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The morphospace of language 
networks
Luís F. Seoane1 & Ricard Solé   2,3,4

What is the nature of language? How has it evolved in different species? Are there qualitative, well-
defined classes of languages? Most studies of language evolution deal in a way or another with such 
theoretical contraption and explore the outcome of diverse forms of selection on the communication 
matrix that somewhat optimizes communication. This framework naturally introduces networks 
mediating the communicating agents, but no systematic analysis of the underlying landscape 
of possible language graphs has been developed. Here we present a detailed analysis of network 
properties on a generic model of a communication code, which reveals a rather complex and 
heterogeneous morphospace of language graphs. Additionally, we use curated data of English words 
to locate and evaluate real languages within this morphospace. Our findings indicate a surprisingly 
simple structure in human language unless particles with the ability of naming any other concept are 
introduced in the vocabulary. These results refine and for the first time complement with empirical data 
a lasting theoretical tradition around the framework of least effort language.

The origins of complex forms of communication, and of human language in particular, defines one of the most 
difficult problems for evolutionary biology1–5. Language makes our species a singular one, equipped with an 
extraordinary means of transferring and creating a virtually infinite repertoire of sentences. Such an achievement 
represents a major leap over genetic information and is a crucial component of our success as a species6. Language 
is a specially remarkable outcome of the evolution of cognitive complexity7,8 since it requires perceiving the exter-
nal world in terms of objects and actions and name them using a set of signals.

Modelling language evolution is a challenging issue, given the unavoidable complexity of the problem and its 
multiple facets. Language evolution takes place in a given context involving ecological, genetic, cognitive, and 
cultural components. Moreover, language cannot be described as a separate collection of phonological, lexical, 
semantic, and syntactic features. All of them can be relevant and interact with each other. A fundamental issue 
of these studies has to do with language evolution and how to define a proper representation of language as an 
evolvable replicator9. Despite the obvious complexities and diverse potential strategies to tackle this problem, 
a common feature is shared by most modelling approximations: an underlying bipartite relationship between 
signals (words) used to refer to a set of object, concepts, or actions (meanings) that define the external world. 
Such mapping asumes the existence of speakers and listeners, and is used in models grounded in formal language 
theory10, evolutionary game theory11,12, agent modelling13–17, and connectionist systems18.

In all these approaches, a fundamental formal model of language includes (Fig. 1a): i) a speaker that encodes 
the message, ii) a hearer that must decode it, and iii) a potentially noisy communication channel19 described by a 
set of probabilities of delivering the right output for a given signal. Within the theory of communication channels, 
key concepts such as reliability, optimality, or redundancy become highly relevant to the evolution of language.

In looking for universal rules pervading the architecture and evolution of communication systems, it is essen-
tial to consider models capable of capturing these very basic properties. Such a minimal toy model20 can be 
described as a set

= = …S s i n{ , 1, , } (1)i

of available signals or “words”, each of which might or might not name one element from the set

= = …R r j m{ , 1, , } (2)j
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of objects or “meanings” existing in the world. These potential associations can be encoded by a matrix A a{ }ij≡  
such that aij = 1 if signal si names object rj and aij = 0 otherwise (Fig. 1e,f).

Following a conjecture by George Zipf21, this model was used to test whether human language properties 
could result from a simultaneous minimization of efforts between hearers and speakers20. Briefly, if a signal in 
language A names several objects in R a large decoding effort Ωh falls upon the hearer (Fig. 1d shows a limit case 
of one signal naming every object). Otherwise, if one (and only one) different signal exists to name each of the 
elements in R (Fig. 1c,f), the burden Ωs falls on the speaker who must find each precise name among all those 
existing, while decoding by the hearer is trivial. Minimal effort for one side implies maximal cost for the other. 
Zipf suggested that a compromise between these extremes would pervade the efficiency of human language.

This toy model allows us to quantify these costs and tackle the Zipfian least effort using information theory20. 
We do so by considering a linear ‘energy’ Ω(λ) containing both the hearer and speaker’s costs, which optimal 
languages would minimize:

( ) (1 ) (3)h sλ λ λΩ = Ω + − Ω .

λ ∈ [0, 1] is a metaparameter balancing the importance of both contributions. In terms of information theory, 
it is natural to encode Ωs and Ωh as entropies (see Methods). The global minimization of equation 3 was tackled 
numerically20 and analytically22,23. Slight variants of the global energy have also been studied, broadly reaching 
similar conclusions. An interesting finding is the presence of two “phases” associated to the extreme solutions just 
discussed (Fig. 1d,f). These opposed regimes were associated to rough representations of a “no-communication 
possible” scenario with one signal naming all objects (Fig. 1d), and a non-ambiguous (one-to-one, Fig. 1f) map-
ping associated to animal or computer languages. These phases are separated by an abrupt transition at a given 
critical value λc. It was conjectured that human language would exist right at this transition point.

Solutions of this linear, single-targeted optimization have been found22,23. They display a mixture of proper-
ties, some associated (and some others not) to human language features. But: is the linear constraint a reasonable 
assumption? If no predefined coupling between Ωh and Ωs exists, the simultaneous optimization of both targets 
becomes a Multi Objective (or Pareto) Optimization (MOO)24–27. This more general approach does not make 
additional assumptions about the existence of global energies such as equation 3. MOO solutions are not single, 
global optima, but collections of designs (in this case, word-object associations encoded by matrices) constituting 
the optimal tradeoff between our optimization targets. This tradeoff (called the Pareto front) and its shape have 
been linked to thermodynamics, phase transitions, and criticality24,28–31.

Figure 1.  A toy model to explore least effort language. (a) Any minimal model of communication should 
include a (possibly noisy) channel that connects hearers and speakers. At the heart of this channel lies a 
confusion matrix p(rj|si) that tells the likelihood that an object is interpreted by the hearer when a signal is 
uttered by the speaker. In an ideal, not noisy situation we can encode these word-object associations by a 
matrix (b,c) such that aij = 1 if signal si names object rj and aij = 0 otherwise. Such matrices naturally introduce 
synonymy and polysemy. They also define bipartite language networks (d–f). We study how an optimization 
problem posed on the communication channel is reflected in optimal languages, with extreme solutions 
resulting in minimal effort for a speaker (hence maximal for a hearer, (d)) or the other way around (f).
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The Pareto front for the MOO of language networks has never been portrayed. Here we aim at fully exploring 
the space of communication networks in the speaker/hearer effort space where the Pareto front defines one of its 
boundaries (see Methods). We will further study the whole space of language networks beyond the front, illus-
trating the wealth of communication codes embodied by all different binary matrices. These, as they link signals 
and objects, naturally define graphs with information about how easy communication is, how words relate to 
each other, or how objects become linked in semantic webs. All these characteristics pose interesting, alternative 
driving forces that may be optimized near the Pareto front or, in the contrary, pull actual communication systems 
away from it.

Our exploration defines a morphospace of language networks. The concept of theoretical morphospace32 was 
introduced within evolutionary biology33–35 as a systematic way of exploring all possible structures allowed to 
occur in a given system. This includes real (morphological) structures as well as those resulting from theoretical 
or computational models. Typically a morphospace is constructed in one of two different ways. From real sets 
of data, available morphological traits are measured and some statistical clustering method (e.g. principal com-
ponents) is applied to define the main axes of the space and locate each system within it32. Alternatively, explicit 
parameters define continuous axes that allow ordering all systems in a properly defined metric space. In recent 
years, graph morphospaces have been explored showing how morphospaces can be generalized to analyze com-
plex networks36. Our language morphospace is shown to be unexpectedly rich. It appears partitioned into a finite 
set of language networks, thus suggesting archetypal classes involving distinct type of communication graphs.

Finally, dedicated, data-driven studies exist about different optimality aspects of language, from prosody to 
syntax among many others37–41. Discussion of the least-effort language model above has focused on its informa-
tion theoretical characterization. The hypothesis that human language falls near the phase transition of the model 
has never been tested on empirical data before. We do so here using the WordNet database42,43. Our development 
of the morphospace allows us not only to asses the optimality of real corpora, but also to portray some of its com-
plex characteristics. This kind of study may become relevant for future evolutionary studies of communication 
systems, most of them relying on the “speaker to noisy-channel to hearer” scheme (Fig. 1) at the core of the least 
effort model.

Results
In the Methods section we define the design space Γ of the least-effort model (i.e. the set of possible languages 
within the model) and show where it lives within the language morphospace. The morphospace has as axes the 
MOO target functions (i.e. the costs Ωh, Ωs associated to hearers and speakers, Fig. 2a). We sampled this space and 
performed measurements upon the language networks found (as explained in Methods). Thus we capture infor-
mation such as a language’s degree of synonymy, how well its word distribution fits Zipf ’s law, etc. This section 
reports the main findings after projecting these measurements onto the morphospace. Similar results are reported 
for Pareto optimal languages alone (Appendix A).

Complexity of language morphospace.  Figure 2 shows the boundaries of our morphospace (see 
Methods) and the location of some prominent solutions: i) the star graph, which minimizes the effort of a speaker 
and maximizes that of a hearer; ii) the one-to-one mapping, often associated to animal communication, which 
minimizes the effort of a hearer at the expense of a speaker’s; and iii) the Pareto optimal manifold (ΠΓ) corre-
sponding to the lower, diagonal boundary of Γ in the Ωh − Ωs plane. ΠΓ tells us the optimal trade-off between 
both targets.

Characterizing the vocabulary.  The effective vocabulary size L (equation 13) across the morphospace reveals a 
non-trivial structure. Codes with small L occur mostly near the star and in a narrow region adjacent to the Pareto 
front (marked A in Fig. 2b). Far apart from the front there is yet another region (marked B) with languages that 
use ~30% of all available signals. The transition to codes that use more than ~75% of available signals (central, red 
region in Fig. 2b) appears abrupt wherever we approach those codes from.

The low-vocabulary region B consists mostly of very polysemic signals (Fig. 2c). But codes with small vocab-
ularies are not always outstandingly polysemic – e.g. along the Pareto front. Right next to region B, the polysemy 
index IP (equation 14) drops suddenly (area C in Fig. 2c) and then increases steadily as we tend towards the top 
right corner of Γ (where a matrix sits with a i j1 ,ij = ∀ ).

Region B extends upwards from the star. It is also associated to a large synonymy index (IS, equation 15, 
Fig. 2d). This implies that IS increases sharply around the star as codes become less Pareto optimal. This swift 
increase does not happen if we start off anywhere else from the front. The condition for Pareto optimality is that 
codes do not have synonyms (see Methods). This plot indicates that Pareto optimality degrades almost uniformly 
anywhere but near the star. This might have evolutionary implications: Languages around the B region require 
more contextual information to be disambiguated. That part of the morphospace might be difficult to reach or 
unstable if Pareto selective forces are at play.

Network structure.  Words are not isolated entities within human language. Word inventories are only a first 
layer of complexity. To understand language structure we need to consider how linguistic units interact. There 
are diverse ways to link words together into graphs44,45, and it was early found that such language networks are 
heterogeneous (the distribution of links displays very broad tails) and highly efficient regarding navigation46. A 
network approach allows us to look at language from a system-level perspective, beyond the statistics associated 
to signal inventories. Even the toy model studied here has been used to gain insight into the origins of complex 
linguistic features such as grammar and syntax47–49).
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Our model defines three networks (see Methods for details). A first one (termed code graph) connects signals 
to objects (Figs 1d–f and 3a,d). Another one (termed R-graphs) connects objects to each other (Fig. 3b,e). Yet 
another one (termed S-graph) connects signals to each other (Fig. 3c,f).

The size of each network’s largest connected component (Cmax, equation 18) is shown in Fig. 4a–c for code 
graphs, R-graphs, and S-graphs. Code graphs with large Cmax (Fig. 4a) widely overlap with large effective vocab-
ularies (L, Fig. 2b). The B region is the exception: it displays moderate Cmax values yet very low L. This Cmax 
vanishes for S-graphs in the B region, but the corresponding R-graphs remain very well connected. Hence, in B a 
few signals keep together most of object space. Actually, R-graphs appear well connected throughout most of the 
morphospace (Fig. 4c), except in a narrow region extending from the one-to-one mapping along the Pareto front, 
more than halfway through it.

The entropy of connected components size distributions (HC, equation 19) somehow captures the heterogene-
ity of a language network. It is shown in Fig. 4d for code graphs (and is similar for R- and S-graphs). HC is small 
everywhere except on a broad band parallel to the Pareto front. HC is so low almost everywhere because of either 
of these facts: i) Only one connected component exists, as in most of the area with large vocabulary. ii) A few 
signals make up the network, deeming all others irrelevant. Effectively, all network features are summarized by a 
few archetypal graphs. iii) While a lot of signals are involved, they produce just a few different graphs. That shall 
be the case along the Pareto front (see Appendix A.2).

The band with larger HC runs parallel to the front, a little bit inside the morphospace. Hence, if the heteroge-
neity of the underlaying network were a trait selected for by human languages, they would be pulled off the Pareto 
front. Finally, HC is largest around region (D, Fig. 4d) close to the one-to-one mapping.

Complexity from codes as a semantic network.  Language ties together real-world concepts into an abstract 
semantic web whose structure shall be imprinted into our brains50,51. It is often speculated that semantic networks 
must be easy to navigate. This in turn relates to small-world underlying structures46,52 and other system-level 
network properties. It would be interesting to quantify this using our language graphs as a generative toy model.

We did just so (see Methods), and we introduce a couple of entropies (HR, equation 20; and HS, equation 21) 
that capture the bias in sampling objects and signals with this generative toy model. These measures present 
non-trivial profiles across the morphospace. HR drops in two regions (E and F in Fig. 5a). Code graphs around 
these areas must have some canalizing properties that break the symmetry between sampled objects. However, 

Figure 2.  Vocabulary size, polysemy, and synonymy across language morphospace. (a) The space Γ that can 
be occupied by language networks is shown in gray. Two limit cases (the one-to-one and star graphs) are also 
mapped. (b) Effective vocabulary size is only low near the star graph (in a prominent area labeled B) and along 
the Pareto front. (c) Polysemy is large in region B and as we complete the matrix A towards the upper-right 
corner. (d) Synonymy increases uniformly as we move apart from the front except for codes in B. This makes 
them highly Pareto inefficient.
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the drop in entropy is of around a 10% at most. (A third region with low HR near the star graph is discussed in 
Appendix A.3).

From Figs 2b and 4a, region E has moderately large L and Cmax. It sits at a transition from lower values of 
these quantities (found towards the front and within the B region) to larger values found deeper inside the mor-
phospace. Figure 4d locates region E right out of the broad band with large HC. All of this suggests that, within E, 
diverse networks of smaller size get connected into a large component which inherits some structural heterogene-
ity. This results in a bias in the sampling of objects, but not in the sampling of signals: the lowest HS are registered 
towards the star-graph instead (see Appendix A.3). Note also that biases in signal sampling are larger (meaning 
lower HS) throughout the morphospace – compare color bar ranges in Fig. 5a,b.

Region F sits deeper inside the morphospace, where L is almost the largest possible and the connected compo-
nent involves most of signals and objects. Language networks here are well consolidated, suggesting that the bias 
of object sampling comes from non-trivial topologies with redundant paths. Interestingly, regions E and F are sep-
arated by an area (G, Fig. 5b) with a more homogeneous sampling of objects and a relatively heterogeneous sam-
pling of signals. HS within F itself is larger than in G, suggesting no remarkable bias on word sampling in F despite 

Figure 3.  Different graphs derived from the language matrix. (a) A Pareto optimal language contains non-
synonymous signals only. Its language graph consists of isolated clusters in which each signal clusters together 
a series of objects. (b) Concepts within a cluster appear as cliques in the R-graph. (c) The S-graph is just a 
collection of isolated nodes. (d) Not Pareto optimal languages produce more interesting language graphs that 
might be connected (as here) or not. A connected language graph guarantees both a connected R- and S-graphs 
((e,f) respectively).
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the bias on object sampling, and vice-versa. The diversity found in the morphospace, which allows an important 
asymmetry between words and objects inducing heterogeneity in one set while keeping the other homogeneous.

Figure 5c shows H2R, the entropy of 2-grams objects produced by the generative toy model (see Methods). H2R 
inherits a faded version of region E. On top, it is low along a band overlapping with the one in Fig. 4d for HC. The 
largest drop in H2R happens closer to the one-to-one mapping. It makes intuitive sense that codes in this last area 
start consisting of networks similar to the one-to-one mapping in which extra words connect formerly isolated 
objects, hence resulting in a bias of couples of objects that appear together. The entropy of 2-gram words (H2S, not 
shown) is largely similar to HS (Fig. 5b).

Zipf, and other power laws.  Zipf ’s law is perhaps the most notable statistical patterns in human language21. 
Despite important efforts53–55, the reasons why natural language should converge towards this word frequency 
distribution are far from definitive. Research on diverse written corpora suggests that under certain circum-
stances (e.g. learning children, military jargon, impaired cognition) word frequencies present pow er-law distri-
butions with generalized exponents56,57.

Different authors have studied how well the least-effort toy model accounts for Zipf ’s law20,22,23. Word fre-
quencies can be obtained from the language matrices A (see Methods). The first explorations of the model20 
found Zipf ’s distributions just at the transition between the star and one-to-one codes. This suggested that 
self-organization of human language at the least-effort transition point could drive the emergence of Zipf ’s dis-
tribution. It was shown analytically that while Zipf ’s law can be found at that point, this is not the most frequent 
distribution22,23. This is consistent with the diversity that we find at the Pareto front (see Appendix A). This also 
implies that if least-effort is a driving force of language evolution, it would not be enough to constrain the word 
distribution to be Zipfian. Other authors58 have provided mathematical arguments to expect that Zipf ’s law will 
be found right at the center of our Pareto front (with Ωh = 1/2 = Ωs).

We compare signal distributions to Zipf and other power laws (see Methods). The area that better fits Zipf is 
broad and stretches notably inside the morphospace (Fig. 6a), hence Zipf ’s law does not necessarily correlate with 
least-effort. This area runs horizontally with Ω ≡ ∼ .H S( ) 0 75s n  and roughly Ω ≡ | ∈ . .H R S( ) (0 25, 0 75)h m . In 

Figure 4.  Network connectivity across the morphospace. The size of the largest connected component is shown 
for code graphs (a), R-graphs (b), and S–graphs. (d) Entropy of component size distribution is large around a 
band that runs parallel along the Pareto front.
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the best (least-effort) case, speakers incur in costs three times higher than hearers. Less Pareto optimal Zipfian 
codes always attach a greater cost to speakers too.

Figure 6b shows how well distributions are fitted to arbitrary power laws. An alternative region with good fits 
runs parallel along the lower part of the Pareto front, but the corresponding power law exponents (Fig. 6c) fall 
around 1.6–1.8, far from Zipf ’s.

These findings present notable evidence against least-effort as an explanation of Zipf ’s law. Non Pareto-optimal 
codes exist with larger fitness to Zipf than least-effort languages (Fig. 6a), and codes along the Pareto front seem 
better fitted by other power laws (see Appendix A.4). Two important limitations of the model should be con-
sidered: First, the naive way in which word frequencies are built from the model (see Methods). Second, we 
examined relatively small matrices (200 × 200) to make computations tractable. Measuring power law exponents 
demands larger networks. Alleviating these handicaps of the model shall bring back evidence supporting the 
least-effort principle.

Code archetypes and real languages.  We introduced different measurements over the matrices A of our 
toy model. The emerging picture, far from a smooth landscape, is a language morphospace that breaks into finite, 
non-trivial “archetypes”. We ran additional analyses to support this. We computed Principal Components (PCs) 
from all the measurements discussed. 5 PCs were needed to explain 90% of the data variability. We then applied 
a k-means algorithm59 on PC space. For k = 5, several runs of the algorithm converged consistently upon similar 
clusters that we classify as follows (Fig. 7, clockwise from top-left):

	 I	 Codes near the one-to-one mapping and upper two thirds of the Pareto front, including the graphs with 
largest HC (Fig. 4d).

Figure 5.  Complexity of codes as a random generative model. (a) Entropy of objects as sampled by a random 
walker (HR) over the language network is close to its maximum throughout the morphospace, except for two 
non-trivial areas labeled E and F. Whichever mechanisms give rise to the heterogeneity there, they seem to be 
different, since the transition between E and F is not smooth. (b) Entropy of signals as sampled by a random 
walker (HS) is lower than its maximum across the morphospace, and the most singular areas do not correlate 
with the ones found for (HR). Notably, region G seems to separate E and F and contain more heterogeneous 
signal sampling despite the largely homogeneous object sampling. (c) 2-grams of objects as sampled by a 
random walked present a lower entropy H2R than HR, and only the E region seems to remain in place.

Figure 6.  Power laws from the least-effort model. (a) Goodness of fit of the word distribution from the toy, 
least-effort model to a Zipf law. (b) Goodness of fit of the word distribution from the model to an arbitrary 
power law. (c) Exponent obtained when fitting the word distribution of the model to the arbitrary power law 
from panel (b). In each case, the level curves indicate areas where a Kolmogorov- Smirnov test suggest a good fit.
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	 II	 Codes along a stripe parallel to the upper half of the Pareto front, overlapping largely with the large HC 
(Fig. 4d) and low H2R (Fig. 5c) area.

	III	 Bulk interior region: codes with a single connected component, large vocabulary; includes low HR region F 
(Fig. 5a).

	IV	 Region B (Fig. 2b–d): codes with large polysemy, small vocabularies; demands exhaustive contextual cues 
for communication.

	 V	 Codes along the lower half of the Pareto front and a thick stripe parallel to it, partly overlapping with the 
region with good fit to power-laws (Fig. 6b).

Solutions to the original least-effort problem were widely analyzed in the literature from a theoretical 
viewpoint, focusing on the model’s phase transition20, on the presence of Zipf ’s distribution at the transition 
point20,22,23,46, or on mechanisms that could drive languages to this distribution30,56,58. Based on these analyses 
it was speculated that human language should lie at the transition point to achieve its flexibility and expressive 
power. The one-to-one mapping, associated to animal codes, was deemed rather rigid and memory demanding. 
This raised a point that ambiguity would be the price to pay for least-effort efficient language. On the other hand, 
the star code makes communication impossible unless all the information is explicit in the context.

This toy model has never been used to assess real languages, perhaps, owing to the difficulty of building matri-
ces A out of linguistic corpora. WordNet42,43 is a huge database that includes manually annotated relationships 
between words and objects or concepts. A few examples:

ape (…) 02470325 09964411 09796185
car (…) 02958343 02959942 02960501 …
complexity (…) 04766275
rugby (…) 00470966
The parentheses stand for additional information not relevant here. Each word is associated to several codes 

that identify a unique, unambiguous object or concept. For example, 02959942 refers to the car of a railway. 
02960501 refers to the gondola of a funicular. The word “car” appears associated to these two meanings among 
others. WordNet makes this information available for four separate grammatical categories: adjectives, adverbs, 
nouns, and names.

We built the corresponding A matrices out of this database and evaluated Hm(R|S) and Hn(S) for each gram-
matical category. All four categories contain more signals than objects, hence synonyms exist and languages are 
not Pareto optimal. Theoretical models (including others beside ours) argue that synonyms should not exist in 
optimal codes11,12,20,23, but they seem real in folk language. Synonymy shall also have degrees, with linguists dis-
senting about whether two terms name the precise same concept. Such information is lost due to our coarse 
graining into binary matrices. It is possible to extend our analysis if A would display likelihoods a [0, 1]ij ∈  indi-
cating affinity between words and meanings.

Figure 7a shows all available grammatical categories (labeled Adj, Adv, Noun, and Verb) in our morphospace. 
While not Pareto optimal, they appear fairly close to the front, near the one-to-one mapping. This would suggest 
that human language is not such a great departure from animal codes, thus contradicting several arguments in 
least-effort literature. Also, all categories appear within a small area, leaving the huge morphospace unexplored.

The WordNet database does not contain grammatical words such as pronouns. Some proper names appear 
in the Noun database (e.g. Ada and Darwin), but ‘she’, ‘he’, or ‘it’ are not included. Any feminine proper name 
can be substituted by ‘she’, while ‘it’ can represent any common noun. Similarly, in English most verbs can be 

Figure 7.  Clustering of languages across the morphospace. k-means clustering using all principal components 
reveals a consistent structure in the morphospace. Five cluster are shown here. Real languages fall within cluster 
I, close to the one-to-one mapping proper of animal communication systems. The real matrices are marked: Adj 
for the adjectives, Adv for the adverbs, Noun for the nouns, and Verb for the verb. If certain grammatical words 
are included (named with an apostrophe: Noun’ for nouns and Verb’ for verbs) they move into cluster II and 
towards the center of the morphospace, relatively close to the Pareto front. (b) All clusters get further segregated 
in two principal component space. This space appears interrupted by a stripe along which no codes exist.
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substituted by ‘to do’ or ‘to be’ – e.g. “She plays rugby!” becomes “Does she play rugby?” and eventually “She 
does!”. Appending such words to the database would account for introducing signals that can name almost any 
object. We simulated this by adding a whole row of 1s to the A matrices of nouns and verbs. This changed the 
corresponding Hm(R|S) and Hn(S) values, displacing these codes right into the central-lower part of cluster II 
(Fig. 7a, marked Noun’ and Verb’), near the center of the Pareto front. This suggests that grammatical words might 
bear all the weight in opening up the morphospace for human languages, with most semantic words conforming a 
not-so-outstanding network close to the one-to-one mapping and still demanding huge memory usage.

Discussion
The least-effort model discussed in this paper has long captured the attention of the community. It features a core 
element of most communication studies – namely, the “coder to noisy-channel to decoder” structure found in 
Shannon’s original paper on information theory60, as well as in more recent experiments on the evolution of lan-
guages13,15,16. This toy model allows us to formulate several questions regarding the optimality of human language 
and other communication systems. These had been partly addressed numerically20 and analytically22,23. A first 
order phase transition was found separating the one-to-one mapping from a fully degenerated code. It was further 
speculated that human language may be better described by codes at that transition point20. This hypothesis was 
never confronted with empirical data. Finally, by looking only at least-effort languages a vast code morphospace 
was left unexplored.

This paper relies on Pareto optimality to recover the first order phase transition of the model24,28,30 and thus 
find the boundaries of the morphospace. We then characterize the very rich landscape of communication codes 
beyond the optimality constraints. Finally, we address for the first time empirically the hypotheses about the opti-
mality of human language within the least-effort model.

This landscape turns out to be surprisingly rich, far from a monotonous variation of language features. 
Quantities such as the synonymy of a code, its network structure, or its ability to serve as a good model for human 
language (e.g. by owing Zipf ’s law) present non-trivial variations across the morphospace. These quantities might 
or might not align with each other or with gradients towards optimality, and may hence pose newer conflicting 
forces that communication systems shall be shaped by.

To portray human languages within the least-effort formalism we resorted to the WordNet database42,43. Raw 
matrices extracted from this curated directory fell close to the one-to-one mapping (often associated to animal 
codes) and in the interior of the morphospace. This would invalidate previous hypotheses that human language 
belongs far apart from animal communication and along the transition point of the model. Introducing grammat-
ical particles such as the pronoun ‘it’ (which can name any object and is missing from WordNet) moves human 
language far away from one-to-one mappings and closer to the center of the Pareto optimal manifold. Both found 
locations for human languages (before and after adding grammatical particles) present interesting properties such 
as a large entropy of concept-cluster size (HC, Fig. 4d). This quantity, which somehow captures the language net-
work heterogeneity, drops to zero at the Pareto front, suggesting evolutionary forces that could pull real languages 
away from the least-effort optimality studied here.

Our results suggest a picture of human language consisting of a few referential particles operating upon a 
vastly larger substrate of otherwise unremarkable word-object associations. The transformative power of gram-
matical units is further highlighted since just one was enough to displace human codes into a more interesting 
region of the morphospace. This invites us to try more refined A matrices with grammatical particles introduced 
more carefully – e.g. based on how often pronouns substitute another word in real corpora. This also poses inter-
esting questions regarding the sufficient role of grammatical units to trigger and sustain full-fledged language.

WordNet is just the most straightforward way to map human language into the model. Recent developments 
in neuroscience51 offer further opportunities to test our results and address new questions in evolutionary or 
developmental linguistics. Our morphospace also offers an elegant framework upon which to trace the progres-
sion, e.g., of synthetic languages13,15,16. Finally, our approach can help to further improve the comparative analysis 
between human and non-human (even non-living) signals61 as well as to natural and synthetic gene codes using 
codon-aminoacid mappings62.

Methods
Toy model and its design space.  In20, a minimal model is introduced that links the set

S s i n{ , 1, , } (4)i= = …

of available signals or “words” to the set

R r j m{ , 1, , } (5)j= = …

of available objects or “meanings” existing in the world. In this model, a language is defined by a binary matrix 
A a{ }ij≡  such that aij = 1 if signal si names object rj, and aij = 0 otherwise. Hence, the set of all n × m binary matri-
ces constitutes the design space Γ of our toy model.

Each language has a pair of costs associated to hearers or speakers. These costs can be computed from the 
language matrix A. They represent informational efforts that hearers must make to decode the meaning of a sig-
nal, or that speakers must pay to find the right name of an object. Entropies suitably encode such efforts. 
Following20, one choice is to define H R S( )h mΩ ≡ |  as the conditional entropy that weights the errors made by the 
hearer, namely:
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where p(rj|si) is the probability that object rj was referred to when the word si was uttered by a speaker. Such 
confusing probabilities depend on the ambiguity of the signals. We can also postulate the following effort for a 
speaker:

H S p s log p s( ) ( ) ( ( )),
(8)s n

i

n

i n i
1

∑Ω ≡ = −
=

where p(si) is the frequency with which the si signal is employed given the matrix A. To compute p(si) we assume 
that every object needs to be recalled equally often and that we choose indistinctly among synonyms for each 
object.

These costs

Ω Ω ≡ |A A H R S H S( ( ), ( )) ( ( ), ( )) (9)h s m n

map each language into a 2-D plane where it can be visualized. Mapping every language we find the boundaries of 
our design space Γ into this plane. These costs are also the optimization targets of an MOO least-effort problem, 
so we often refer to the Ωh − Ωs plane as target space. Here we set up to explore the overall shape of our design 
space in target space, and what consequences this has for the model from an optimality viewpoint.

A first step is to find the extent of Γ in the Ωh − Ωs plane. The global minima of Ωh and Ωs delimit two of the 
boundaries of Γ. Let us assume that there are as many words as objects. Take the matrix associated to the minimal 
hearer effort, ≡A Ih n, where In denotes the n × n identity matrix so that aij = δij (with δij = 1 for i = j and zero 
otherwise, Fig. 1c). This matrix minimizes the effort for a hearer: signals are not degenerated and the hearer does 
not need to struggle with ambiguity. (Note that any one-to-one mapping would do – we use the identity just as an 
illustration). Naturally, Ωh(Ah) = 0 while from equation 8 Ωs(Ah) = logn(m). So Ah dwells on the top-left corner of 
the set of possible languages in target space (Fig. 2a). Consider on the other hand δ= ≡ =A A a{ }s ij ik , where k 
is an arbitrary index ∈k n[1, ]. Here one given signal (sk) is used to name all existing rj resulting in the minimal 
cost for the speaker. It follows from equations 7 and 8 that Ωh(As) = 1 and Ωs(As) = 0, so this matrix sits on the 
bottom-right corner of the Ωh − Ωs plane (Fig. 2a). Owing to the graph representing As (Fig. 1d) we refer to it as 
the star graph.

These optimal languages for one of the agents also entail the worst case for its counterpart. Hence, (for n = m) 
no matrices lie above Ωs = logn(m) nor to the right of Ωh = 1 (Fig. 2a). A language with as many signals as objects 
and with all of its signals completely degenerated sits on the upper right corner of the corresponding space. This 
is encoded by a block matrix filled with ones. For simplicity, the vertical axis in all figures of this paper has been 
rescaled by logm(n) so that the upper, horizontal boundary of the set is Ωs = 1. This happens naturally if n = m, 
which we take often to be the case.

The only boundary left to ascertain is the one connecting Ah and As in the lower left region of target space. This 
constitutes the optimal tradeoff when trying to simultaneously minimize both Ωh and Ωs, hence it is the Pareto 
front (ΠΓ) of the multiobjective least effort language problem. It can have any shape as long as it is monotonously 
decreasing (notably, it does not need to be derivable nor continuous), and its shape is associated to phase transi-
tions and critical points of the model24,28–31.

Prokopenko et al.22,23 computed analytically the global minimizers of equation 3. These turn out to be all 
matrices A that do not contain synonyms – i.e. which have just one 1 in each column. For those codes, using some 
algebra we come to the next expressions for the target functions:

H R S n
m

log( ) log ( ) ( ),
(10)h m m

i

n
i

n i
1

∑
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=
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1

∑
ρ
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m
log n

log ( ) 1
( )

;
(12)

s n
m

hΩ = − Ω

where ρi is the number of objects named by the i-th signal (see equation 17 below). Equation 12 defines a straight 
line in target space (Fig. 2a). It can be shown that minimizers of equation 3 are always Pareto optimal. The oppo-
site is not necessarily true: there might be Pareto optimal solutions that do not minimize equation 3 24,28. For that 
to be possible, the Pareto front needs to have cavities. But the curve from equation 12 connects Ah and As in target 
space barring that possibility. In this problem there cannot exist other Pareto optimal matrices other than the 
minimizers of equation 3. Hence equation 12 depicts the Pareto optimal manifold ΠΓ in target space.
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Assuming n = m, ΠΓ becomes the straight line Ωs = 1 − Ωh (Fig. 2a). This implies that the global optimizers 
of equation 3 undergo a first order phase transition at 1/2 cλ λ= ≡ 24,28,30, thus confirming previous observa-
tions about the model20,22,23. In the literature it is also speculated that this phase transition has a critical point, 
but this could not be confirmed earlier. Equation 12 shows analytically that the front of this problem is a 
straight line. Pareto fronts which are a straight line have been linked to critical points24,31. The connection is 
equivalent to a geometric condition in thermodynamics that relates critical points to straight lines in 
energy-entropy diagrams63–65. Hence, the fact that our front is a straight line is an analytical proof that the 
model has a critical point. This criticality makes sense in the same way in which we talk about phase transitions 
for this model.

Again assuming n = m, the triangle shown in Fig. 2a contains all possible communication codes according 
to our model. For a modest n = 200 = m there are 2nm = 240000 possible codes. It rapidly becomes impossible to 
represent the whole design space of language networks. All the work reported in the Results section is based 
on a series of measurements taken upon languages distributed throughout the morphospace. For these to be 
representative we needed to generate an even sample of Γ across the Ωh − Ωs plane. Several strategies were 
tried with that aim, such as wiring objects to signals with a low probability p, generating a few Pareto opti-
mal codes, the star and the one-to-one mappings, mutations and combinations of these, etc. This approach 
allowed to sample very small and isolated regions of the morphospace. To improve over this, we implemented 
a genetic algorithm. It involved a population of Ns = 10000 matrices with n = 200 = m. They were generated 
using the strategies just mentioned. The algorithm proceeded with mutation and crossover until the mor-
phospace (the upper-right corner of a 30 × 30 grid in (Ωh,Ωs) ∈ [0, 1] × [0, 1]) was evenly covered. At each 
generation, the algorithm would take existing matrices and mutate or apply cross-over to them, then check 
if the newly generated matrices would lead to a more uniform distribution (by occupying squares of the grid 
with less representatives). If so, they would replace other matrices that belonged to over-represented squares 
of the grid.

We opted for 10000 language networks with ~20 matrices per grid square because of how costly it was to keep 
all matrices in the computer memory and to make calculations with them. These computational costs are already 
large for a mere n = 200 = m. Because Pareto optimal languages do not contain synonyms, a more sparse notation 
is possible for them and we can investigate more and larger matrices along the front. Some computations are also 
simplified for these languages (e.g. Ωh and Ωs are bound by equation 12). Because of this, we could perform an 
alternative sampling of Ns = 10000 Pareto optimal matrices with up to n = 1000 = m. Different stochastic mech-
anisms were used to seed a similar genetic algorithm that ensured an even sample of matrices along the front. 
While Pareto optimal matrices always included 1000 objects, some of the mechanisms to generate them would 
result in languages with less signals, but we can always assume that n = 1000 = m and that a lot of signals included 
only zeros in the corresponding positions of the A matrix. All measurements introduced in the next section have 
been properly normalized for comparison.

The fact that simple recipes to build matrices (and mutations thereof) resulted in a poor sampling of our 
language morphospace provides some relevant insight about how difficult it is to access most of Γ. In order 
to sample the whole space we needed non-trivial algorithms explicitly working to cover the whole space. If 
we would observe actual languages in singular regions of the morphospace, we could wonder about what 
evolutionary forces brought those languages there and suggest that more is needed than what simple rules 
offer for free.

Measurements taken upon language networks.  To explore the morphosapce we take a series of meas-
urements upon the A matrices that relate to their size, network structure, or suitability as a model of actual human 
language. In the following we introduce these measurements in detail. The projection of these measurements back 
onto the morphospace are reported in the Results section.

Characterizing the vocabulary.  While languages in our toy model consist of n × m matrices (which account for n 
signals naming m different meanings), not every available signal is actually used by every language. The effective 
vocabulary size is the amount of signals in a language that name at least one object:

≡ = = … .L A s a j m( ) { , 1 for some 1, } (13)i ij

We take this into account when normalizing certain properties.
We introduce a polysemy index IP and a synonymy index IS as:
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and ρi is the number of objects associated to signal si:

a
(17)

i
j

m

ij
1

∑ρ = .
=

These indexes measure the average logarithm of σj and ρi respectively – i.e. the average information needed to 
decode an object given a signal (IP) and the averaged degeneracy of choices to name a given object (IS).

Network structure.  Each language in our model defines a bipartite network. Its connectivity is given by the 
corresponding A matrix (Figs 1d–f and 3a,d). We refer to such a network as the code graph. We can derive two 
more networks from each code: one named R-graph (Fig. 3b,e) in which objects rj, rj′ ∈ R are connected if they 
are associated to one same (polysemous) signal, and another one named S-graph (Fig. 3c,f) in which signals si, 
si′ ∈ S are connected if they are synonymous. Because Pareto optimal codes do not contain synonyms, their bipar-
tite code graphs consist of disconnected components in which the i-th signal binds together ρi objects (Fig. 3a). 
Consequently, each Pareto optimal R-graph is a set of independent, fully connected cliques (Fig. 3b) and S-graphs 
are isolated nodes (Fig. 3c).

We kept track of the set of all connected components of a network ≡ = …C C l N{ , 1, , }l C  (with NC the num-
ber of independent connected components) and their sizes ||Cl||. Then

 ≡C Cmax{ } (18)max
l

l

gives us the size of the largest connected component. We also counted the frequency f(||Cl||) with which compo-
nents of a given size show up. Then the entropy of this distribution

   ∑= −
=

H
N

f C f C1 ( )log( ( ))
(19)C

C l

N

l l
1

C

conveys information about how diverse the network is.

Complexity from codes as a semantic network.  Semantic networks underlie human language in a way often 
exploited by psychological or performance tests that ask patients to list words of a given class (e.g. animals) by 
association. These have often been translated into mathematical graphs and analyzed with the tools of network 
theory52,66. Inspired by this philosophy, the graphs introduced above allow us to look at our language matrices 
as toy generative models of semantic networks. We explain in the next paragraphs how we built this generative 
model and we illustrate it below with an example.

Starting from an arbitrary signal or object we implement a random walk moving into adjacent objects or sig-
nals. We record the nodes visited, hence generating symbolic strings associated to elements r Rj ∈  and s Si ∈ . The 
network structure shall condition the frequency f(rj) and f(si) with which different objects and signals are visited. 
The entropies

∑= −
=

H f r log f r( ) ( ( )),
(20)
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j m j
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will be large if R or S are evenly sampled. They will present lower values if the “semantic network” generated by 
our model introduces non-trivial sampling biases. Hence, here low entropy denotes interesting structure arising 
form our toy generative model. We also recorded 2-grams (couples of consecutive objects or signals during the 
random walk) and computed the corresponding entropies H2R and H2S.

This procedure is limited to sampling from the connected component to which the first node (chosen at ran-
dom) belongs. If, by chance, we would land in a small connected component, these entropies would be artificially 
low disregarding the structure that could exist elsewhere in the network. To avoid this situation we imposed that 
our generative model jumps randomly when an object was repeated twice in a row since the last random jump, or 
since the start of the random walk. (We also interrupted the random walk when signals, instead of objects, were 
repeated. Results were largely the same).

Let us follow the explicit example depicted in Supporting Fig. 1. Indexes of signals and objects are interchange-
able, so they have been named as they were first sampled by the generative model. We start out by picking up a 
random signal (s1) from the language network from Fig. 3d. From there, we move randomly into neighboring 
object r1, then into neighboring signal s2, then into neighboring object r2, neighboring signal s3, and then, by 
chance, we bounce back into neighboring object r2. Thus far we have generated the symbolic sequence (s1, r1, s2, r2, 
s3, r2). Here, r2 has just been repeated twice in a row since the sampling started. This is our condition to perform a 
random jump to avoid getting stuck in small connected components (despite the fact that this network has only 
one connected component). From r2 we jump to a randomly chosen signal that happens to be s4 (dashed arrow 
in Supporting Fig. 1). From there objects r3 and r4 are sampled by random walk, sampling again s4 in between. As 
noted above, in other implementations of the generative model we decided to stop when a signal was repeated 
twice since the beginning of the sampling or since the last random jump. This is not the case in this example, so 
we proceed to sample r5, and so on.
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We have produced the symbolic sequence:

s r s r s r s r s r s r( , , , , , , , , , , , , )1 1 2 2 3 2 4 3 4 4 4 5 … .

Actual sequences are much longer. From here we count the frequency with which each signal (f(si)) and object 
(f(rj)) has been sampled and proceed to compute the entropies in equations 20 and 21. If we remove the objects 
from this sequence, we are left with the signal sequence: s s s s s s( , , , , , , )1 2 3 4 4 4 … , which contains the 2-grams 

…s s s s s s s s s s{( , ), ( , ), ( , ), ( , ), ( , ), }1 2 2 3 3 4 4 4 4 4 . From here we count the frequencies of digrams and compute the 
associated entropy H2S. A similar procedure is followed to produce an entropy for digrams of objects H2R.

Zipf, and other power laws.  Assuming that every object needs to be recalled equally often, and that whenever 
an object rj is recalled we choose uniformly among all the synonymous words naming rj; we can compute the 
frequency with which a word would show up given a matrix A. This is far from realistic: not all objects need to 
be recalled equally often, and not all names for an object are used indistinctly. This does not prevent numerical 
speculation about computational aspects of the model, which might also be informative about the richness of the 
morphospace. In any case, this has been the strategy used in the literature to compute the frequency with which 
each word is retrieved by the model20,22,23.

The word frequency distribution of a language follows a power law if the i-th more frequent signal appears 
with frequency P(si) ~ 1/iγ. This distribution becomes Zipf ’s law if γ = 1, such that the second most frequent 
signal appears half the times of the first one, the third most frequent signal appears a third of the first one, etc. 
Once we had built word frequency distributions for each language network, we followed the prescriptions in67 
to evaluate how well each of these distributions were explained by power laws. In one approach, we used a 
Kolmogorov-Smirnov (KS) test to compare word distributions from the model to Zipf ’s law – no fitting of the 
original distribution was performed here, since Zipf ’s was an Ansatz. In another approach, we fitted our model 
distributions to power laws with arbitrary exponents – i.e. we did not impose γ = 1. We then used another KS-test 
to assess the fitness of the original distributions to this generalized power laws12,45.

Data availability.  This is a mostly theoretical work based on computational experiments. Instructions have 
been provided which allow a reader to reproduce our work. The empirical data used in this paper has been 
obtained from the WordNet database and is freely available online.
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