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A multi-ethnic meta-analysis 
confirms the association of 
rs6570507 with adolescent 
idiopathic scoliosis
Ikuyo Kou1, Kota Watanabe2, Yohei Takahashi1,2, Yukihide Momozawa3, Anas Khanshour4, 
Anna Grauers5,6, Hang Zhou7, Gang Liu   8, Yan-Hui Fan   9, Kazuki Takeda1,2, Yoji Ogura1,2, 
Taifeng Zhou7, Yusuke Iwasaki3, Michiaki Kubo3, Zhihong Wu10,11,12, Morio Matsumoto2, Japan 
Scoliosis Clinical Research Group (JSCRG)*, Texas Scottish Rite Hospital for Children Clinical 
Group (TSRHCCG)*, Elisabet Einarsdottir   13,14, Juha Kere   13,14,15, Dongsheng Huang16, 
Guixing Qiu8,11,12, Yong Qiu17, Carol A. Wise   4,18,19,20, You-Qiang Song9, Nan Wu   8,11,12, 
Peiqiang Su7, Paul Gerdhem6,21 & Shiro Ikegawa1

Adolescent idiopathic scoliosis (AIS) is the most common type of spinal deformity and has a significant 
genetic background. Genome-wide association studies (GWASs) identified several susceptibility loci 
associated with AIS. Among them is a locus on chromosome 6q24.1 that we identified by a GWAS 
in a Japanese cohort. The locus is represented by rs6570507 located within GPR126. To ensure the 
association of rs6570507 with AIS, we conducted a meta-analysis using eight cohorts from East Asia, 
Northern Europe and USA. The analysis included a total of 6,873 cases and 38,916 controls and yielded 
significant association (combined P = 2.95 × 10−20; odds ratio = 1.22), providing convincing evidence 
of the worldwide association between rs6570507 and AIS susceptibility. In silico analyses strongly 
suggested that GPR126 is a susceptibility gene at this locus.
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Adolescent idiopathic scoliosis (AIS) is defined as a lateral spinal curvature that occurs without obvious cause 
between age 10 and skeletal maturity. The prevalence of AIS in the adolescent population is approximately 2–3%1 
and AIS occurs predominantly in females2,3. AIS has been regarded as a multifactorial disease and a number 
of population, family and twin studies strongly suggest the importance of genetic factors in its etiology and 
pathogenesis4–7.

Genome-wide association study (GWAS) is a powerful tool to detect genetic variants associated with common 
diseases. Recently, several GWASs have identified several loci associated with AIS such as chromosome 10q24.31, 
6q24.1, 20p11.22, and 1p36.32 loci8–11. Our initial GWAS identified rs11190870, a common variant on chromo-
some 10q24.31 that showed significant association with AIS in a Japanese cohort8 and subsequent multi-ethnic 
meta-analysis provided convincing evidence of the association12. In addition, recent validation studies in different 
populations have also reported its significant associations13–15. Thus, the association of the 10q24.31 locus with 
AIS has been confirmed in multiple studies; however, other AIS loci have not been fully investigated.

In our previous GWAS, we identified an additional genetic variant, rs6570507 on chromosome 6q24.1, asso-
ciated with AIS in a Japanese cohort16. The association was replicated in independent cohorts of Chinese and 
Caucasian in the USA16; however, additional studies would be necessary to confirm the association and to identify 
the susceptibility gene at the locus.

In this study, we performed a meta-analysis using multi-ethnic cohorts of ~46,000 subjects. The result pro-
vided convincing evidence of the association of rs6570507 with AIS susceptibility, suggesting that the chro-
mosome 6q24.1 locus is related to the global risk of AIS. In silico analyses strongly suggested that GPR126 is a 
susceptibility gene at this locus.

Results
Association of rs6570507 and AIS susceptibility.  We conducted the meta-analysis of rs6570507 using 
eight cohorts (Table 1, Fig. 1). Three cohorts were previously reported16, and the other five were recruited for this 
study that included cohorts from Guangzhou (case 647 and control 1,048), Hong Kong (case 300 and control 
788), Beijing (case 482 and control 861), USA (case 1,360 and control 7,267), and Scandinavia (case 1,522 and 
control 1,804). Finally, 6,873 cases and 38,916 controls were included in the meta-analysis. The analysis showed 
a convincing association between rs6570507 and AIS: combined P = 2.95 × 10−20; odds ratio (OR) = 1.22; 95% 
confidence interval (CI) = 1.17–1.27 (Table 1, Supplementary Fig. S1). ORs were >1 in all eight cohorts, with 
little difference between ethnic groups. The analysis did not show any significant heterogeneity, suggesting no 
statistical difference between studies. Because AIS has clinical evidence of sexual dimorphism17, we performed 
gender-stratified analyses to determine whether a genetic difference existed between males and females (Table 2, 
Supplementary Fig. S1). However, no gender difference was observed in the association.

Fine mapping.  The sentinel SNP rs6570507 is present in an intron of GPR126 (encoding G protein-coupled 
receptor 126), and GPR126 is the only gene contained within the linkage disequilibrium (LD) block (r2 > 0.8) rep-
resented by rs6570507 (ref.16). To identify the candidate susceptibility gene in the locus, we evaluated the topolog-
ically associated domains (TADs) around the associated SNPs. Hi-C data18 (http://promoter.bx.psu.edu/hi-c/view.
php) revealed that GPR126 and VTA1 (encoding vesicle trafficking 1) were included in the TAD that contained 
the LD block (Fig. 2). Using expression quantitative trait loci (eQTL) data from the Genotype-Tissue Expression 
(GTEx) project19, we investigated the target genes regulated by rs6570507. We found that the expression level of 
GPR126 in subcutaneous adipose tissue and sun-exposed skin was significantly associated with rs6570507 and 
its risk allele rs6570507-A decreased the expression (Supplementary Fig. S2). These data strongly suggested that 
GPR126 is the most plausible AIS susceptibility gene at this locus.

Population Study

Sample number RAF

P value* OR (95% CI) PhetCase Control Case Control

Japanese

Japan 1 1033 1473 0.49 0.42 1.37 × 10−6 1.32 (1.18–1.48)

Japan 2 786 24466 0.48 0.43 3.02 × 10−5 1.24 (1.12–1.37)

Japanese Combined 1819 25939 2.15 × 10−10 1.28 (1.18–1.38) 0.40

Chinese

Nanjing 743 1209 0.39 0.35 3.36 × 10−3 1.22 (1.06–1.39)

Guangzhou 647 1048 0.41 0.37 2.19 × 10−2 1.18 (1.02–1.36)

Hong Kong 300 788 0.40 0.38 4.79 × 10−1 1.07 (0.88–1.30)

Beijing 482 861 0.37 0.34 8.93 × 10−2 1.15 (0.98–1.36)

Chinese Combined 2172 3906 7.79 × 10−5 1.17 (1.08–1.26) 0.75

East Asian combined 3991 29845 2.85 × 10−13 1.22 (1.16–1.29) 0.47

Caucasian

USA 1360 7267 0.34 0.30 7.95 × 10−6 1.22 (1.12–1.33)

Scandinavia 1522 1804 0.32 0.28 6.63 × 10−4 1.20 (1.08–1.34)

Caucasian Combined 2882 9071 1.76 × 10−8 1.21 (1.13–1.30) 0.85

All combined 6873 38916 2.95 × 10−20 1.22 (1.17–1.27) 0.71

Table 1.  Association of rs6570507 with adolescent idiopathic scoliosis. RAF, risk allele (rs6570507-A) 
frequency; OR, odds ratio; CI, confidence interval; Phet, P-value for Cochran’s Q-test for heterogeneity. *The 
p-values were calculated from the Cochran-Armitage trend test for each stage and combined p-values were 
calculated by the inverse variance method.

http://promoter.bx.psu.edu/hi-c/view.php
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Target sequencing.  Recently, numerous sequencing studies of candidate genes in GWAS loci identified rare 
large-effect variants20–22. To assess the potential contribution of rare variants at the chromosome 6q24.1 locus to 
AIS, we carried out targeted sequencing. We screened the coding regions and exon-intron boundaries of VTA1 
(chr.6: 142468421–142539785) and GPR126 (chr.6: 142623463–142764657) across 10,121 individuals (2,721 cases 
and 7,400 controls). The coverage rate of the target region, presented as an average in all individuals covered with 
≥20 reads at each position, was 99.96%. We identified 183 single nucleotide variant (SNVs), 2 insertions and 9 
deletions. The single-variant association analysis for each nonsynonymous variant (including missense, splice 
site, nonsense, and frameshift variants) with MAF <0.05 demonstrated no rare variant with significant associa-
tions (Supplementary Table S1). Subsequently, we performed the gene-based association analyses by the cohort 
allelic sums test (CAST)23 and the sequence kernel association test (SKAT)24, using the nonsynonymous variants. 
Only GPR126 showed a nominal significant association (P = 4.65 × 10−2) with AIS by CAST; however, it did not 
reach the threshold for significance after Bonferroni correction (Supplementary Table S2).

Discussion
In our previous study, we identified the significant association between rs6570507 and AIS in Japanese and the 
association is replicated in the independent cohorts of Chinese and Caucasian in the USA. However, as the num-
bers of Chinese and Caucasian subjects were both limited, the association between rs6570507 and AIS in these 
populations does not provide convincing evidence. In the current study, we have conducted a meta-analysis using 
eight independent multi-ethnic-cohorts and showed significant and consistent association of rs6570507 with 
AIS across the different ethnic groups. Recently, evidence for association of rs6570507 with AIS was reported 
in a Chinese cohort of Zhejiang25; however, we did not use the data for our meta-analysis because the allele fre-
quency of rs6570507 in the control group of the study was quite different from the frequency for the Chinese in 
the public database (for example, the 1000 Genomes Project) and the minor allele was opposite. Nevertheless, our 
meta-analysis demonstrates convincing association between rs6570507 and AIS susceptibility.

For some common complex diseases, rare large-effect variants have recently been identified by targeted exon 
sequencing of genes within GWAS associated loci26,27. This approach is helpful to identify causal genes and to 
explain a further portion of disease variance. In the present study, we assessed the contribution of rare variants 
in the candidate genes at the locus; however, we could not find any statistically significant association in individ-
ual variants. GPR126 showed a nominally significant association by a gene-based study. The frequency of rare 
and low-frequency nonsynonymous variants was increased in cases, suggesting that AIS is caused by functional 
impairment of the GPR126 gene. However, in the current study, the evidence for association did not surpass 
Bonferroni correction. This negative result may be due to the insufficient sample size in the present study and 
further larger studies are required to evaluate the effect of rare and low-frequency variants in GPR126.

To identify the susceptibility gene at the chromosome 6q24.1 locus, we evaluated the TADs around the asso-
ciated SNPs using the Hi-C database. The data showed that GPR126 and VTA1 were involved in the TAD that 
contained the LD block of the AIS associated SNPs. All SNPs strongly correlated with rs6570507 (r2 > 0.8) were 
present in the GPR126 gene region. The eQTL data indicated that these SNPs were significantly associated with 
the expression level of GPR126 in some tissues, such as subcutaneous adipose tissue and sun-exposed skin. It is 
well known that AIS patients are associated with low body weight and low body mass index (BMI)28,29, and are 
also reported to be significantly associated with lower body fat30. These observations suggest that GPR126 has a 
potential to affect AIS susceptibility through the adipose tissues. However, tissues used in GTEx project are lim-
ited, and the sample size is different by tissue. Therefore, it may fail to identify tissues contributing to the disease 

Figure 1.  The flow diagram of the meta-analysis using eight cohorts. Three cohorts (Japanese GWAS, 
replication study and Nanjing study) were previously reported16, and the other five were recruited for this 
analysis.
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pathology. In order to more optimally determine the effect of the associated SNPs on scoliosis, eQTL analysis in 
AIS-related tissues such as intervertebral disc, cartilage and bone should be performed. Moreover, our previous 
experiments indicated that GPR126 is highly expressed in the cartilage of human and proliferating chondrocytes 
of the vertebral body in mouse embryo16. Recently, Karner et al. reported that the mice with a conditional deletion 
of Gpr126 in the cartilage displayed the clinical features of AIS including postembryonic onset of spine curva-
tures with rotation and absence of vertebral malformations at birth31. These lines of evidence strongly suggested 
that the GPR126 is a susceptibility gene for AIS and its loss of function is implicated in the pathogenesis of AIS. 
Further studies are necessary to identify the causal variant at the locus and clarify its functional impact on the 
function of GPR126.

Figure 2.  The Hi-C interaction surrounding the AIS associated region on chromosome 6q24.1. Hi-C 
interaction in H1-mesenchymal stem cell was generated by using the Interactive Hi-C Data Browser. 
GPR126 and VTA1 lie within the topologically associated domain (black triangle) that contains the linkage 
disequilibrium (LD) block (bold line) of AIS associated SNPs. An arrow indicates the location of rs6570507.

Population Study

Female Male

Sample number RAF

P value*
OR (95% 
CI) Phet

Sample number RAF

P value*
OR (95% 
CI) PhetCase Control Case Control Case Control Case Control

Japanese

Japan 1 1033 1473 0.47 0.43 1.37 × 10−6 1.32 
(1.18–1.48) — — — —

Japan 2 680 9672 0.49 0.43 6.22 × 10−5 1.25 
(1.12–1.40) 106 14794 0.47 0.43 2.27 × 10−1 1.18 

(0.90–1.55)

Japanese 
Combined 1713 11145 3.85 × 10−10 1.29 

(1.19–1.39) 0.50  — —

Chinese

Nanjing 637 711 0.39 0.35 3.69 × 10−2 1.18 
(1.01–1.38) 104 498 0.38 0.33 1.54 × 10−1 1.25 

(0.92–1.70)

Guangzhou 552 584 0.41 0.38 5.24 × 10−2 1.18 
(0.99–1.39) 95 464 0.41 0.37 3.92 × 10−1 1.15 

(0.84–1.58)

Hong Kong 248 489 0.41 0.40 7.12 × 10−1 1.04 
(0.83–1.30) 52 299 0.37 0.36 9.36 × 10−1 1.02 

(0.66–1.57)

Chinese 
Combined 1437 1784 8.51 × 10−3 1.15 

(1.04–1.27) 0.62 251 1261 1.39 × 10−1 1.16 
(0.95–1.41) 0.75

East Asian 
combined 3150 12929 5.42 × 10−11 1.23 

(1.16–1.31) 0.34 357 16055 5.62 × 10−2 1.17 
(1.00–1.37) 0.90

Caucasian

USA 1159 4405 0.34 0.30 1.15 × 10−4 1.21 
(1.10–1.33) 201 2862 0.34 0.29 6.65 × 10−2 1.22 

(0.99–1.51)

Scandinavia 1315 1804 0.32 0.28 2.43 × 10−3 1.19 
(1.06–1.32) — — — —

Caucasian 
Combined 2474 6209 9.12 × 10−7 1.20 

(1.12–1.29) 0.79 — —

All 
combined 5624 19138 2.95 × 10−16 1.22 

(1.16–1.28) 0.56 558 18917 8.65 × 10−3 1.19 
(1.04–1.35) 0.95

Table 2.  Association of rs6570507 with adolescent idiopathic scoliosis by gender. RAF, risk allele (rs6570507-A) 
frequency; OR, odds ratio; CI, confidence interval; Phet, P-value for Cochran’s Q-test for heterogeneity. *The 
p-values were calculated from the Cochran-Armitage trend test for each stage and combined p-values were 
calculated by the inverse variance method.
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Materials and Methods
Subjects and genotyping.  Informed consent was obtained from all subjects participating in this study. 
This study was approved by the ethics committee of the RIKEN center for Integrative Medical Sciences and all 
experiments were performed in accordance with relevant guidelines and regulations. All AIS subjects met clinical 
criteria including scoliosis with Cobb angle of 10° or more on standing spinal postero-anterior (P-A) radiographs 
and excluding other non-idiopathic forms of scoliosis. The subjects in the Japanese and Nanjing-Chinese cohorts 
were recruited and genotyped as previously described16. The details of additional studies: i.e., Guangzhou, Hong 
Kong, Beijing, USA, and Scandinavia studies were described as below.

Guangzhou study.  AIS subjects were recruited from the First Affiliated Hospital and Sun Yat-sen Memorial 
Hospital of Sun Yat-sen University. They provided detailed histories, accepted physical examinations, underwent 
standard up-standing P-A radiography of the whole spine, and other testing such as magnetic resonance imaging 
(MRI), computed tomography (CT) and nuclear scintigraphy, when necessary. All AIS subjects were diagnosed 
at ages 10–16 years. Control subjects were recruited from individuals who received scoliosis screening at middle 
and primary schools in Guangzhou and fracture patients selected from the participating hospitals. All subjects 
were confirmed for not having AIS by x-ray scans of the spine. Routine history and physical examinations were 
also conducted to exclude other relevant diseases. Genomic DNA was extracted from blood using DNA Blood 
Mini-kit (Tiangen Biotech, Beijing, China). Primer extension sequencing (SNaPshot) assay (Applied Biosystems, 
CA, USA) was used for genotyping and the results were analyzed by GeneMarker software (SoftGenetics LLC, PA, 
USA) at Beijing Genomics Institute (Shenzhen, China) and checked by visual inspection of I.K. and H.D.

Hong Kong study.  AIS subjects were recruited from the Duchess of Kent Children’s Hospital in Hong Kong. 
The inclusion criteria were as previously described32. Control subjects were randomly selected from the subjects 
recruited for the Genetic Study of Degenerative Disc Disease project33. All were confirmed not to have AIS by 
MRI examination of the spine. Genomic DNA was extracted from peripheral blood lymphocytes using standard 
procedures. The PCR-based invader assay (Third Wave Technologies, WI, USA) was used for genotyping.

Beijing Study.  AIS subjects were recruited from Peking Union Medical College Hospital. All subjects under-
went clinical and radiologic examination such as whole spine X-ray, CT and MRI by expert spinal surgeons. 
Control subjects were recruited from in-house control bank. Genomic DNA was extracted from peripheral blood 
using the QIAamp DNA Blood Mini Kit (Qiagen, Hilden, Germany). The MassARRAY system (Sequenom; 
BioMiao Biological Technology, Beijing, China) was used for genotyping.

USA Study.  AIS subjects were recruited at Texas Scottish Rite Hospital for Children as previously described10 
and genotyped using the Illumina HumanCoreExome Beadchip array. For controls, we utilized a single dataset 
of individuals downloaded from the dbGaP web site (http://www.ncbi.nlm.nih.gov/sites/entrez?db=gap) from 
Geisinger Health System-MyCode, eMERGE III Exome Chip Study under phs000957.v1.p1 (https://www.ncbi.
nlm.nih.gov/projects/gap/cgi-bin/study.cgi?study_id=phs000957.v1.p1). The dbGaP controls were previously 
genotyped on the same microarray platform used for cases. Only subjects of self-reported Non-Hispanic White 
were included in the present study. Phenotypes of all controls were reviewed to exclude any with musculoskeletal 
or neurological disorders. We applied initial per sample quality control measures and excluded sex inconsisten-
cies and any with missing genotype rate per person more than 0.03. Remaining samples were merged using the 
default mode in PLINK.1.9 (ref.34). Duplicated or related individuals were removed as previously described35. We 
used principal component analysis (PCA)36 on the merged data projected onto HapMap3 samples to correct pos-
sible stratification37. After quality controls, 8,647 subjects (1,360 AIS subjects and 7,287 controls) were included 
for the current study. We applied initial per-SNPs quality control measures using PLINK including genotyping 
call-rate per marker (>95%), minor allele frequency (>0.01) and deviation from Hardy-Weinberg equilibrium 
(cutoff p-value = 10−4). We noted that the SNP success rate was 99.99% for the rs6570507 and there was no signif-
icant difference in the missingness rate between cases and controls after quality controls.

Scandinavia study.  AIS subjects were recruited from six hospitals in Sweden and one in Denmark as 
described previously to the Scoliosis and Genetics in Scandinavia (ScoliGeneS) study15,38–40. Individuals with 
a history or clinical sign of a non-idiopathic scoliosis and with neural abnormalities in a MRI of the spine were 
excluded. All control subjects were females and recruited from the Osteoporosis Prospective Risk Assessment 
cohort and PEAK-25 cohort41,42. Dual-energy X-ray absorptiometry (DXA) scan was performed in both cohorts 
and subjects showing any sign of a curved spine on DXA were excluded. Genomic DNA was extracted from blood 
or saliva using the QIAamp 96 DNA Blood Kit and the Autopure LS system (Qiagen). iPLEX Gold chemistry and 
the MassARRAY system (Agena Bioscience, CA, USA) were used for genotyping. Genotype calls were checked by 
two persons individually using the MassARRAY Typer v4.0 Software (Agena Bioscience).

Statistical analysis.  The association between rs6570507 and AIS in each study was evaluated by the 
Cochrane-Armitage trend test. Data from the eight studies were combined using the inverse-variance method 
assuming a fixed-effects model in the METAL software package (http://csg.sph.umich.edu//abecasis/Metal/)43. 
The heterogeneity among studies was tested using Cochran’s Q test based upon inverse variance weights using 
METAL.

Target sequencing.  Cases were recruited from collaborating hospitals of Japan Scoliosis Clinical Research 
Group (JSCRG)8,9, and controls were recruited from the BioBank Japan project, the Osaka-Midosuji Rotary Club 

http://www.ncbi.nlm.nih.gov/sites/entrez?db=gap
https://www.ncbi.nlm.nih.gov/projects/gap/cgi-bin/study.cgi?study_id=phs000957.v1.p1
https://www.ncbi.nlm.nih.gov/projects/gap/cgi-bin/study.cgi?study_id=phs000957.v1.p1
http://csg.sph.umich.edu//abecasis/Metal/
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and the PharmaSNP Consortium44,45. Multiplex PCR-based target sequencing was carried out as previously 
described45. Primers were designed using the Primer 3 software (ver. 2.3.4) to obtain 180–300 bp PCR products. 
We amplified 9,847 bp consisting of 47 genomic fractions using three multiplex-PCR products with dual bar-
codes for each individual. After purifying of each library using Agencourt AMPure XP (Beckman Coulter, CA, 
USA), the library was applied to the bioanalyzer (Agilent Technologies, CA, USA) to check the size distribution 
and quantified using the KAPA library quantification kit (Kapa Biosystems, MA, USA) on an ABI Prism 7700 
sequence detection system (Life Technologies, CA, USA). Sequencing was carried out using the HiSeq. 2500 
instrument (Illumina) with 2 × 150-bp paired-end reads and dual 8-bp barcode sequences. Sequence reads were 
aligned to the human reference sequence (hg19) by Burrows-Wheeler Aligner (ver. 0.7.9a) and then applied to the 
RealignerTargetCreator and IndelRealigner tools using GATK (ver. 3.2.2) for each bam file. The quality control 
was performed as previously described45. We selected variants that clearly showed three peaks corresponding to 
three genotypes and two peaks if they were considered rare variants by visual inspection.

References
	 1.	 Weinstein, S. L. Natural history. Spine (Phila Pa 1976). 24, 2592–2600 (1999).
	 2.	 Ueno, M. et al. A 5-year epidemiological study on the prevalence rate of idiopathic scoliosis in Tokyo: school screening of more than 

250,000 children. J. Orthop. Sci. 16, 1–6 (2011).
	 3.	 Konieczny, M. R., Senyurt, H. & Krauspe, R. Epidemiology of adolescent idiopathic scoliosis. J. Child. Orthop. 7, 3–9 (2013).
	 4.	 Kesling, K. L. & Reinker, K. A. Scoliosis in twins. A meta-analysis of the literature and report of six cases. Spine (Phila Pa 1976). 22, 

2009–2014 (1997).
	 5.	 Ward, K. et al. Polygenic inheritance of adolescent idiopathic scoliosis: a study of extended families in Utah. Am. J. Med. Genet. A. 

152A, 1178–1188 (2010).
	 6.	 Tang, N. L. et al. Genetic epidemiology and heritability of AIS: A study of 415 Chinese female patients. J. Orthop. Res. 30, 1464–1469 

(2012).
	 7.	 Grauers, A., Rahman, I. & Gerdhem, P. Heritability of scoliosis. Eur. Spine J. 21, 1069–1074 (2012).
	 8.	 Takahashi, Y. et al. A genome-wide association study identifies common variants near LBX1 associated with adolescent idiopathic 

scoliosis. Nat. Genet. 43, 1237–1240 (2011).
	 9.	 Ogura, Y. et al. A Functional SNP in BNC2 Is Associated with Adolescent Idiopathic Scoliosis. Am. J. Hum. Genet. 97, 337–342 

(2015).
	10.	 Sharma, S. et al. A PAX1 enhancer locus is associated with susceptibility to idiopathic scoliosis in females. Nat. Commun. 6, 6452, 

https://doi.org/10.1038/ncomms7452 (2015).
	11.	 Zhu, Z. et al. Genome-wide association study identifies new susceptibility loci for adolescent idiopathic scoliosis in Chinese girls. 

Nat. Commun. 6, 8355, https://doi.org/10.1038/ncomms9355 (2015).
	12.	 Londono, D. et al. A meta-analysis identifies adolescent idiopathic scoliosis association with LBX1 locus in multiple ethnic groups. 

J. Med. Genet. 51, 401–406 (2014).
	13.	 Cao, Y., Min, J., Zhang, Q., Li, H. & Li, H. Associations of LBX1 gene and adolescent idiopathic scoliosis susceptibility: a meta-

analysis based on 34,626 subjects. BMC Musculoskelet. Disord. 17, 309 (2016).
	14.	 Chettier, R., Nelson, L., Ogilvie, J. W., Albertsen, H. M. & Ward, K. Haplotypes at LBX1 have distinct inheritance patterns with 

opposite effects in adolescent idiopathic scoliosis. PLoS One. 10, e0117708 (2015).
	15.	 Grauers, A. et al. Candidate gene analysis and exome sequencing confirm LBX1 as a susceptibility gene for idiopathic scoliosis. Spine 

J. 15, 2239–2246 (2015).
	16.	 Kou, I. et al. Genetic variants in GPR126 are associated with adolescent idiopathic scoliosis. Nat. Genet. 45, 676–679 (2013).
	17.	 Raggio, C. L. Sexual dimorphism in adolescent idiopathic scoliosis. Orthop. Clin. North Am. 37, 555–558 (2006).
	18.	 Dixon, J. R. et al. Chromatin architecture reorganization during stem cell differentiation. Nature. 518, 331–336 (2015).
	19.	 Consortium, G. T. Human genomics. The Genotype-Tissue Expression (GTEx) pilot analysis: multitissue gene regulation in 

humans. Science. 348, 648–660 (2015).
	20.	 Hsu, Y. H. et al. Targeted sequencing of genome wide significant loci associated with bone mineral density (BMD) reveals significant 

novel and rare variants: the Cohorts for Heart and Aging Research in Genomic Epidemiology (CHARGE) targeted sequencing 
study. Hum. Mol. Genet. 25, 5234–5243 (2016).

	21.	 Cuyvers, E. et al. Mutations in ABCA7 in a Belgian cohort of Alzheimer’s disease patients: a targeted resequencing study. Lancet 
Neurol. 14, 814–822 (2015).

	22.	 Raychaudhuri, S. et al. A rare penetrant mutation in CFH confers high risk of age-related macular degeneration. Nat. Genet. 43, 
1232–1236 (2011).

	23.	 Morgenthaler, S. & Thilly, W. G. A strategy to discover genes that carry multi-allelic or mono-allelic risk for common diseases: a 
cohort allelic sums test (CAST). Mutat. Res. 615, 28–56 (2007).

	24.	 Wu, M. C. et al. Rare-variant association testing for sequencing data with the sequence kernel association test. Am. J. Hum. Genet. 
89, 82–93 (2011).

	25.	 Xu, J. F. et al. Association of GPR126 gene polymorphism with adolescent idiopathic scoliosis in Chinese populations. Genomics. 
105, 101–107 (2015).

	26.	 Bonnefond, A. et al. Rare MTNR1B variants impairing melatonin receptor 1B function contribute to type 2 diabetes. Nat. Genet. 44, 
297–301 (2012).

	27.	 Rivas, M. A. et al. Deep resequencing of GWAS loci identifies independent rare variants associated with inflammatory bowel disease. 
Nat. Genet. 43, 1066–1073 (2011).

	28.	 Hershkovich, O. et al. Association between body mass index, body height, and the prevalence of spinal deformities. Spine J. 14, 
1581–1587 (2014).

	29.	 Qiu, Y. et al. Decreased circulating leptin level and its association with body and bone mass in girls with adolescent idiopathic 
scoliosis. Spine (Phila Pa 1976). 32, 2703–2710 (2007).

	30.	 Tam, E. M. et al. Lower Muscle Mass and Body Fat in Adolescent Idiopathic Scoliosis Are Associated With Abnormal Leptin 
Bioavailability. Spine (Phila Pa 1976). 41, 940–946 (2016).

	31.	 Karner, C. M., Long, F., Solnica-Krezel, L., Monk, K. R. & Gray, R. S. Gpr126/Adgrg6 deletion in cartilage models idiopathic scoliosis 
and pectus excavatum in mice. Hum. Mol. Genet. 24, 4365–4373 (2015).

	32.	 Fan, Y. H. et al. SNP rs11190870 near LBX1 is associated with adolescent idiopathic scoliosis in southern Chinese. J. Hum. Genet. 57, 
244–246 (2012).

	33.	 Song, Y. Q. et al. Lumbar disc degeneration is linked to a carbohydrate sulfotransferase 3 variant. J. Clin. Invest. 123, 4909–4917 
(2013).

	34.	 Chang, C. C. et al. Second-generation PLINK: rising to the challenge of larger and richer datasets. Gigascience. 4, 7 (2015).
	35.	 Anderson, C. A. et al. Data quality control in genetic case-control association studies. Nat. Protoc. 5, 1564–1573 (2010).

http://dx.doi.org/10.1038/ncomms7452
http://dx.doi.org/10.1038/ncomms9355


www.nature.com/scientificreports/

7SCIENTIFIC REPOrTS |  (2018) 8:11575  | DOI:10.1038/s41598-018-29011-7

	36.	 Price, A. L., Zaitlen, N. A., Reich, D. & Patterson, N. New approaches to population stratification in genome-wide association 
studies. Nat. Rev. Genet. 11, 459–463 (2010).

	37.	 Mitchell, B. D. et al. Using previously genotyped controls in genome-wide association studies (GWAS): application to the Stroke 
Genetics Network (SiGN). Front Genet. 5, 95 (2014).

	38.	 Grauers, A., Danielsson, A., Karlsson, M., Ohlin, A. & Gerdhem, P. Family history and its association to curve size and treatment in 
1,463 patients with idiopathic scoliosis. Eur. Spine J. 22, 2421–2426 (2013).

	39.	 Andersen, M. O., Christensen, S. B. & Thomsen, K. Outcome at 10 years after treatment for adolescent idiopathic scoliosis. Spine 
(Phila Pa 1976). 31, 350–354 (2006).

	40.	 Grauers, A. et al. Prevalence of Back Problems in 1069 Adults With Idiopathic Scoliosis and 158 Adults Without Scoliosis. Spine 
(Phila Pa 1976). 39, 886–892 (2014).

	41.	 Gerdhem, P. & Akesson, K. Rates of fracture in participants and non-participants in the Osteoporosis Prospective Risk Assessment 
study. J. Bone Joint Surg. Br. 89, 1627–1631 (2007).

	42.	 McGuigan, F. E. et al. Variation in the BMP2 gene: bone mineral density and ultrasound in young adult and elderly women. Calcif. 
Tissue Int. 81, 254–262 (2007).

	43.	 Willer, C. J., Li, Y. & Abecasis, G. R. METAL: fast and efficient meta-analysis of genomewide association scans. Bioinformatics. 26, 
2190–2191 (2010).

	44.	 Nagai, A. et al. Overview of the BioBank Japan Project: Study design and profile. J. Epidemiol. 27, S2–S8 (2017).
	45.	 Momozawa, Y. et al. Low-frequency coding variants in CETP and CFB are associated with susceptibility of exudative age-related 

macular degeneration in the Japanese population. Hum. Mol. Genet. 25, 5027–5034 (2016).

Acknowledgements
We thank all participating subjects and clinical staff at collaborating institutes. We specially thank Nobumasa 
Suzuki, Masashi Saito, Michihiro Kamata and Hitoshi Hase for patient recruitment, and Yoshie Takahashi, Sayaka 
Tominaga, Tomomi Oguma and the members of Laboratory for Genotyping Development for technical assistance. 
We also thank Dr. Jianguo Zhang, Jianxiong Shen, Shugang Li, Yipeng Wang, Hong Zhao and Yu Zhao from 
Peking Union Medical College Hospital for patient enrollment and clinical evaluation. This work was conducted 
as part of the BioBank Japan Project supported by the Japan Agency for Medical Research and Development and 
by the Ministry of Education, Culture, Sports, Sciences and Technology of the Japanese government and was 
supported by JSPS KAKENHI Grant Number JP16H05453 (to MM), Hong Kong Health and Medical Research 
Fund (HMRF No. 04152256) (to YQS), the Swedish Research Council (number K-2013-52X-22198-01-3) (to 
AG and PG), National Natural Science Foundati on of China (81501852), Beijing Natural Science Foundation 
(7172175), Beijing nova program (Z161100004916123), Beijing nova program interdisciplinary collaborative 
project (xxjc201717) and the 2016 Milstein Medical Asian American Partnership Foundation Fellowship Award 
in Translational Medicine (to NW) and the Scoliosis Research Society, the NIH (P01 HD084387) and the Texas 
Scottish Rite Hospital Research Fund (to CAW).

Author Contributions
S.I. designed the project and provided overall project management. I.K. performed the multi-ethnic meta-
analysis and I.K. and S.I. prepared the manuscript. I.K., K.W., Y.T., K.T., Y.O., J.S.C.R.G. and M.M. collected and 
managed Japanese samples; Y.Q. collected and managed Nanjing samples; H.Z., T.Z., D.H. and P.S. collected and 
managed Guangzhou samples and I.K. and H.Z. analyzed the Guangzhou data; Y.T., Y.H.F. and Y.Q.S. collected 
and managed Hong Kong samples; G.L., Z.W., G.Q. and N.W. collected and managed Beijing samples; A.K., 
T.S.R.H.C.C.G. and C.A.W. collected and managed USA samples; A.G., E.E., J.K. and P.G. collected and managed 
Scandinavia samples; I.K., Y.M., Y.I. and M.K. designed and performed target sequencing and analyzed the data. 
All authors read and approved the final manuscript before submission.

Additional Information
Supplementary information accompanies this paper at https://doi.org/10.1038/s41598-018-29011-7.
Competing Interests: The authors declare no competing interests.
Publisher's note: Springer Nature remains neutral with regard to jurisdictional claims in published maps and 
institutional affiliations.

Open Access This article is licensed under a Creative Commons Attribution 4.0 International 
License, which permits use, sharing, adaptation, distribution and reproduction in any medium or 

format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Cre-
ative Commons license, and indicate if changes were made. The images or other third party material in this 
article are included in the article’s Creative Commons license, unless indicated otherwise in a credit line to the 
material. If material is not included in the article’s Creative Commons license and your intended use is not per-
mitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the 
copyright holder. To view a copy of this license, visit http://creativecommons.org/licenses/by/4.0/.
 
© The Author(s) 2018

http://dx.doi.org/10.1038/s41598-018-29011-7
http://creativecommons.org/licenses/by/4.0/


www.nature.com/scientificreports/

8SCIENTIFIC REPOrTS |  (2018) 8:11575  | DOI:10.1038/s41598-018-29011-7

Consortia
Japan Scoliosis Clinical Research Group (JSCRG)
Noriaki Kawakami22, Koki Uno23, Teppei Suzuki23, Hideki Sudo24, Shohei Minami25, Toshiaki 
Kotani25, Manabu Ito26, Haruhisa Yanagida27, Hiroshi Taneichi28, Ikuho Yonezawa29, Kazuhiro 
Chiba30, Naobumi Hosogane30, Nobuyuki Fujita2, Mitsuru Yagi2, Katsuki Kono31, Eijiro 
Okada32, Kotaro Nishida33, Kenichiro Kakutani33, Tsuyoshi Sakuma25, Katsumi Harimaya34, 
Takashi Kaito35, Kei Watanabe36,  Yuki Taniguchi37, Taichi Tsuji38 & Tsutomu Akazawa39.

22Department of Orthopaedic Surgery, Meijo Hospital, Nagoya, Japan. 23Department of Orthopaedic Surgery, 
National Hospital Organization, Kobe Medical Center, Kobe, Japan. 24Department of Advanced Medicine for Spine 
and Spinal Cord Disorders, Hokkaido University Graduate School of Medicine, Sapporo, Japan. 25Department 
of Orthopaedic Surgery, Seirei Sakura Citizen Hospital, Sakura, Japan. 26Department of Orthopaedic Surgery, 
National Hospital Organization, Hokkaido Medical Center, Sapporo, Japan. 27Department of Orthopaedic Surgery, 
Fukuoka Children’s Hospital, Fukuoka, Japan. 28Department of Orthopaedic Surgery, Dokkyo Medical University 
School of Medicine, Mibu, Japan. 29Department of Orthopaedic Surgery, Juntendo University School of Medicine, 
Tokyo, Japan. 30Department of Orthopaedic Surgery, National Defense Medical College, Tokorozawa, Japan. 
31Department of Orthopaedic Surgery, Kono Othopaedic Clinic, Tokyo, Japan. 32Department of Orthopaedic 
Surgery, Saiseikai Central Hospital, Tokyo, Japan. 33Department of Orthopaedic Surgery, Kobe University Graduate 
School of Medicine, Kobe, Japan. 34Department of Orthopaedic Surgery, Kyushu University Beppu Hospital, 
Beppu, Japan. 35Department of Orthopaedic Surgery, Graduate School of Medicine, Osaka University, Suita, 
Japan. 36Department of Orthopedic Surgery, Niigata University Medical and Dental Hospital, Niigata, Japan. 
37Department of Orthopedic Surgery, The University of Tokyo Hospital, Tokyo, Japan. 38Department of Orthopaedic 
Surgery, Toyota Kosei Hospital, Toyota, Japan. 39Department of Orthopaedic Surgery, St. Marianna University 
School of Medicine, Tokyo, Japan.

Texas Scottish Rite Hospital for Children Clinical Group (TSRHCCG)
Lori A. Karol40, Karl E. Rathjen40, Daniel J. Sucato40, John G. Birch40, Charles E. Johnston40, 
Benjamin S. Richards40, Brandon Ramo40, Amy L. McIntosh40 & John A. Herring40

40Department of Orthopaedic Surgery, Texas Scottish Rite Hospital for Children, Dallas, Texas, USA. 


	A multi-ethnic meta-analysis confirms the association of rs6570507 with adolescent idiopathic scoliosis

	Results

	Association of rs6570507 and AIS susceptibility. 
	Fine mapping. 
	Target sequencing. 

	Discussion

	Materials and Methods

	Subjects and genotyping. 
	Guangzhou study. 
	Hong Kong study. 
	Beijing Study. 
	USA Study. 
	Scandinavia study. 
	Statistical analysis. 
	Target sequencing. 

	Acknowledgements

	Figure 1 The flow diagram of the meta-analysis using eight cohorts.
	Figure 2 The Hi-C interaction surrounding the AIS associated region on chromosome 6q24.
	Table 1 Association of rs6570507 with adolescent idiopathic scoliosis.
	Table 2 Association of rs6570507 with adolescent idiopathic scoliosis by gender.




