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Source localisation and its 
uncertainty quantification after the 
third DPRK nuclear test
Pieter De Meutter   1,2,3, Johan Camps1, Andy Delcloo2,3 & Piet Termonia2,3

The International Monitoring System is being set up aiming to detect violations of the Comprehensive 
Nuclear-Test-Ban Treaty. Suspicious radioxenon detections were made by the International Monitoring 
System after the third announced nuclear test conducted by the Democratic People’s Republic of Korea 
(DPRK). In this paper, inverse atmospheric transport and dispersion modelling was applied to these 
detections, to determine the source location, the release term and its associated uncertainties. The 
DPRK nuclear test site was found to be a likely source location, though a second likely source region in 
East Asia was found by the inverse modelling, partly due to the radioxenon background from civilian 
sources. Therefore, techniques to indirectly assess the influence of the radioxenon background are 
suggested. In case of suspicious radioxenon detections after a man-made explosion, atmospheric 
transport and dispersion modelling is a powerful tool for assessing whether the explosion could have 
been nuclear or not.

The Comprehensive Nuclear-Test-Ban Treaty (CTBT) was opened for signature in 1996. Once the Treaty 
enters into force, it will ban atmospheric, underwater and underground nuclear explosions. The International 
Monitoring System is almost fully operational and already measures infrasound, hydroacoustic and seismic 
waves, together with certain airborne radionuclides. The radionuclide measurement system will consist of eighty 
ground stations measuring radioactive particulates. Forty of these stations will also be equipped with noble gas 
detectors, allowing the measurement of airborne concentrations of 131mXe, 133mXe, 133Xe and 135Xe (with half-lives 
of respectively 11.84 d, 2.20 d, 5.25 d and 9.14 h1). These radioactive xenon isotopes (hereafter radioxenon) are 
selected for monitoring due to their significant production after a nuclear explosion, their half-life and their 
likelihood to seep through the ground in case of an underground nuclear explosion. Observations from the 
International Monitoring System are made available to member states that have signed the CTBT in order to 
verify compliance with the Treaty.

In the past, the Democratic People’s Republic of Korea (DPRK) announced several times to have conducted 
a nuclear test. Although the International Monitoring System has not yet been fully installed (90% to date2), 
these tests provide interesting cases for testing the capability to detect clandestine nuclear tests and to confirm 
announced nuclear tests. Seismic waves were detected after each DPRK nuclear test2. These observations allow 
the determination of the timing, location and magnitude of the explosion. In order to discriminate conventional 
explosions from nuclear explosions, a specific signature of radionuclides needs to be determined. If measured, 
atmospheric transport models can be used to verify whether these radionuclides originated from the nuclear test 
site. This task is complicated by two factors: (i) the DPRK nuclear tests were conducted underground, so that it is 
a priori not sure if and what fraction of radionuclides were released into the atmosphere; (ii) there is an ongoing 
background of radioxenon from civilian sources such as nuclear power plants and medical isotope production 
facilities, resulting in frequent detections by the International Monitoring System3.

The inverse problem in atmospheric transport and dispersion modelling (ATM) consists of finding source 
parameters such as release location, release height, release amount and release period, based on a set of observa-
tions. The (dis)agreement between these observations and their corresponding simulated values obtained from 
the selected source parameters, is quantified by a cost function or likelihood function. An overview of different 
inverse modelling methods has recently been published4. Examples of inverse atmospheric transport modelling 
of point sources include the calculation of the release amount of radionuclides from nuclear accidents, such as 
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the Fukushima Dai-ichi nuclear power plant accident in 20115–8, or modelling the release of ash from volcano 
eruptions like the Eyjafjallajökull in 20109,10 which severely disturbed air traffic above Europe. For these cases, 
inverse modelling is often followed by forward modelling using the best source parameters obtained from the 
inverse modelling, in order to know the concentration of a tracer at any location and any time. This complements 
the observations, which are typically sparse. In other cases, inverse modelling is used to locate possible sources 
(such as the source location of 131I detections made in Europe in 201111). Inverse atmospheric transport modelling 
is also used in other areas of research, such as the quantification of greenhouse gas fluxes in the context of climate 
science.

In the past, radioxenon observations were linked to nuclear tests conducted by the DPRK12–14. Of particular 
interest are the specific combinations of 131mXe and 133Xe that were detected seven to eight weeks after the third 
announced nuclear test in February 201314. These detections were made in three samples taken at the station 
RN38 in Takasaki (Japan) between 7–9 April 2013 and in two samples taken at the station RN58 in Ussuriysk 
(Russia) between 12–13 April 2013. The radioxenon detections were attributed to a nuclear explosion, mainly 
based on their unusual occurrence compared to the station’s record14. Atmospheric transport and dispersion 
modelling was used to calculate the source-receptor-sensitivities between the stations (or “receptors”) and pos-
sible sources. By calculating correlations between the source-receptor-sensitivities and the observed concentra-
tions, so-called “Possible Sources Regions”15 were constructed. The nuclear test site Punggye-ri was found to fall 
within these possible source regions14.

More complex ATM methods for assessing the third nuclear test conducted by the DPRK have been made 
using Bayesian methods to find source parameters16,17, and using an optimisation method to find the possible 
source regions18. All three studies identified the Punggye-ri nuclear test site as a likely source of the suspicious 
radioxenon detections. An automated methodology for principled computational inference for Bayesian source 
reconstruction was described and applied to the third nuclear test conducted by the DPRK17. In another study, 
a method for fusing information from the radionuclide verification regime with the seismic verification regime 
was proposed18, which method consists of assessing the cost function values at only those locations where seismic 
activity had been measured.

After the announced nuclear test in January 2016, elevated 133Xe concentrations were measured by the 
International Monitoring System, compatible with a delayed release from the Punggye-ri nuclear test site19. 
However, due to the lack of detections of other radioxenon isotopes, it could not be excluded that the observed 
133Xe originated from civilian sources. In such cases, ATM is able to narrow down possible source regions and 
provide information on the release period and release amount. The resulting area, preferably as small as possible, 
depends on the meteorological conditions and the network configuration: more observations at different geotem-
poral locations will result in a smaller area20.

In this paper, the existing methodology19 was extended to improve the estimation of the source location and 
to address the problem of the radioxenon background. Inverse long-range atmospheric transport and dispersion 
modelling was used to assess the source location of the radioxenon detections previously described14. The fol-
lowing two questions were addressed in particular: (i) how precise can we narrow down possible source regions 
and (ii) can these detections be linked to a delayed release from the Punggye-ri nuclear test site. An uncertainty 
quantification was provided by using unique meteorological ensemble data, which allowed to construct grid box 
probability maps for the source localisation.

Source localisation of the Xe-133 detections
In this section, the possible source locations of the selected 133Xe samples will be determined. First, inverse mod-
elling was applied over the northern hemisphere using deterministic weather data (Methods). From that assess-
ment, a smaller region of interest was identified for which the inverse modelling was repeated using the ensemble 
weather data (Methods).

Assessment over the northern hemisphere.  We started with assessing which areas in the northern 
hemisphere could be potential source locations, explaining the observations. The deterministic weather model 
was used with horizontal grid spacings of 1°. Two methods were used, the results of which are shown in Fig. 1. 
First, the correlation between the source-receptor-sensitivities and the observed 133Xe activity concentrations 
were calculated for all simulation times and for each grid box. This corresponds to the correlation between 
observed and simulated activity concentrations assuming a single short release (the duration of the release cor-
responds to the output frequency of the source-receptor-sensitivity fields by Flexpart, which was 3 hours). The 
result is what is sometimes called the “Possible Source Region” or PSR15. Since we were interested in the possible 
source locations and not in the release timing, the grid box maximum correlation was taken over the full simula-
tion period of 26 days. The result is shown in Fig. 1a.

Second, inverse modelling using the optimisation technique described in Methods was used to obtain a cost 
function value for each grid box. The inverse modelling was applied once for the full simulation period, so that 
a single cost function value was obtained for each grid box, in contrast to the method where correlations were 
calculated.

The correlation map (Fig. 1a) shows a few large distinct areas in East Asia, as well as a huge area spanning 
from the Middle East to a large part of North America. Many grid boxes had a high correlation at some point in 
the simulation period, so that the correlation did not seem to be a good way to distinguish likely source regions 
from other regions, unless when using a very high correlation coefficient as threshold. The cost function values 
resulting from the inverse modelling are shown in Fig. 1b. Two distinct areas can be seen: the first lies roughly 
over the DPRK and the second lies near the border between China and Mongolia. These two regions have also a 
very high correlation (Fig. 1a).



www.nature.com/scientificreports/

3Scientific ReporTS |  (2018) 8:10155  | DOI:10.1038/s41598-018-28403-z

When comparing both methods, it can be seen that the inverse modelling is better in discriminating likely 
source regions from other regions than the “Possible Source Regions” method: many grid boxes that had a high 
correlation, are unlikely according to the inverse modelling. One might wonder whether the difference could 
be attributed to the upper bound on the release term in the inverse modelling. However, the cost function maps 
obtained from applying inverse modelling with an upper bound increased by three orders of magnitude (Qmax = 
1016 Bq/day) gave a roughly identical pattern (not shown).

Focus on East Asia.  Based on the assessment over the northern hemisphere, we identified two regions of 
interest located in East Asia. To assess these regions further, we used the unique data from the Ensemble Data 
Assimilation system of ECMWF. This resulted in a set of 51 ensemble members or meteorological scenarios rep-
resenting the uncertainty in the meteorological data (Methods). For each ensemble member, we performed a set 
of backward Flexpart runs to calculate the source-receptor-sensitivity fields with horizontal grid spacings of 0.5°. 
Next, we performed inverse modelling (Methods) to obtain a set of 51 cost function values and optimal release 
terms for each grid box, one for each ensemble member. The inverse modelling was repeated twice, each time 
using one of the two cost functions described in Methods (Eqs 3 and 4). Figure 2 shows the resulting two maps of 
cost function values. The grid box median value was taken over all 51 cost function values. Both patterns of the 
cost function values are similar, so that the possible source locations are robust for the choice of the cost function.

In order to visualize the uncertainty captured by the ensemble of 51 cost function maps, a cost function 
threshold was first applied to discriminate possible source regions from other regions. The threshold was set at the 
0.01 quantile of all grid box cost function values (the total number of grid boxes was 13,680). A possible source 
location probability map was then constructed by taking the percentage of members having a cost function below 
the threshold for each grid box, as was done in a previous study19. This is justified by the fact that in the Ensemble 
Data Assimilation system of ECMWF, each member can be considered equally likely, hence each member should 
have equal weighting. This is expected not to be the case for multimodel ensembles, where instead different 
weightings should be used depending on the member’s individual performance. The result for the inverse mod-
elling using Eq. 3 is shown in Fig. 3. The left panel of Fig. 3 was obtained using the unperturbed meteorological 
data only (to better illustrate the added value of the ensemble versus the deterministic case), while the right panel 
was obtained using the full ensemble. The deterministic case shows two possible source regions (Fig. 3a). For the 

Figure 1.  (a) Grid box maximum “Possible Source Region” (see text) for all simulation times for the northern 
hemisphere. (b) Minimum value of the cost function (Eq. 3 was used here) after inverse modelling was applied 
to each grid box separately. Maps were generated using the R statistical software44,45.

Figure 2.  Grid box median cost function in the lowest model level using (a) Eq. 3 and (b) Eq. 4. The levels in 
the legend correspond to the 0, 0.0005, 0.001, 0.005, 0.01, 0.05 and 1 quantiles. Maps were generated using the R 
statistical software44,45.
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full ensemble, a discrimination was made between grid boxes for which at least 95% of the ensemble members 
agree that grid boxes are likely sources (dark orange area in Fig. 3b) or unlikely sources (white area in Fig. 3b). 
The likely sources regions were smaller when using the ensemble compared to the deterministic case, but a new 
region appeared where the ensemble members did not agree on whether a grid box was a likely source or not 
(yellow area in Fig. 3b). A notable difference between the deterministic and probabilistic case is the area near the 
Chinese-Mongolian border: the deterministic model showed that it is a likely source region, while the ensemble 
showed that it is associated with large uncertainties. The deterministic case can thus (i) be overly confident for 
certain grid boxes and (ii) perhaps worse, miss certain grid boxes that are likely source regions according to the 
ensemble.

Influence of the 133Xe background
The radioxenon background varies significantly with time and space, and modelling its daily value at a specific 
location is not trivial. Furthermore, although significant effort has been put into understanding the global radi-
oxenon background21,22, it could be that not all local sources of radioxenon are known. In this paragraph, we 
describe the assumptions that we made on the background, but we do not attempt to model it explicitly due to the 
uncertainties described here.

The signal of interest for which we wanted to find the possible source regions are the five samples that were 
shown in a previous study to be exceptional with respect to the station’s historic data due to the particular ratio 
of 133Xe and 131mXe14. It was assumed that the signal of interest came from a single source (either a nuclear test or 
a civilian source). The background signal, defined as any other signal originating from one or multiple sources, 
was assumed to be significantly smaller than the signal of interest in the 133Xe samples containing more than 1 
mBq/m3. In the other samples, having a 133Xe activity concentration ranging from below detection level up to a 
few tenths of mBq/m3, the contribution from the background was assumed to be anything up to 100%.

In this section, we assess the influence of the assumed 133Xe background on the inverse modelling.

Robustness of the cost function to the background.  We start by arguing that the cost functions used 
here (Eqs 3 and 4) have an inherent robustness against small background contamination of the samples. Indeed, 
both the mean square error and the correlation in Eq. 3 are resilient to small-scale perturbations on the radioxe-
non activity concentrations.

The geometric variance treats all observations equally, but can have similar resilience via the parameter α in 
Eq. 4. This parameter α was added in the formula to allow the inclusion of non-detections in the inverse model-
ling (having activity concentrations ranging from zero to just below detection level). At the same time, it allowed 
for the adjustment of the tightness of fit between the observed and simulated activity concentrations. If a low 
value for α is chosen, observations with low activity concentrations should match equally well as observations 
with high activity concentrations. If a high value is attributed to α, the inverse modelling will be dominated by the 
information from observations with high activity concentrations. The value of α was set to 0.1 mBq/m3, slightly 
below the typical minimal detectable concentration. The effect of changing α in Eq. 4 on the source localisation 
is shown in Fig. 4. For very small α = 0.01 mBq/m3, and thus allowing a large influence of the background on 
the inverse modelling, the most likely source area is now found near the Chinese-Mongolian border. Although 
the area around the nuclear test site Punggye-ri is still distinguishable from other regions by a lower cost func-
tion, it is now a less likely source region (Fig. 4, left). When, on the other hand, a large α = 1 mBq/m3 was used, 
the inverse modelling now uses mostly information coming from samples with high activity concentration. The 
background will now have a small effect, with the risk of not using all relevant available information. The opposite 
effect can be seen on the cost function map: the area around the nuclear test site Punggye-ri is now the most likely 
source region (Fig. 4, right).

The value of α should be chosen based on the minimum detectable concentration and the typical background 
concentrations and is thus dependent on the tracer of interest. Its best value for 133Xe likely ranged from 0.1 
mBq/m3 to 1 mBq/m3.

Setting low 133Xe activity concentrations to zero.  The sensitivity to the background was further 
assessed by setting all 133Xe observations to zero, except for the five suspicious samples described in a previous 
study14 and for the elevated 133Xe measurement of 0.7 mBq/m3 taken at RN38 just after the three consecutive 

Figure 3.  Grid box probability map using the cost function in Eq. 3 for (a) the unperturbed member only and 
(b) the full ensemble. Maps were generated using the R statistical software44,45.
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samples containing particular combinations of 131mXe and 133Xe. The resulting cost function maps are shown 
in Fig. 5. It shows that the main features remain, which is not surprising since the cost functions are not very 
sensitive to low activity concentrations as discussed in the previous subsection. However, (i) the area near the 
Chinese-Mongolian border seems now a less likely source and (ii) the area of possible sources around DPRK is 
now more concentrated around the Punggye-ri nuclear test site.

Inverse modelling using a subset of the observations.  We now assess the degree of consistency 
among subsets of observations, meaning that all subsets of observations can be explained by one and the same 
single source. Due to the existence of the civilian radioxenon background, one might expect that observations 
will generally not be consistent. However, in the previous paragraphs we concluded that small inconsistencies do 
not significantly influence the inverse modelling source localisation. Here we selected 500 random subsets con-
taining 75% of the observations, and applied inverse modelling on each of these subsets, using the unperturbed 
member only.

Such analysis could also be used to check for robustness against the case that a few samples contain wrong 
information, in the sense that the observed radioxenon is the signature of other sources than the source of inter-
est. Indeed, using combinatorics, we can calculate the probability of not drawing n observations when a fraction 
frac = 75% of observations are drawn out of a total of N = 57 observations, and repeating this procedure ntries 
= 500 times:
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The probabilities for different values of n are given in Table 1. Note that with this setup, it is almost certain that 
any combination of three observations will not be selected at least once.

For each of the 500 subsets of observations, inverse modelling was applied. Equation 4 was used, since both 
cost functions gave similar results and the inverse modelling was slightly faster compared to Eq. 3. In order to 
interpret the resulting 500 cost function maps, we plotted the grid point minimum, maximum, median and stand-
ard deviation of the cost function value in Fig. 6 (as such, it could well be that in Fig. 6, different grid boxes make 
use of different subsets of observations). The grid box median of the cost function (Fig. 6a) is very similar to the 
calculation using all observations (Fig. 2b). This confirms indeed that the inverse modelling was consistent for 
subsets of observations, and that small perturbations from the background did not strongly influence the results. 
When plotting the grid box standard deviation of the cost function (Fig. 6b), the two possible source regions are 
shown to be robust for selecting different subsets of observations, especially the region around the Punggye-ri test 
site. The grid box minimum and maximum cost function values were also plotted (Fig. 6c and d). Figure 6c shows 
that it is possible to find a combination of observations for which a pattern was found significantly differing from 

Figure 4.  Grid box cost function in the lowest model level using Eq. 4 for different values for α: (a) α = 0.01 
mBq/m3 and (b) α = 1 mBq/m3. The levels in the legend correspond to the 0, 0.0005, 0.001, 0.005, 0.01, 0.1 and 1 
quantiles. Only the unperturbed member was used. Maps were generated using the R statistical software44,45.

Figure 5.  As Fig. 2, but with certain observations set to zero (see text) and for the unperturbed member 
only. As before, (a) was obtained using Eq. 3 and (b) using Eq. 4. Maps were generated using the R statistical 
software44,45.



www.nature.com/scientificreports/

6Scientific ReporTS |  (2018) 8:10155  | DOI:10.1038/s41598-018-28403-z

previous patterns. However, this pattern corresponded to the case where the largest three 133Xe observations were 
omitted from the inverse modelling, while it was assumed that these contain most information on the event of 
interest. As such, it should not surprise that a different pattern was found. When requiring that a grid box should 
comply with all subsets of observations, which can be obtained by taking the grid box maximum of the cost func-
tions (Fig. 6d), we found a pattern roughly identical to the median (Fig. 6a).

Source localisation of the Xe-131m detections.  The inverse modelling was repeated using 57 131mXe 
observations (the same period and stations as for the 133Xe observations as described in Methods were used). 
The cost function map is shown in Fig. 7. Not surprisingly, a pattern similar to Fig. 2 can be observed. Indeed, 
the same meteorological data were used, consequently the source-receptor-sensitivities are similar (the only 
difference comes from the radioactive decay since 131mXe and 133Xe have different half-lives). Furthermore, the 
observations of 131mXe and 133Xe are strongly correlated: the Pearson correlation coefficient is 0.86 for these 57 

n p

1 ≈1

2 ≈1

3 0.998

4 0.72

5 0.21

6 0.04

Table 1.  Probability of not drawing n observations (p-values were calculated using Eq. 1).

Figure 6.  From 500 cost function maps obtained from different subsets of observation, the following statistics 
are plotted: (a) grid box median of the cost function; (b) grid box standard deviation of the cost function; (c) 
grid box minimum cost function; (d) grid box maximum cost function. The levels in the legend correspond to 
the 0, 0.0005, 0.001, 0.005, 0.01, 0.05 and 1 quantiles. Maps were generated using the R statistical software44,45.

Figure 7.  As Fig. 2, but for the 131mXe observations. Maps were generated using the R statistical software44,45.
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observations. Figures 2 and 7 differ noteworthy in the area around the Punggye-ri nuclear test site, which is the 
single most likely source region in Fig. 7, for both cost functions Eqs 3 and 4.

Hypothetical radioxenon release profile at the Punggye-ri nuclear test site.  In this section, it is 
assumed that the radioxenon signal of interest originated from a delayed release at the Punggye-ri nuclear test 
site. The corresponding radioxenon release profile was calculated for three sets of observations: (i) unmodified 
133Xe observations, (ii) the 133Xe observations changed as discussed previously (where most 133Xe observations 
were set to zero) and (iii) unmodified 131mXe observations. The resulting three release profiles are shown in Fig. 8. 
The full ensemble was used, from which uncertainty bounds were created. Eq. 3 was used as cost function, though 
similar features were found when using Eq. 4 (not shown).

The release profile obtained using unmodified observations (Fig. 8a) shows a possible release between 21 and 
30 March 2013, but the associated uncertainties are very large. Around 27 and 29 March, most ensemble members 
predicted a significant release, although the exact amount released showed quite some spread among the ensem-
ble members. Between 6 and 7 April, a sharp release was found with less uncertainty. The ensemble revealed 
that the release could have started a few days earlier. Finally, the ensemble also showed the possibility of releases 
around 10 April and 14 April but with a large degree of uncertainty.

When using modified observations as discussed previously with the aim to minimise the effect of the back-
ground, we see that the releases between 26 and 30 March 2013 had decreased significantly. The uncertainty 
bounds obtained from the ensemble suggests that the only significant release occurred between 4 and 7 April. The 
additional release in Fig. 8(a) compared to Fig. 8(b) is the result of the inverse modelling trying to fit the simu-
lated activity concentrations with the observed low activity concentrations. However, due to the construction of 
the cost function, these have a small impact on the cost function. As a result, large differences in the release term 
can lead to only small differences in the cost function. The additional release should therefore not be interpreted 
too strictly, and the release profile obtained from the modified observations, showing a single robust release, is 
by far the most interesting feature. Note that the uncertainty bounds from the ensemble are helpful for carefully 
interpreting the additional releases.

The 131mXe release profile is shown in Fig. 8(c). As for the 133Xe release profile, a significant release is predicted 
around 6–7 April. Note that this release is lower than for the 133Xe release profile. This is expected since at the time 
of the potential release, the 131mXe inventory is still smaller than the 133Xe inventory due to the different cumula-
tive fission yields23.

Summary and conclusions.  Several weeks after the third announced nuclear test conducted by the 
Democratic People’s Republic of Korea, particular combinations of 131mXe and 133Xe had been measured 
at two noble gas stations that are part of the International Monitoring System to verify compliance with the 
Comprehensive Nuclear-Test-Ban Treaty14. In this paper, the origin of this radioactive xenon has been assessed 
using long-range atmospheric transport and dispersion modelling. Unique meteorological ensemble data were 
obtained by running the latest version of the Ensemble Data Assimilation system of ECMWF for the period 
March-April 2013. Atmospheric transport and dispersion calculations were performed with Flexpart in back-
ward mode to calculate the source-receptor sensitivity fields for 57 noble gas observations from the International 
Monitoring System. Inverse modelling was used to search for an optimal source term in each grid box of the 
domain that matched best with the observations (“best” being quantified by two alternative cost functions Eqs 3 
and 4). Using the adjoint approach, there was no need to rerun the atmospheric transport model during the opti-
misation. The ensemble allowed to quantify the source location uncertainty and release uncertainty.

The source localisation of the 133Xe detections showed two distinct possible source regions: one at the 
Chinese-Mongolian border, and one around the Punggye-ri nuclear test site (Fig. 2). The results were robust for the 
two alternative cost functions that were used in this study. The correlation between the source-receptor-sensitivity 
fields and the observed activity concentrations (sometimes called the “Possible Source Regions” product) turned 
out to be poor in discriminating possible source regions from other regions when the timing of the release is not 

Figure 8.  Release profile (black solid line) obtained from the unperturbed member for the Punggye-ri nuclear 
test site: (a) 133Xe release profile using unadapted 133Xe observations, (b) 133Xe release profile using modified 
133Xe observations and (c) 131mXe release profile using unchanged 131mXe observations. The shadings represent 
the 0.025 and 0.975 quantiles of the full ensemble. The figure was made using the R statistical software44.



www.nature.com/scientificreports/

8Scientific ReporTS |  (2018) 8:10155  | DOI:10.1038/s41598-018-28403-z

specified (Fig. 1). The ensemble allowed to construct grid-pointwise probability maps such as Fig. 3. This pro-
vided additional valuable information compared to the deterministic result.

A particular challenge for the radioxenon verification part of the CTBT is the existence of a radioxenon back-
ground from civilian sources. The influence of the 133Xe background on the source location was assessed indi-
rectly. The assessment suggests that the possible source region around the Chinese-Mongolian border should at 
least partly be attributed to the 133Xe background (partly, since the specific meteorology for that period and the 
noble gas station network configuration also influence the size of possible source regions). This was observed 
when (i) more weight was given to the observations having a high 133Xe activity concentration (Fig. 4b) and (ii) 
certain detections were changed to non-detections (Fig. 5). Furthermore, the results were consistent among dif-
ferent subsets of observations, such that the findings are not negatively influenced by a few samples containing 
133Xe from sources other than the source of interest. This discussion highlights the importance of having a thor-
ough understanding of the background, so that sound assumptions can be made when assessing the influence 
of the background. The parameter α in Eq. 4 was kept constant in this study, but it can readily be extended to 
be station-specific or even sample-specific (representing the fact that different noble gas stations have different 
radioxenon backgrounds or samples have different minimum detectable concentrations).

The source localisation was repeated for the 131mXe detections. The resulting possible source locations were 
similar to those for 133Xe. However, the area around the Punggye-ri nuclear test site was now the single most likely 
source region (Fig. 7).

When a delayed 133Xe release from the Punggye-ri nuclear test site is assumed, a sharp release around 6–7 
April 2013 is observed (Fig. 8). The additional releases with large uncertainties according to the ensemble were 
partly removed by using the modified observations to minimise the effect of the background.

Currently, all four radioxenon isotopes are rarely (if at all) measured in a single sample by the International 
Monitoring System, making a routine discrimination of samples based on the discrimination line24 not feasible. 
However, this technique might become useful in the future since the noble gas detection systems are further being 
improved, making it more likely that all four radioxenon isotopes will be measured simultaneously25,26. To date, 
the detection of radioxenon combined with atmospheric transport modelling provides most feasibly evidence to 
confirm the nuclear nature of a man-made explosion. The source localisation of both 131mXe and 133Xe indicate 
that a delayed release from the Punggye-ri nuclear test can explain the observations, and the inverse modelling 
greatly confines possible source regions.

Methods
Radioxenon observations.  Radioxenon detections and non-detections made by the International 
Monitoring System were used for the inverse modelling. In order to confine the possible source regions of the 
radioxenon detections as much as possible, many observations should be used, since each detection or non-de-
tection carries some information. However, detections can be contaminated by the radioxenon background from 
civilian emitters. It is challenging to estimate the correct radioxenon contribution from civilian emitters for every 
individual sample27,28 (especially if not all civilian sources of radioxenon in the region are known). This highlights 
the importance of understanding the radioxenon background and reducing radioxenon emissions from civilian 
sources29. With the above considerations in mind, we selected all 133Xe observations taken between 5 April 2013 
and 15 April 2013 for the IMS noble gas stations RN20, RN38, RN45 and RN58 (see Fig. 2 for their location). In 
total, 57 observations were used for the inverse modelling (Supplementary Information).

The IMS noble gas stations RN20 and RN45 are equipped with the Spalax system30,31 and measure radioxenon 
activity concentrations every 24 h, whereas RN38 is equipped with the Sauna system32 and measures radioxenon 
activity concentrations every 12 h. Finally, RN58 is equipped with the Arix system and measures radioxenon 
activity concentrations every 12 h33.

ATM model and weather data.  Two sets of meteorological data were used. First, deterministic weather 
data of the Integrated Forecasting System of the European Centre for Medium-Range Weather Forecasts 
(ECMWF) (4 analyses per day were combined with forecasts having a 3 h lead time, so that meteorological 
data were available every 3 h). Second, unique meteorological data created by running the current latest version 
(cy43r1) of ECMWF’s Ensemble Data Assimilation (EDA) system34 for the period March-April 2013. This ensem-
ble consisted of 26 independent lower-resolution 4D-Var assimilations, of which 25 use perturbed observations, 
sea-surface temperatures and model physics. More information on the type of perturbations can be found in 
another study34. The EDA cycles its own background error and covariance estimates, therefore it can be seen as a 
variational implementation of a perturbed observation Ensemble Kalman Filter. For each perturbed EDA mem-
ber, the perturbations with respect to the ensemble mean were calculated. These perturbations were then added 
and subtracted from the unperturbed member, so that 50 perturbed members were obtained. Meteorological data 
were available every three hours, having horizontal grid spacings of 0.5° and having 137 non-uniform vertical 
levels with the top level at 0.01 hPa.

The Lagrangian particle model Flexpart35–37 version 9.02 was used for the atmospheric transport and dis-
persion calculations. Flexpart was used in backward mode38, giving source-receptor-sensitivities as output. 
Radioactive decay was taken into account for both 133Xe and 131mXe. The ECMWF Mars extraction software for 
Flexpart available at the Flexpart website39 was used in modified form.

Inverse modelling method.  Consider a vector of observed concentrations y. Inverse modelling involves 
finding a source term x(x, y, z, t) so that the following relation is true:

ε= +y M x (2)
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Here, M is the source-receptor-sensitivity matrix38,40 and ε is the combined observation and model error. 
Forward modelling is often used to calculate Mx after selecting an initial guess source term x. Via an iterative 
process, the source term is then refined. However, with Flexpart, it is possible (and, if the source location is not 
known, more efficient) to perform a backward calculation for each observation used in the inverse modelling; the 
result is the source-receptor-sensitivity matrix M, thereby avoiding the need to rerun the atmospheric transport 
model during the optimisation: only the source term x(x, y, z, t) must be varied until Eq. 2 holds.

An exact match between simulations and observations is not possible since both the source-receptor-sensitivity 
matrix and the observations contain uncertainties. Instead, the disagreement between the observed activity con-
centrations y and the simulated activity concentrations Mx should be minimised while taking into account the 
uncertainty in the observations and the model. The disagreement is quantified by a cost function. Two cost func-
tions were used in this study. A previous study41 combined the mean square error (mse) and the correlation (cor) 
into a single likelihood weight. It was argued that mse is mainly sensitive to changes in source amount, while tem-
poral cor is mainly sensitive to changes in arrival time and duration. We followed this reasoning for constructing 
the following cost function (note the normalisation of the mse):

∑ ∑= − ⋅











+ −

−

AC AC AC cor AC ACxcost function( ) ( ) ( ) 1 ( , )
(3)samples

obs sim
samples

obs obs sim
2 2

1

where ACobs and ACsim are the observed and simulated activity concentration. An alternative cost function used 
in this study is the geometric variance (Eq. 4). This cost function was found to give the best results when applying 
inverse modelling to a large domain and noisy measurements42. Here, a parameter α has been added representing 
the minimum detectable concentration, such that non-detections could be used in the inverse modelling:

∑ α α=





+ − +





n
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obs sim

2

with n = 57 the number of observations and log the natural logarithm. We assumed that the signal of interest 
originated from a single grid box source. Therefore, for each grid box in the lowest model level, we performed the 
inverse modelling and obtained a cost function value and an associated optimal source term. It was assumed that 
the most likely source locations are those grid boxes with the lowest cost function values.

The release is assumed to took place between 20 March 2013 and 15 April 2013, with release intervals of two 
days. The latter is sufficient to resolve the synoptic scale signal43 and helps to regularise the problem. Although 
such a long release window complicates the inversion due to longer computation times and more unknowns in 
the inversion, it allows to identify remote sources.

The optimisation was done using the routine nlminb from the R statistical software44 that uses a quasi-Newton 
method for the minimisation with bounds on the release term (Qmin = 109 Bq/day and Qmax = 1013 Bq/day were 
used unless otherwise mentioned).

Data availability.  The data generated during and/or analysed during the current study are available from the 
corresponding author on reasonable request.
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