de novo functions of PFN1, which may have catastrophic effects on the central nervous
system or peripheral neurons and glia.

To explore this hypothesis and to understand the structural, folding, and binding perturbations that may
account for PFN1 neurotoxicity, as well as to pinpoint the biophysical changes caused by mutations in the PFNI
gene, we have analyzed the structure of profilin-1 mutants in silico. We have investigated the biophysical prop-
erties of the two mutants, G118V and T109M, using in silico techniques, as these mutants are implicated in
causing ALS based on clinical and pathologic evidence and experiments employing cellular and mouse models
of ALS">>18-20 'We postulate that these mutations may cause neurotoxicity via two distinct pathways, changes
in actin dynamics (G- to F-actin polymerization) and cellular signaling pathways (e.g., PIP2 pathway), via
PLP-binding and interactions that require further study. We and others have recently provided evidence in vivo
and in vitro that the G118V mutation disrupts actin binding and reduces the F-actin to G-actin ratio, suggest-
ing that impairment of actin polymerization and of other de novo functions of PFNI1 is the basis for neuronal
death?>. Additionally, more recent reports from in vitro studies provide evidence that the TI09M mutation
disrupts PLP binding®.

In this study, we have generated and analyzed new data on the alteration and perturbation of the 3-D struc-
ture of PFN1 protein caused by G118V and T109M mutations to unravel how a single amino acid substitution
affects the tertiary structure and properties of PFN1. The G118V mutation reduces the flexibility and increases
the hydrophobicity of the polypeptide chain. We reason that these changes are responsible for the misfolding and
aggregation of mutant PFN1 and the basis for ultimately blunting actin polymerization. The T109M mutation
appears to distort the PLP-binding site, making it sterically unfavorable for PLP binding. For these studies, we
utilized the crystal structure of the ternary complex of PFN1 in complex with actin and PLP (PDB code: 2PAV)
www.rcsb.org/structure/2pav?!. PEN1 binding to actin and PLP plays an important role in its activity. Profilin-
actin complex formation is essential for maintaining sufficient levels of actin monomer for polymerization.
Recruitment of the profilin-actin complex for polymerization is accomplished through the binding of the last
poly-Pro segment of vasodilator-stimulated phosphoprotein (VASP) to the profilin-actin complex!”?'-2*, Thus,
impairment of either of these interactions would disrupt the polymerization and growth of the actin filament.

Results

In silico study of structural changes due to mutations in PFN1. We simulated and analyzed the
structural changes caused by ALS-associated missense mutations in PFNI to gain insights into how the altered
properties of PEN1 protein might compromise neuronal function and/or survival. A single amino-acid substitu-
tion, arising from a missense mutation, can alter the local environment and affect intra-molecular interactions
of the residues resulting in conformational changes that are usually local, but that can also be allosteric (affecting
remote areas of the molecule). A missense mutation can perturb the molecular structure rather subtly, yet disrupt
binding to an associated protein or other ligand. The goal of this study was to simulate and analyze the muta-
tion-induced structural changes and their consequences for diverse interactions.

We began with the previously determined crystal structure of PEN1 complexed with an actin fragment and a
PLP (PDB code: 2PAV)*! (Fig. 1). Using in silico modeling techniques**?*, we derived structural models of the two
mutated PFN1 proteins and predicted the consequences of these mutations (G118V and T109M) on the structure
and function of PFN1 in complex with actin or PLP and in its isolated form.
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Figure 1. Crystal structure of PEN1 complexes with actin and poly-L-proline peptide (PLP) fragment. The
actin-binding site is on the lower part of PEN1 (as shown), while the PLP-binding site is on the top part of PFN1
where PLP is shown in dark blue. PFN1, cyan; PLP, dark blue; and actin, green. The sites of PFN1 mutations
T109 and G118 are indicated.

Glycine 118 to valine mutation. In vivo studies and computer modeling suggest that this mutation likely
decreases the solubility and aggregation of PEN1"'*. Glycine is the smallest nonpolar, hydrophobic amino acid,
with only hydrogen as its R group. Gly118 is located in a loop that connects a 3-strand to the fifth and last a-helix
of the protein (Fig. 1). When PFN1 is co-crystalized with actin, the N-terminus of the helix and adjacent por-
tion of the loop sit in a surface pocket of actin. The crystal structure shows that Gly118 is the first residue of the
segment that directly interacts with actin through a hydrogen bond. We conjectured that replacing glycine with
valine might disrupt interactions with actin. Both valine and glycine are similarly nonpolar amino acids, but
valine carries a larger R group, CH-(CHj;),. We sought to test this hypothesis while also assessing other possible
impacts on structure that might cause misfolding and lead to further anomalies downstream.

Effect of G118V mutation on conformation. The presence of a glycine residue increases the flexibility
of the chain and therefore replacing Gly118 with valine would reduce the flexibility of the loop. A comparison of
the Ramachandran plot for glycine?® with that of for amino acids with side chains shows that the presence of side
chains severely restricted conformational flexibility. Therefore Gly to Val change could induce conformational
changes in the peptide chain and these changes might hinder the binding of PFN1 to actin. Interestingly, the
backbone peptide directly interacts via two hydrogen bonds to the side chain of GIn354 in actin (Fig. 2). The
side-chain nitrogen atom NE2 formed a hydrogen bond with the carbonyl oxygen of Gly118, and the side-chain
oxygen atom OE1 formed a hydrogen bond with the amide nitrogen (N) of His120. The side chain of His120 of
PNF1 also plays a role in binding. It sits in a pocket surrounded by the side chains of actin amino acids Tyr169,
Tyr133, Phe375, and Met355. Even minor changes in the peptide conformation could weaken or eliminate these
packing interactions and hydrogen bonds. To explore the consequences of this mutation on binding, we carried
out a 50-ns molecular dynamic simulation of the PFN1¢!!8V: actin complex (see Methods for details). The result-
ing coordinates showed that the GIn354 side chain of actin moved away from the His120 side chain of PFN1,
eliminating the hydrogen bonding and packing interactions (Fig. 2).

Cumulative changes in hydrophobicity. In addition to the conformational changes described above,
we hypothesized that the G118V mutation increases the local hydrophobicity of the polypeptide, the structural
consequences of which would be amplified by the presence of another valine residue at position 119. We reasoned
that two adjacent hydrophobic residues exposed to the solvent should be thermodynamically unfavorable and
thus increase the propensity for PEN1 to aggregate. Any structural rearrangement that sequesters the valine side
chains in the hydrophobic interior of PFN1 would require significant changes to the backbone conformation that
might themselves preclude interactions with actin or cause misfolding and aggregation of PFN1.
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Figure 2. Effects of the PFN1 G118V mutation on actin binding. (A) Overall view of the interaction between
PFNI (cyan) and actin (green). The fifth helix and the preceding loop are colored blue; V118 is red, and Q354 of
actin is yellow. (B) Hydrogen-bonding between actin Q354 and the G118 to H120 main-chain region of PFN1.
The side chain of Q354 interacts with PFN1, forming two hydrogen bonds with the PFN1 backbone peptide
chain in the loop region shown in (A). The nitrogen atom NE2 forms a hydrogen bond with the carbonyl
oxygen of V118. The side-chain oxygen OE1 forms a hydrogen bond with the amide nitrogen of His120. The

N to O distances are 3.0 A in both cases. In addition, the H120 side chain stacks favorably on the actin surface
(interactions not shown). (C, D) Alterations in conformation and interactions due to G118V mutation. Panel

C portrays the same residues shown in (B) but for the PFN16"8V model. The side chain of Q354 changes its
orientation, eliminating the two hydrogen bonds seen in the crystal structure. Additionally, H120 also reorients
disrupting interactions with action. (D) Superimposed wild type crystal structure (grey) with the G118V model
(cyan) showing the conformational changes in the region.

Figure 3. Structural consequences of the PFN1 T109M mutation. (A) Superimposed crystal structure of wild
type PFN1 and a 200-ns simulation model of PEN1 T109M. Wild type PEN1, grey; T109M mutant, magenta;
and PLP stick model, light blue. The overall structures are very similar. (B) Superposition of the simulated
models of wild type (green) and mutant PFN1 (magenta) showing the consequences of T109M mutation on the
PLP-binding site. PLP stick model, light blue. The side chains of mutated residue T109 and four other residues
exhibiting large displacements (Y7, W32, H134, and Y140) at the PLP-binding site are displayed and labeled.
(C) A maginified view of the changes around the site of mutation. The larger Met109 side-chain forces Trp32
side-chain to swing away to a new location (arched arrow) where it is too close (indicated by the double-headed
arrow) to the original PLP binding location.
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Figure 4. Hydrogen-bond number analysis. (A) The number of hydrogen bonds between PFN1"* and PLP and
(B) between PFN1T1%M and PLP calculated from 50-ns trajectories of the PFN1:PLP complex.

Threonine 109 to methionine mutation. PENI1 also contains a binding site for PLP (Figs 1 and 3). We
inferred from the co-crystalized structure that the T109M mutation could reduce the affinity of PEN1 for PLP.
To assess the impact of the TI09M mutation on PFN1 binding to PLP, we performed molecular-dynamic sim-
ulations. In the simulations, Met109 of PFN1 did not directly contact PLP; however, due to its close proximity
to the PLP-binding site, Met109 impacted other residues that do interact with the ligand and caused structural
perturbations at the binding site (Fig. 3).

To further analyze the implications of the T109M mutation, we used GROMACS simulation software?” to
perform a 50-ns molecular-dynamics simulation with the PEN1T1%M:PLP complex, as well as a similar simulation
with the PFN1WTPLP complex (see Methods for details). When we superimposed the structural models of PEN1
and the T109M mutant, the overall conformation of the mutant was almost identical to the wild type (Fig. 3A).
However, a closer look at the binding site revealed that the mutation displaced the side-chains that form the
PLP-binding surface (Fig. 3B). It was also evident that the large side chains of Tyr7, Trp32, Tyr140, and His134
were shifted in the mutant, changing the shape and nature of the binding site. For example, Trp32 protruded
into the space occupied by the PLP peptide in the wild type (Fig. 3B). There was significant movement at the
C-terminal portion, and Tyr140 was oriented in the opposite direction compared with the wild type (Fig. 3B). The
most critical amino acid shift is Trp32 due to Met109 larger side-chain as we have shown in the magnified inset
(Fig. 3C). These models strongly imply that the PEN1 T109M mutation might significantly reduce the affinity of
PENT1 for PLP or prevent their binding altogether.

Simulations of the PEN1WT:PLP complex generally showed a stable association between the proteins in which
hydrogen-bonding interactions between PFN1 and PLP remained constant during the simulation. However,
hydrogen bonding diminished significantly between the PEN1T!%M:PLP complex, indicating poor or unstable
binding (Fig. 4). The simulation data (50 ns) indicated that the wild type maintained an average of 2.09 hydrogen
bonds across the whole simulation, while the mutant maintained only 1.07 hydrogen bonds (Fig. 4). A longer sim-
ulation of 200 ns shows on average 3.30 hydrogen bonds in wild type and 3.0 in mutant PFN1 (200 ns simulation
H-bond data not shown).

Differential behavior of isolated WT and mutant PFN1. The study of tertiary and quaternary struc-
ture of PFN1 protein (wild type and mutant) in complex with actin and/or PLP requires an extensive set of
molecular dynamics simulations. The simulations on PFN1 protein (wild type and mutant) in association with
actin and/or PLP is considerably more complex than in the uncomplexed state. Additionally, these simulations
are associated with thermal fluctuations that may not be easily distinguished from functionally relevant behav-
iors of a protein in different conditions (different mutations or binding states). To avoid such issues, we set out
to extensively examine the behavior of isolated WT and mutant PFN1. We performed three sets of independent
molecular dynamics simulations for each system including PFN1"T, PEN1T'M, and PFN1¢!8V (three 200-ns
simulations for each system).

Root-mean-square deviation (RMSD) and root-mean-square fluctuation (RMSF) analyses were performed to
systematically compare the overall and residue-based fluctuations of the protein in different conditions (Fig. 5; see
Methods for analysis details). In two of the three PFN1WT simulations (WT-1, WT-2), the PFN1 variants behaved
similarly. WT-3 simulations indicate some additional flexibility for the 35-50 region (Fig. 5G); however we can-
not correlate this with any functional characteristics of the molecule without further future analysis.

The hairpin switch mechanism of WT PFN1. A careful analysis of isolated wild type and mutant PFN1
trajectories revealed two important conformational changes, with potentially significant consequences, observed
in only one of the wild type simulations (Fig. 6). An important observation was the formation of a relatively
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Figure 5. Protein fluctuations during 200 nanosecond simulations of isolated PFN1%VT, PEN 1618V, and
PEN1T!®M (A B) Backbone root-mean-square deviation (RMSD) and residue-based C, root-mean-square
fluctuation (RMSF) for PFN1WT, (C,D) PEN1T!%M, and (E,F) PEN1°!8V, In each case, 3 independent 200-ns
trajectories were performed and analyzed as shown in each panel. (G) The three trajectories of each system were
then combined to generate the residue-based C, RMSF shown for PEN1VT (magenta), PEN1T1%M (green), and

PEN1¢V (blue).

stable salt bridge between Glu47 and Lys70 (Fig. 6A-C). The salt bridge does not exist in the crystal structure of
bound PFN1 and did not appear in any of the isolated mutant simulations. The second observation was that a
particular hairpin twists away from the protein (Fig. 6D-F). Figure 6G,H illustrates the simultaneous formation
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Figure 6. The hairpin switch mechanism of isolated PEN1"T, (A-C) The GLU47-LYS70 salt bridge donor-
acceptor distances for isolated (A) PFN1YT, (B) PFN1T1%M, and (C) PFN1¢!8V during the 200-ns molecular
dynamics simulations. (D-F) The distances between the C,, atom of G67 (tip of a hairpin) and the mass center
of 3-sheet for (A), PEN1T1%M (B), and PEN1¢!18V (C). (G,H) Illustration of the GLU47-LYS70 salt bridge and
twisting away of the G67 hairpin from the 3-sheet (the hairpin switch mechanism) in the third Isolated PEN1"VT
simulations by showing the initial (G) and final (H) conformations of PFN1 in cartoon representation.

of the Glu47-Lys70 salt bridge and twisting away of the G67 hairpin from the PFN1 (3-sheet. The hairpin twist
occurs just before the formation of the salt bridge (Fig. 6A,D), indicating that the salt bridge might be formed by
the displacement of the Gly67 hairpin, which also moves Lys70 with it. We suggest that the conformation of PFN1
observed in the third wild type simulation might more accurately describe the conformation of isolated PEN1. In
other words, wild type PFN1 might have a switch mechanism to adopt different conformations when the protein
is free or bound.

Rigidity of the actin/PLP binding site in mutant PFN1. Both of the mutant PFN1 proteins simulated
here appear to be associated with more rigid binding sites and cannot adopt the conformation of isolated wild
type PENI1. This will eventually result in other conformational changes that are beyond the timescales of the
simulations performed but that would lead to the misfolding and aggregation of PEN1. We thus hypothesize
that the observed rigidity of the binding sites in the G118V and T109M mutants diminishes the binding of actin
and PLP and eventually causes more dramatic conformational changes that increase the propensity of PFN1 for
aggregation.

We specifically analyzed the hydrogen-bonding pattern in the wild type and mutant simulations. Certain
backbone hydrogen bonds seemed to be consistently more stable in the mutant PFNI1 than in wild type. An exam-
ple is the hydrogen bond between the backbones of Leul10 and Val23 (Fig. 7). The occupancy of this hydrogen
bond was always greater than 50% in the mutant PFN1 simulations (for both G118V and T109M mutants), while
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Figure 7. Backbone hydrogen-bonding analysis of PEN1. (A) Illustration of the backbone hydrogen bond
between Leul10 and Val23 shown using cartoon representation of PFN1. (B) The Leul10-Val23 backbone
hydrogen bond occupancy estimated from individual 200-ns molecular dynamics trajectories of isolated PFN1.

it was always smaller than 50% in the wild type PFN1 simulations. This observation is consistent with the rigidity
hypothesis for mutant PFN1.

Discussion

A number of mutations in PFNT have been functionally linked to neurodegeneration in fALS"**, but the mech-
anism of PFN1 neurotoxicity remains undetermined. The locations of fALS-associated mutations in PFN1, con-
sidered in conjunction with its known interactions, suggest that PEN1 neurotoxicity may involve two distinct
pathways, actin-binding dynamics and the PLP-binding signaling pathway, that result in the degeneration of
motor neuronsh?>1%20:28-31,

The data and analyses described here provide novel insights into two putative mechanisms: the disruption of
interactions between PFN1 and actin- or PLP-binding motifs. We have presented evidence that the G118V muta-
tion changes local hydrophobicity and reduces the flexibility of the actin-interacting loop, which could explain
the observed reduction in actin polymerization and the perturbed equilibrium and reduced ratios of F-actin to
G-actin"?®. The G118V mutation is adjacent to the actin-binding interface, and the additional conformational
rigidity arising from the Gly to Val mutation causes conformational changes that prevent favorable interactions
with actin. In addition, it is possible that the fifth helix of PFN1 gets elongated under the influence of this muta-
tion and the consequences of this are discussed below.

It has been widely observed that alpha-helical regions are terminated by prolines. Glycine is not generally
viewed as a helix-terminating residue, but it serves as a suitable amino acid to form bends and kinks in tertiary
protein structures. Presuming that Gly118 helps form the bend and because it terminates the fifth alpha-helix in
PFN1, then our hypothesis gains further support from the possibility that when Gly118 is changed to valine, the
helix will be extended. Any such change will negatively impact binding because the polypeptide region immedi-
ately following the helix interacts strongly with actin. Circular dichroism (CD) and other physical characteriza-
tions of the G118V mutation support this notion, as described below.

In a concurrent study of PFN1 structural characteristics, an analysis of PEN1 with CD showed a spectral
shift, indicating a conformational change by extension of the alpha-helix (Nekouie et al., 2018, manuscript under
review). This observation suggests that the mutation of Gly118 is pivotal for proper folding to generate the proper
geometry for interactions with actin. In addition, the changes caused by the substitution of glycine with valine
may lead to the misfolding and aggregation of the protein. The T109M mutation, on the other hand, appears to
distort the PLP-binding site so as to make it sterically unsuitable for PLP binding. Our simulation studies showed
that the mutant is unable to maintain the hydrogen-bonding interactions with PLP. We observed that during
simulation, wild type PNF1 maintains its hydrogen bonds with PLP, while the hydrogen-bonding interactions
decrease sharply for the TI09M mutant.

Our analyses indicate that the G118V and T109M mutations increase the rigidity of surrounding regions,
impairing actin- and PLP-binding, respectively. In addition, the simulation of WT PFNI produced an unex-
pected finding in that it exhibits conformational isomerism. Our analysis of isolated WT PFN1 trajectories dur-
ing simulations showed that a hairpin loop containing Gly67 at the tip can twist away from the PFN1 (3-sheet,
and a relatively stable salt bridge between the Glu47 and Lys70 residues is formed. We did not observe similar
results for either of the mutants, and we postulate that this may have some functional relevance, as PNFI is a
multi-functional protein that interacts with several ligands. Therefore, the conformational isomerism and addi-
tional flexibility observed in wild type PFN1 may be necessary for its diverse roles.

In conclusion, our in silico study revealed that mutant PFN1 may gain propensity for aggregation due to
weakening or loss of hydrogen bonds and packing interactions, significant change in the backbone conformation,
poor and unstable binding at PLP region and salt bridge formation leading to rigidity of actin/PLP binding site
in mutant PFN1.

Methods

Mutant structure generation. A crystallographic structure of native PEN1 was retrieved from PDB data-
bank (2PAV). This structure was used to create G118V and T109M mutations using the mutagenesis plugin
within Pymol (www.pymol.org). Mutant structures and the native form of PFN1 were energy-minimized in a
solvent box with counter-ions and 0.14 M NacCl for 5000 steps using the “steepest decent” method in GROMACS
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molecular dynamics simulation software; we used the Assisted Model Building and the Energy Refinement
(AMBER99SB-ILDN) force field that refers to both sets of molecular mechanical force fields to simulate biomol-
ecules and uses a package of molecular simulation programs. For more details, refer to http://www.gromacs.org.

Atomistic molecular dynamics simulations of isolated PFN1. To understand the impact of single
amino acid (missense) mutations on PFN1 structure, molecular dynamics simulations were performed in explicit
solvent for PEN1"T, PFN17T!%M, and PFN1¢!'8V, Energy-minimized protein structures were immersed in a cubic
box containing SPC216 solvent-containing counter ions. Further, 0.15 M NaCl (to achieve an ionic strength sim-
ilar to blood) was added to crudely mimic physiological conditions. The AMBER99SB-ILDN force field was used
for all simulations. The system was further energy-minimized for 5000 steps using the steepest descent method.
The system was then equilibrated at constant temperature (300K), in the NVT ensemble (i.e., constant number
of particles, volume, and temperature) for 300 ps. Next, the system was equilibrated at constant pressure (1 bar) in
the NPT ensemble (i.e., constant particle number, pressure, and temperature). The final simulation (production)
was carried out for each system for 200 ns and was repeated 3 times (three independent simulations for each sys-
tem). The leap-frog integrator was used for the time evolution of trajectories.

Analysis of isolated PFN1 MD trajectories. The resulting trajectories were analyzed with trajectory
analysis modules from the GROMACS simulation package and from Visual Molecular Dynamics (VMD) soft-
ware. Multiple VMD analyses were performed on the trajectories from nine 200-ns PFN1 simulations, includ-
ing RMSD (Root-Mean-Square Deviation - backbone) and RMSF (Root-Mean-Square Fluctuation - C,).
Hydrogen-bonding was analyzed with the Hydrogen Bonds plugin in VMD. Detailed information was generated
for all hydrogen bonds in each system using a donor-acceptor cutoff distance of 3 A° and an angle cutoft of 20°.
Salt bridges were analyzed with the Salt Bridges plugin in VMD. For each system, a donor-acceptor cutoff distance
of 4 A° was used to generate data for individual salt bridges (distances over time). Each salt bridge was plotted to
assess the strength of the interaction.

Disclousure Statement. Dr. Kiaei and UAMS have a financial interest in the technology discussed in this
publication. These financial interests have been reviewed and approved in accordance with the UAMS conflict of
interest policies.
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