SCIENTIFIC REPLIRTS

Net-Net Auto Machine Learning
(AutoML) Prediction of Complex
Ecosystems

Received: 9 May 2018 . Enrique Barreiro®23, Cristian R. Munteanu?, Maykel Cruz-Monteagudo?3, Alejandro Pazos* &
Accepted: 24 July 2018 . Humbert Gonzalez-Diaz(®>®
Published online: 17 August 2018
Biological Ecosystem Networks (BENSs) are webs of biological species (nodes) establishing trophic
. relationships (links). Experimental confirmation of all possible links is difficult and generates a huge
. volume of information. Consequently, computational prediction becomes an important goal. Artificial
© Neural Networks (ANNSs) are Machine Learning (ML) algorithms that may be used to predict BENSs, using
as input Shannon entropy information measures (Sh,) of known ecosystems to train them. However, it
is difficult to select a priori which ANN topology will have a higher accuracy. Interestingly, Auto Machine
Learning (AutoML) methods focus on the automatic selection of the more efficient ML algorithms for
specific problems. In this work, a preliminary study of a new approach to AutoML selection of ANNs is
. proposed for the prediction of BENs. We call it the Net-Net AutoML approach, because it uses for the
. first time Sh, values of both networks involving BENs (networks to be predicted) and ANN topologies
(networks to be tested). Twelve types of classifiers have been tested for the Net-Net model including
linear, Bayesian, trees-based methods, multilayer perceptrons and deep neuronal networks. The best
: Net-Net AutoML model for 338,050 outputs of 10 ANN topologies for links of 69 BENs was obtained
. with a deep fully connected neuronal network, characterized by a test accuracy of 0.866 and a test
. AUROC of 0.935. This work paves the way for the application of Net-Net AutoML to other systems or ML
algorithms.

. Many important molecular, living, economical, and other complex systems may be described as complex net-
works of i parts or nodes interconnected by links, edges, bonds, ties, or relationships'~". The volume of informa-
: tion about all these collections of nodes and links is so large that it is impossible for a single person to remember
- and rationalize all possible connections in known networks. Consequently, it is even more difficult to assign/
- predict correct connections in new cases. This problem can be solved using Machine Learning (ML) models. In
: thisarea, ML models used as input variables are able to quantify structural information of the system. The process
. has been applied to multiple levels, ranging from the prediction of drug-target networks in molecules to the con-
struction of complex biological networks®'%.
Specifically, a molecular or living complex system can be explained using numerical parameters that quantify
information about the structure of the system. In information theory, Shannon entropy quantifies the information
: contained in a message, usually in bits. The concept was introduced by Claude E. Shannon in his 1948 paper ‘A
- Mathematical Theory of Communication”!?. With the pass of time, the Shannon entropy information measures
: (Shy) of different types and other related information measures have become commonly used indices in quantify-
ing information of the system under study in ML modelling!*-%.
: In any case, developing ML models using as input Sh, values involves, as in other ML problems, the applica-
. tion of data pre-processing variable selection and other techniques. Next, it is necessary to a priori select one or
. more ML algorithms and train/validate them to seek the final ML model. Consequently, non-experts in ML may
encounter difficulties to accomplish this goal. Specifically, in the case of complex molecular and living systems, a
non-expert may find it difficult to decide a priori which ML algorithms should be selected to develop the model.
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In this context, Automated Machine Learning (AutoML) may have an important role in automatically selecting
ML algorithms during the development of practical ML applications by non-experts®>3!.

This work proposes for the first time the use of Sh; values to quantify both the structure of the complex bio-
logical system to be predicted and the structure of the ML algorithm to be selected for this task. To this end, a pre-
liminary proof-of-concept experiment is carried out, focusing on a specific class of complex biological systems,
and a specific type of ML algorithms. Biological Ecosystem Networks (BENs) have been selected to play the role
of a complex biological system.

In addition, Artificial Neural Networks (ANN) have been selected to represent the ML algorithms. The cur-
rent study uses the entropy values Shy(A;) and Sh,(B;) as inputs for different pairs of species in the BENS, of the
systems under study. The Sh,(ANN;) values calculated are also used as inputs for different ANN topologies. In
fact, Ecosystems represent one of the most important examples of complex systems. They are a clear example of
network-like structures with known procedures to calculate the Shy values®~**. In this sense, our group reported
different ML models that evaluate the structure of parasite-host webs to predict the interactions between spe-
cies in different networks**-*’. In one of our previous works, special emphasis has been placed on the use of Shy
information measures to codify structural information in this type of ML studies®®. On the other hand, ANNs
have been selected because of their more apparent network-like structure, and because they are a useful tool to
solve this kind of ML problems. In fact, ANNs are powerful bio-inspired algorithms able to learn/infer large
datasets®*~*2. ANNs are also able to learn topology patterns in large datasets of bio-systems and other complex
networks®. This work proposes the calculation of Shy information indices in both sets of networks: BENs and
ANNes. That is why, it has been called a Net-Net AutoML approach. Last, an AutoML linear model is sought using
these indices as input. This Net-Net AutoML model could be employed to screen different ANN topologies in
order to pre-select the one expected to correctly predict BEN structures before training it.

Results

This work introduces for the first time a new type of algorithm to find the best ANNs that predict BENs. The
main steps of the methodology are described in Fig. 1. This is the first report of a Net-Net AutoML model for
ANN screening, with the subsequent saving of time and computational resources in the prediction of Complex
Networks. The BEN node pairs and the ANN classifiers that were trained for the prediction of BEN node con-
nectivity were turned into Shy descriptors that encoded information for the BEN nodes and the entire ANN
topology. Shy were calculated for each node with the MI-NODES software*:. In the case of ANN classifiers, the
average of all the values of Shy for all the neurons in the ANN was used as input. For the MI-NODES descriptors,
the Markov chains theory was applied and, therefore, they were calculated for each k values ranging between
0 and 5 (k=node distance of interaction) as Sh,**. These descriptors were linearly combined to find a model
(AutoML) that was able to predict how a specific ANN topology would evaluate BEN node connectivity. Thus,
AutoML could be used to screen which is the best ANN classifier topology for BEN node connectivity prediction.
The AutoML methodology used for the prediction of BEN connectivity includes the following steps with their
respective results.

First, Shy values were calculated for a large number of nodes in 69 BENs using the MI-NODES software. We
created a dataset of biological systems (bsi dataset) using 33,805 pairs of nodes selected randomly from the 69
BEN:Ss. If we consider the adjacency matrix (A) as the mathematical representation of all pairs of Ai vs. Bj nodes
in the BEN, the output variable of this dataset are the elements A; of this matrix. These values quantify the struc-
ture (connectivity) of the BEN with values A;; = 1 for the pairs of nodes that are connected (interacting biological
species) and A;; =0 otherwise (non-interacting biological species).

Next, the bsi dataset was expanded with node differences as input variables ASh,j; = Shy; — Shy; for each pair,
where Shy is the Shy for the first node and Shy; the Shy for the second node (k=0-5). As a result, there are
biN,,, = 6-3 =18 input features for the A; output for each pair of BEN nodes. The variables Sh, quantify infor-
mation for an isolated node, Sh, refers to the nodes with direct link, Sh, to nodes that have other nodes between
them, and so on.

Figure 2 illustrates the distribution of three Shy parameters (k=2, 3, 5) for both BENs and ANN classifiers
to predict them. This dataset was used to train 10 different ANNs. Next, the ANN screening model testing data-
set (mt dataset) was made up. The output variable of the mt dataset represents the values of correct or incurred
prediction of BEN connectivity A; by a specific ANN classifier topology, P(*"NA;) = 1 when the ANN topology
correctly predicts the observed BEN nodes connectivity A;; (A;=1 or 0 in the original bsi dataset). On the con-
trary, P(*"NA;;) = 0 when a specific ANN topology fails to correctly classify the observed A;; of 1 or 0 from the
original bsi dataset. The mt dataset contains the predictions of 338,050 node pairs from 69 BENs using 10 differ-
ent trained ANN classifiers (different topologies). The input variables of the mt dataset are the original variables
for each pair of nodes and the values of information indices *NNSh, (average value of Sh of all ANN neurons):
"Nyar = 6%(Shy; + Shy; + AShyy; 4-ANNShy) = 24. The last step consists of the dataset analysis to find the best linear
AutoML model for ANN classifier screening (see previous Fig. 1).

Discussion

There are at least two major problems if ANNSs are used to predict node connectivity in complex networks. First,
the information in complex systems should be turned into numerical input parameters to the future ANN classi-
fiers for node connectivity. Secondly, many ANN classifiers with different topologies should be trained in order
to find the best ANN topology that can learn the complex system structure patterns. The first problem can be
solved by quantifying the structural information of the complex system (Brain, Ecological, Social, etc.) with Shy
information measures*. The classical solution for the second problem is the training of different ANNS to find
the best topology. This step involves the use of High Performance Computing (HPC) services if the aim is to test
a high number of ANNs for many complex systems.
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Figure 1. General workflow of the Net-Net AutoML methodology.

The current study proposes a new methodology to evaluate how a new ANN classifier could predict the BEN
node connectivity, without the need for ANN training. Thus, two types of information descriptors were used:
node descriptors for BEN complex networks and the average of ANN neuron descriptors. If ANNs are networks
with nodes (neurons) and links (weights), the same mathematical processing as in the case of the BEN complex
network could be applied. Therefore, it is possible to quantify topological (connectivity) information of both the
BEN complex networks under study and a set of ANNS trained using Shy descriptors. Thus, each node of the com-
plex networks encoded information into Shy descriptors and each ANN classifier was characterized as an entire
network by the average of Shy.

The new AutoML methodology proposed a screening of ANN classifier topologies for BEN node connectivity
prediction. The current work applied the AutoML methodology to the Ecological systems. Consequently, the
AutoML output P(*NNA;) predicted the propensity of a specific ANN topology to predict the biological interac-
tion A;; between the species A; and B; from the ecological web (A;;=1 or not A;=0). The best linear AutoML with
maximum values of Ac, Sp, and Sn (training and external validation series) is described by Eq. 1. The best linear
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AutoML was made up of only 5 features: two Shy (k=0, 3) for each node A, and B;, and a Shy (k=3) for the ANN
classifier.

S(L =1, ANN) = —42.38 - Shy(A;) + 15.69 - Shy(A,;)
—44.95 - Shy(B;) + 13.79 - Shy(B))
—0.014 - Shy(ANN;)) — 0.8263
n=1235540 x* =56326.2 p < 0.001 (1)

In each BEN, the connections (A;;=1) indicated the existence of a biological interaction between the organ-
isms of i biological species with the organisms of j species. Table 1 shows the ANN topologies trained to predict
BEN connectivity. Thus, the Net-Net AutoML model was able to predict whether a new ANN topology could
correctly predict the connectivity between a pair of BEN nodes, prior to training. We introduced variability in
the ANN topologies using ANNs without hidden layers (no. 8, 9, 10), with only one hidden layer (no. 1, 2, 7, 5)
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1 MLP14:14-10-1:1 0.6 1.367 1.561 1.428 1.428 1.428 1.428
2 MLP15:15-12-1:1 0.7 1.424 1.571 1.492 1.492 1.492 1.492
3 MLP18:18-8-13-1:1 0.8 1.518 2.074 1.509 1.704 1.704 1.704
4 MLP16:16-8-10-1:1 0.7 1.486 1.881 1415 1.532 1.532 1.532
5 MLP18:18-8-1:1 0.8 1.564 1.759 1.423 1.481 1.481 1.481
6 MLP16:16-12-13-1:1 0.8 1.358 1.481 1.481 1.481 1.481 1.481
7 MLP11:11-10-1:1 0.7 1.394 1.806 1.395 1.395 1.395 1.395
8 LNN16:16-1:1 0.6 0.881 2.637 2.637 2.637 2.637 2.637
9 LNN17:17-1:1 0.6 0.895 2.788 2.788 2.788 2.788 2.788
10 LNN18:18-1:1 0.6 0.908 2.938 2.938 2938 2.938 2.938

Table 1. Information indices NNSh, of the ANNs used as inputs to train the AutoML model.

Sp 74.2 Aij =0 93933 32745
Sn 70.5 Ay=1 37438 89424
Ac 72.3 Total

Model Cross-Validation Series

Sp 76.0 A;=0 32163 10179
Sn 70.4 Ay=1 12465 29703
Ac 73.2 Total

Table 2. Statistics for the base line LDA Net-Net AutoML model. Note: rows: Observed classifications;
columns: Predicted classifications; A;; = 1, calculation with high priority; A;;=0 otherwise.

and with two hidden layers (no. 3, 4, 6). Future work should include different ANN topologies such as skip layer
connections, drop out neurons, deep ANNSs. These will enable a wider search in the space of possible networks.

The LDA model showed significant goodness-of-fit, also illustrated by Accuracy (Ac), Sensitivity (Sn),
and Specificity (Sp) classification values, both in training and external validation series (see Table 2). The
proof-of-concept AutoML model fit very well 338,050 outcomes predicted with 10 (previously trained) ANNs.
These results were obtained after training the 10 ANNs to learn to discriminate between biological interactions
(predation, parasitism, mutualism, etc.) which were connected (A;=1) or not (A;=0) in BENs of many eco-
systems. The mission of the AutoML did not consist of the prediction of BEN connectivity, and, therefore, Sn
referred to the number of times that the AutoML was able to evaluate whether a given ANN topology could
correctly predict BEN nodes connectivity. The same analogy applied to Sp and Ac. Using Net-Net AutoML meth-
odology, one could decide which ANN will receive more computing resources for training and which one can be
used to predict different links (A;;=1 or 0). The parameter Sh;; quantified the information related to the position
of i organism and their neighbours (k= 3) placing a topological distance d <3 in the BEN. ANNSh; is also similar
but quantifies information for the neurons in a specific ANN topology and not for the organisms in the biolog-
ical network. Figure 2 illustrates the distribution of the Shy values for all the BENs and ANN topologies studied
herein.

The LDA model is a base line classifier that was compared to 11 complex classifiers obtained with 9 ML meth-
ods, such as Bayesian Nets, Naive Bayes Nets, Logistic Regression, Decision Table, Multilayer Perceptron (MLP),
Random Forest, Bagging, AdaBoost, and Deep Fully Connected (FC) Networks. All 18 descriptors were used as
inputs. The test accuracy (ACC) and AUROC values are presented in Table 3.

It should be observed that the Bayesian methods, Decision Table and Logistic Regression provided accuracies
lower than the LDA model. With the MLP, by introducing hidden layers in Artificial Neural Networks, the accu-
racies and AUROC were improved, with values over 0.8, better than the LDA classifier. More complex models
such as ensemble classifiers based on MLP with only one hidden layer (Bagging MLP and AdaBoostM1 MLP)
could produce slightly better results. By introducing more hidden layers with MLP 2 H and Deep FC Nets, the test
accuracy was increased up to 0.866 (test AUROC = 0.935). Random Forest was not the best model, but it was able
to provide a test accuracy of 0.832 (AUROC = 0.914). The ensemble classifier based on simple REP trees, such as
Bagging REP, had a performance similar to the MLP 1 H (only one hidden layer).

Therefore, Deep Nets provided the best results, starting with MLP 2H with only 18 neurons (=num-
ber of input features) in the first hidden layer, and 9 neurons in the second hidden layer (ACC =0.827,
AUROC =0.902), leading to the more complex Deep FC Nets with 200, 400 and 200 neurons in the hidden
layers 1, 2 and 3 (ACC =0.866, AUROC=0.935). An accuracy increase of 4% was obtained with more com-
plex topology of the neural network from 18-9 to 200-400-200 neurons. The DL model was obtained using 10
different network topologies, from one to three hidden layers, with different optimization algorithms, dropout
rates, and other hyperparameters. The best DL model had the hidden layer topology n-n*2-n, with activation
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ML Classifier Test Accuracy Test AUROC
Bayesian Nets 0.681 0.737
Naive Bayes Nets 0.586 0.636
Logistic Regression 0.618 0.668
Decision Table 0.516 0.552
MLP 1H 0.809 0.878
MLP 2H 0.827 0.902
Random Forest 0.832 0.914
Bagging REP 0.804 0.884
Bagging MLP 0.819 0.896
AdaBoostM1 MLP 0.821 0.884
Deep FC Nets 0.866 0.935

Table 3. Accuracies of non-linear Net-Net classifiers. Note: please see Methods section for details on the classifier.

functions = tanh, n =200, dropout rate = 0.5, optimizer algorithm = Adam, initialization of weights = glorot_
normal, batch size =4096, epochs = 500, training AUROC = 0.963, training ACC = 0.897, test AUROC =0.935
and test ACC=0.866.

The current method used different applications such as MI-NODES for descriptors, STATISTICA, Weka, and
Python/Keras for ML classifiers. If the user does not test deep learning classifiers for the final Net-Net model,
there is no need for programming. In Weka it is possible to test a deeper MLP. Therefore, scientists without
advanced knowledge of programming are able to implement this methodology for specific BENs. An optimal
implementation of the method should be performed using a unique python code for all the Net-Net methodology
steps. This is the next step for the future version of this method.

Conclusions

The current study confirms that Markov chains are useful to calculate Shy information indices in order to quantify
the connectivity patterns of both BENs and ANNs. The new Net-Net AutoML methodology demonstrated how to
develop a linear AutoML model, able to select which ANN topology would correctly predict the connectivity of
BEN nodes before training it. The best AutoML model demonstrated an accuracy over 86% in test subsets. In con-
clusion, Net-Net AutoMLs with Sh, information indices could be used to screen ANN topologies that can predict
the links in biological networks. This may lead to an optimization of computing resources with the prioritization
of the training of the best ANN topologies.

Methods

Biological ecosystem networks dataset. A number of 69 Ecosystems or Food Webs were used. The net-
work files in.net format were assembled by our group in a previous work?. The datasets were downloaded from
the Interaction Web Database (IWDB): http://www.nceas.ucsb.edu/interactionweb/index.html.

Computational model.  Markov-Shannon Entropy Centralities from MI-NODES tool. In the present work,
the classical Markov matrix ('IT) was constructed for each network (BEN complex networks and ANNs). In the
case of BENs, the adjacency/connectivity matrix were downloaded from public resources as A (1 by n matrix,
where n is the number of nodes/vertices). Next, the Markov matrix IT was calculated. It contains the vertices
probability (p;) based on A. The probability matrix was raised to the power k, resulting ('IT)*, and it was multi-
plied by the vector of the initial probabilities (°p;). The resulting vectors “P contained the absolute probabilities to
reach the nodes moving throughout a walk of length k from node j (p;) for each k (Eqs 2 and 3). The entropy of
graph Sh(G) could be calculated based on the entropy of each node Shy:

kp _ 0 Ik [k, k k
P = "P x (1I) f[pl, Dy e pj] )

Sh(G) = XSy = 30 p, lody

jeG jeG 3)

Net-Net AutoML models. Due to the dimension of the dataset and the complexity of the models, for the
current calculations two systems were used:

o BioCAI cluster of RNASA-IMEDIR group (UDC) with 200 CPU cores;
o A desktop computer with processor i7 (3.60 GHz x 4 physical cores), 16 G RAM, and a GPU NVIDIA Titan
Xp (Pascal architecture, dedicated memory of 12 G G5X, 3840 CUDA cores, boost clock 1,582 MHz).

The GPU was particularly useful for the Deep Learning calculations with Keras. All the calculations could be
carried out with a desktop computer over a larger period a time, especially due to the Deep Learning calculations.
Once the Shy values of both the ANNs and BENs have been obtained, a Linear Discriminant Analysis (LDA)
implemented in the STATISTICA software*® can be run. Let P(*"NA;) be the output of a screening model used
to predict the ability of a given ANN topology to correctly classify the BEN connectivity A; between two nodes

SCIENTIFICREPORTS| (2018) 8:12340 | DOI:10.1038/s41598-018-30637-w 6


http://www.nceas.ucsb.edu/interactionweb/index.html

www.nature.com/scientificreports/

iand j (A;=1or 0). Eq. 4 describes the general formula for the LDA model using the following coefficients: a;;
as coefficients of the Sh for the i node (Shy;), by; as coefficients of the Sh for the j node (Shy), c; as coefficients of
the differences between the Sh of the nodes i and j (AShy; = Shy; — Shyy), ANN, as coeflicient of the average Sh
for a specific ANN topology, and e, as the free term coefficient. The k index indicates that this Shy value codifies
information for all nodes placed at least at topological distance k from the reference node.

Different statistical parameters can be used to evaluate the statistical significance and validate the
goodness-of-fit of LDA equation: n = number of cases, x> = Chi-square, p =error level, as well as the Accuracy
(Ac), Specificity (Sp), and Sensitivity (Sn) of both training and external validation series*.

5 5 5 5
S(L =1, ANN) = Y ay; - Shy; + > by - Sy + Y6 - AShy; + Wy - ANy + ¢
k=0 k=0 k=0 k=0

4)

Several complex classifiers were tested (see Table 3):

» Bayesian Nets = weka.classifiers.bayes.BayesNet -D -Q weka.classifiers.bayes.net.search.local. K2-P 1 -S
BAYES -E weka.classifiers.bayes.net.estimate.SimpleEstimator —A 0.

« Naive Bayes Nets = weka.classifiers.bayes.NaiveBayes

o Logistic Regression = weka.classifiers.functions.Logistic -R 1.0E-8 -M -1 -num-decimal-places 4

o Decision Table = weka.classifiers.rules.DecisionTable -X 1 -S “weka.attributeSelection.BestFirst -D 1 -N 57

o MLP 1H (Multilayer Perceptron 1 hidden layer) = weka.classifiers.functions.MultilayerPerceptron -L 0.3 -M
0.2-N1000-V0-S0-E20-Ha

«  MLP 2H (Multilayer Perceptron 2 hidden layers) = weka.classifiers.functions.MultilayerPerceptron -L 0.3 -M
0.2-N5000-V0-S0-E20-H “18,9” -batch-size 500

« Random Forest = weka.classifiers.trees.RandomForest -P 100 -I 500 -num-slots 1 -K 0 -M 1.0 -V 0.001 -S 1

o Bagging REP = weka.classifiers.meta.Bagging -P 100 -S 1 -num-slots 1 -I 10 -W weka.classifiers.trees.REP-
Tree-M 2 -V 0.001-N3-S1-L-1-10.0

» Bagging MLP = weka.classifiers.meta.Bagging -P 100 -S 1 -num-slots 1 -I 10 -W weka.classifiers.functions.
MultilayerPerceptron -batch-size 4000 -L 0.3 -M 0.2 -N 500 -V 0-S0-E20-Ha

o AdaBoostM1 MLP = weka.classifiers.meta. AdaBoostM1 -P 100 -S 1 -I 10 -W weka.classifiers.functions.Mul-
tilayerPerceptron -batch-size 4000 -L 0.3 -M 0.2 -N 500-V0-S0-E20-Ha

o Deep FC Nets (Deep Learning Fully Connected Networks) = n-n*2-n’ hidden layer topology (n=200).

Deep Learning FC Nets were programmed in Python with Keras, and the other classifiers were obtained with
the Weka tool. For the DL models, different hyperparameter values were tested:

o n=Number of neurons in a hidden layer: 10, 18, 50, 100, 200, 500.

o Network topologies: ‘n,'n-n, ‘n-n-n, ‘n-n*2, ‘n-n*2-n, ‘n*2, n*2-n, ‘n-n:2} ‘n:2} ‘n-n:2-n:4’ (this notation does
not include the input layer with 18 neurons = no. of features and the output layer with a neuron for the class).

o Neuron dropout rate: 0.0, 0.1, 0.2, 0.3, 0.4, 0.5, 0.6, 0.7, 0.8, 0.9.

o Optimizers: ‘RMSprop, ‘Adagrad, ‘Adadelta, Adam, ‘Adamax’, ‘Nadam’

o Weight initialization for hidden layer neurons: ‘uniform, lecun_uniform, ‘normal, ‘glorot_normal, ‘glorot_
uniform, ‘he_normal, ‘he_uniform.

o Batch size for training = 1024, 2048, 4096.

. Training epochs =20, 50, 100, 200, 300, 400, 500.

o Training cross validation: 3-folds (default value in Keras).

The Net-Net AutoML algorithm shown in Fig. 1 could be described as follows:

(1) For each BEN:

(1.1) Get the connectivity matrix.

(1.2) Add weights for the BEN connections (if present).

(1.3) For each node A:
(1.3.1)  Calculate node Shannon Entropies with MI-NODES: Shy(A,).
(1.3.2)  Create pairs of entropies for all the other nodes B: Shy(A;) — Shy(B)).

(2) Find different ANN classifiers to predict BEN node A; — B; connectivity:

(2.1) For each ANN, classifier:
(2.1.1)Calculate network Shannon Entropy: Sh,(ANN).

(3) Merge BEN node descriptors with ANN descriptors into Net-Net dataset: Shy(A;), Shi(B;), Shi(ANN;).
(4) Split Net-Net dataset into training and test subsets.
(5) Find the best Net-Net classifier to evaluate whether a specific ANN can predict the BEN connectivity:

(5.1) For each ML method (Bayesian, Trees, Artificial Neural Networks, etc.)
(5.1.1)For each set of model parameters (ex: topology, activation function, etc.)
(5.1.1.1) Use a Net-Net subset to train the classifier
(5.1.1.2) Evaluate the model with test subset calculating accuracy (ACC) and AUROC.

(6) Choose the best Net-Net classifier with the best ACC and AUROC.
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Steps (5) and (6) used Weka and Python/Keras scripts. In the future version of the method, different classifiers

will be tested for the BEN connectivity prediction (not only ANNs). This involves the adaptation of MI-NODES
application. The main advantage of the Net-Net methodology is that it can build a Net-Net classifier able to screen
ANN classifiers which predict BEN node connectivities.

Data Availability. All data generated or analyzed during this study were included in this article (along
with its Supplementary Information files) and they are publicly available at Figshare repository with https://doi.
0rg/10.6084/m9.figshare.6238424.
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