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The pial vasculature of the mouse 
develops according to a sensory-
independent program
Matthew D. Adams1, Aaron T. Winder1, Pablo Blinder   2 & Patrick J. Drew   1,3

The cerebral vasculature is organized to supply the brain’s metabolic needs. Sensory deprivation 
during the early postnatal period causes altered neural activity and lower metabolic demand. Neural 
activity is instructional for some aspects of vascular development, and deprivation causes changes in 
capillary density in the deprived brain region. However, it is not known if the pial arteriole network, 
which contains many leptomeningeal anastomoses (LMAs) that endow the network with redundancy 
against occlusions, is also affected by sensory deprivation. We quantified the effects of early-life 
sensory deprivation via whisker plucking on the densities of LMAs and penetrating arterioles (PAs) in 
anatomically-identified primary sensory regions (vibrissae cortex, forelimb/hindlimb cortex, visual 
cortex and auditory cortex) in mice. We found that the densities of penetrating arterioles were the 
same across cortical regions, though the hindlimb representation had a higher density of LMAs than 
other sensory regions. We found that the densities of PAs and LMAs, as well as quantitative measures 
of network topology, were not affected by sensory deprivation. Our results show that the postnatal 
development of the pial arterial network is robust to sensory deprivation.

Neural activity and development is energetically demanding1–4, and the glucose and oxygen that supply the needs 
of neurons and astrocytes must be supplied by blood flow5,6. The structure of the cerebral vasculature is a major 
determinant of the local metabolic supply7,8, but what aspects of the vascular structure is altered to match the 
neural demands is not well understood. Consistent with the structure of the vasculature being a key determinant 
of local metabolic supply, anatomical studies have shown that the capillary density is matched to the metabolic 
demand of the tissue9,10. On the coarse scale of areas and layers, vascular density is correlated with neural density 
and markers of metabolic demand10–15. This matching of the vascular structure and neural activity takes place 
during the postnatal period16. In rodents, during the four weeks following birth, both the cerebral vasculature17–21 
and the cortical neural activity and connections16,22–28 undergo extensive modification and co-development. 
Perturbing neural activity with sensory deprivations (such as whisker plucking in rodent models) during the 
postnatal critical period (specifically in the first two postnatal weeks29,30) causes sustained reductions in metabolic 
activity31,32, cortical spiking rate following sensory stimulation33, excitatory and inhibitory synaptic strengths34, 
and also altered synaptic connectivity22,35.

Because of this co-development, disruptions of normal neural activity will drive changes in capillary den-
sity21,36, though this deprivation must be done during the early critical period for it to be effective (see21). Early 
life experience is known to bi-directionally modulate cortical capillary density37. Sensory deprivation, such as 
whisker plucking or lesioning of the vibrissae follicles, decreases neural activity and capillary density38 in the 
deprived region. As with synaptic plasticity39, there is a critical period where the vascular network is more mal-
leable to these perturbations. In adulthood (approximately after postnatal day 30 in mice), the vascular networks 
are much less plastic19,21,40,41. The postnatal remodeling of the pial vasculature is primarily due to removal of lep-
tomeningeal anastomoses (LMAs)17,20,42. LMAs are collateral connections between arteries on the pial surface that 
form ‘loops’ in the vascular network that allow blood flow to route around an occlusion in one arterial branch43. 
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Note that the pial arterioles and veins are not connected to the dural vessels. Though these two vascular structures 
are physically adjacent, they form completely unconnected vascular networks44,45.

While many studies have looked at the effects of neural manipulations on the capillary network density, the 
effects of perturbed neural activity on the pial arterial network has not been investigated. We hypothesized that 
in addition to capillary networks being altered by sensory deprivation, pial arteriole structure might be altered as 
well. Though the pial arterioles are innervated by peripheral nerves46, neural activity in the deep layers of cortex 
drives dilation47 (and sometimes constriction48) of pial arterioles. This strong relationship between neural activ-
ity in the cortex and the pial arterioles is due to the electrical conduction of dilatory signal along the endothelial 
cells49–54. The net result of this strong electrical coupling between the parenchymal vessels and pial arterioles is 
that pial arterioles are strongly dilated by neural activity, evoked by sensory stimulation55–59, locomotion44,54,60–62, 
whisking63, or optogenetic stimulation of cortical neurons64,65. Whisker deprivation causes decrease in evoked 
firing rates during behavior and in response to whisker stimulation66,67. Acute sensory deprivation decreases met-
abolic activity in the deprived cortex in both humans68 and animals31. Sensory deprivation should consequently 
decrease the frequency and amplitude of pial arteriole dilation during the deprivation period, decreasing overall 
flow to the deprived region. Because of the conduction of electrical signals among arteries, these changes could 
spill over other brain regions. The pial arterioles are innervated by peripheral nerves46, though it is controversial 
whether they play a substantial role in controlling cerebral blood flow under normal physiological conditions46,69. 
Though pial vessels are in contact with the CSF, signals in the CSF do not seem to impact sensory-evoked dila-
tion70. While we currently do not completely understand how the vascular system assembles and remodels, 
there is wealth of evidence that the amount and variations in blood flow control vessel growth or pruning71–74. 
Computer simulations have shown that networks of blood vessels instantiating flow-dependent remodeling or 
pruning can assemble into structures similar to those observed in animals75–80. Importantly, these simulations 
show it is not only the absolute level of flow, but also the spatial and temporal dynamics of the fluctuations in 
flow that shape the final vascular network. The existence and maintenance of the anastomoses in the network are 
particularly sensitive to flow variations75–80. Without fluctuations in flow, the anastomoses are pruned in these 
models. Whisker deprivation will change the spatial and temporal patterns of neural activity in vibrissa-related 
somatosensory cortex, which will consequently change the patterns of pial arteriole dilations, and thus flow, in the 
pial arterial network. These deprivation-induced flow changes could alter the pial architecture. While neurovas-
cular coupling is weak or inverted in neonatal rodents before ~P15 and in human infants6, the effects of sensory 
deprivation at early time points will drive long-term alteration of neural activity and circuit function22,33, which 
will likely drive lesser increase in blood flow during later stages of the pial arterial remodeling period17,20. Other 
metabolic signals from astrocytes that not directly related to neural activity and phasic dilations may also play a 
role in shaping flow81.

Here, we examined how early life experience affected the number of penetrating arterioles and the topology 
of the pial arterial network in the cortex of mice. We unilaterally deprived mice of their whiskers for the first 
month of life, a manipulation that is known to decrease capillary density36, but does not alter the position or 
shape of the histologically visible cytochrome oxidase staining in barrel cortex31,33. By keeping this important 
anatomical landmark intact, we can unambiguously associate pial vasculature features with the underlying brain 
regions54,57. We then reconstructed the pial arteriole network of the middle cerebral artery (MCA) and nearby 
brain regions with respect to these anatomically identified regions, and quantified penetrating arteriole density, 
anastomoses density and quantified the network architecture in each brain region by calculating the number of 
vertices (bifurcations and penetrating arterioles) per vascular offshoot in primary sensory regions. As deprivation 
in one sensory modality can cause large scale reorganization of other sensory modalities and their corresponding 
cortical representations82–87, we performed our analyses not only in the vibrissae representation, but also in other 
identified primary sensory cortices (forelimb/hindlimb representation in somatosensory cortex, visual cortex, 
and auditory cortex). We found that deprivation did not change penetrating arteriole density, LMA density, or 
quantitative measures of network structure. However, we found that LMA density was higher in the hindlimb 
representation than other sensory areas. Our results show that the development of the pial arteriole network is 
robust to sensory deprivation.

Results
We reconstructed the middle cerebral artery (MCA), along with the locations of the underlying primary sensory 
cortices in the left hemispheres of 19 mice (9 whisker-plucked mice and 10 sham-plucked mice) (Fig. 1). The 
locations of penetrating arteriole (PA) were validated by following the vessels down into subsurface sections 
(Fig. 1E,F). We also traced out the boundary between the areas perfused by the MCA and those perfused by 
the ACA and PCA, known as the watershed line88,89. The reconstruction was aligned to primary sensory areas 
using cytochrome oxidase staining (Fig. 1G). We saw no obvious differences in the positions of the cytochrome 
oxidase-stained sensory regions between deprived and control animals, and there were no significant differences 
in the areas of any of the sensory regions between the two groups (Statistical Supplement, p.5). Pial arteriole net-
work reconstructions are shown in Supplementary Data Set 1.

Because our data was nested and multiple measurements were made from the same animals, (e.g., PA counts 
in the barrel cortex) statistical tests that deal with these issues are required90. We used a generalized linear model 
(GLM) to deal with the correlations arising from nested data (see Methods and Statistical Supplement, p. 1). 
Generalized linear models account for correlated data without inflating Type I error rates or loss of statistical 
power (problems that accompany statistical comparison tests like ANOVA) by distinguishing between variance 
arising from within- and between-group factors90. In addition, GLMs are capable of dealing with non-normally 
distributed data, such as the count data obtained here. In a few animals, we were unable to reconstruct the pial 
network in every sensory region due to damage, and these regions were omitted from subsequent analyses. We 
made across-animal comparisons rather than comparisons within animals, as deprivation can affect the metabolic 
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rate91 and activity in the side contralateral to the deprived cortex92, making comparisons across hemispheres dif-
ficult to interpret.

Penetrating arteriole density is relatively constant across primary cortical areas, and is unaf-
fected by sensory deprivation.  Penetrating arterioles branch off surface arteries and enter perpendicularly 
into the cortex, and supply the blood for a roughly cortical-column-sized area93. Due to the lack of topological 
redundancy at this level, penetrating arterioles are bottlenecks for blood flow94–96. Unlike the capillary bed which 
forms a continuum93,97, relatively small changes in the structure of pial and penetrating arterioles could lead 
to large changes in the flow dynamics, as the pial vessel responses to neural activity do not always parallel the 
responses of penetrating arterioles54,58.

Figure 1.  Reconstructing the pial arterial network with respect to the underlying neuroanatomy. (A) Schematic 
of experimental timeline. Whisker plucking/sham plucking was performed between P2 and P30, mice were 
sacrificed after P45. The vasculature was filled, the brain extracted, and the cortex flattened. (B) Photograph 
of a cortical slab. The Middle Cerebral Artery (MCA) is labeled in the bottom left corner. Scale bar: 1 mm. (C) 
The arterial vascular tracing overlaid on a picture of the slab vasculature. The arterial backbone is depicted in 
dark red. Penetrating arterioles (PAs) are depicted as red circles, and leptomeningeal anastomoses (LMAs) 
are shown as green squares. (D) Tangential section stained for CO, with S1 (vibrissae, forelimb, and hindlimb 
regions), visual, and auditory cortices denoted by colored lines. (E) Zoomed image of filled vasculature in (B). 
The white, orange, and yellow arrows point to penetrating arterioles (PAs). Scale bar: 100 µm. (F) A tangential 
slice taken just below the image in (E) demonstrating that a PA location can be verified by following it into the 
parenchyma. Colored arrows denote the same PAs noted in the previous image. (G) The completed pial arterial 
vascular reconstruction, including the anatomically-identified cortical regions, Voronoi cells centered around 
PAs (orange), and watershed line (pink) between the Anterior Cerebral Artery (ACA) and MCA, and Posterior 
Cerebral Artery (PCA) and MCA. Note that PAs and LMAs are both vessels, though they are denoted by point 
markers. Scale bar: 1 mm. (H) Zoomed image of anastomoses (box in C). Scale bar: 0.25 mm.
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We first asked if whisker deprivation caused a reduction in the density of PAs for any cortical region (Fig. 2A). 
The average density of PA across all animals and cortical regions was 17.4 per mm2. Since the data were well 
represented by a Poisson distribution, the variance of the PA data among animals was roughly equal to the mean. 
Given previous measures showing high variability (>10 fold) in flux of blood through individual PAs98–100 and the 
tenfold range of velocities seen in individual capillaries of awake mice41, these measurements are consistent with 
a relatively constant global cerebral blood flow across animals that is partitioned amongst the variable number 
of vessels, producing the observed heterogeneity in flow. We determined that the PA density was nearly uniform 
across the analyzed cortical regions within single animals, although we did observe a small overall difference in 
PA density between the visual and barrel cortices (visual area PA density – barrels area PA density = 1.22 PA/
mm2, p < 0.001, Z = 4.413, Tukey HSD, see Statistics Supplement, p. 28). Neither the mean PA density (p = 0.71, 
χ2(1) = 0.13) nor the region-specific PA densities (p = 0.10, χ2(4) = 7.87) were significantly affected by sensory 
deprivation (Likelihood ratio test, see Methods). These results show that, unlike the effects of sensory deprivation 
on capillary density36, PA density was robust to sensory deprivation.

The density of leptomeningeal anastomoses was higher in the hindlimb region, and was unaf-
fected by sensory deprivation.  The pial arterial network has numerous interconnected loops or leptomen-
inigeal anastomoses (LMAs)98,99,101,102 that endow the network with a robustness against occlusions43,99. These 
LMAs are most prevalent in the watershed regions between the territories of major cerebral arteries and their 
corresponding perfusion territories103, but LMAs can be found anywhere in the arterial network. The location 
of this watershed region in humans is highly variable104–106, and differs across mouse strains88,107,108. Theoretical 
studies have shown that fluctuations in flow can generate and stabilize these anastomoses76,79. The number of 
anastomoses has a large impact on blood flow redistribution after stroke88,89, and consequently are a contributor 
to stroke outcome. In the mouse, the pial arterial network undergoes a pruning in the first few weeks of life17,20, 
during the same critical period as neurons and the capillaries, but it is not known what role cortical neural activity 
plays in the development of the pial arterial network.

We asked if sensory deprivation altered the density of LMAs in identified cortical sensory regions (Fig. 3A). As 
with the total number of PAs, we observed wide variations in the number of LMAs across animals (approximately 
three-fold, Fig. 3B). This observed variance is consistent with previous measures of variability in LMAs being in both 
animals88,99 and humans104–106. We found that LMAs were significantly more likely to occur near the hindlimb region 
than auditory, visual, or barrel regions (see Statistical Supplement, p. 11). However, our results indicate that the 
number (p = 0.70, χ2(1) = 0.70) and location of LMAs in anatomically-identified primary sensory regions (p = 0.20, 
χ2(4) = 6.04) were insensitive to sensory deprivation (Likelihood ratio test, see Statistical Supplement, p. 15).

We also tested whether age at time of perfusion or sex had an impact on the variance in the number of PAs 
(Supplementary Fig. 1A) and LMAs (Supplementary Fig. 1B). We found that neither age nor sex significantly 
contribute to the observed variability (male: 253 ± 43.8; female, 308 ± 66.0; likelihood ratio test, PAs: p = 0.14, 
χ2(1) = 2.17; see Statistical Supplement page 25; LMAs: p = 0.24, χ2(1) = 1.40) (see Statistical Supplement, p. 14). 
These results show the effects of age at time of perfusion and sex did not impact the PA and LMA density.

Lack of relationship between LMA and PA numbers within the whisker and limb regions.  As 
we saw a large variability in the number of PAs and LMAs across mice, we asked if these two features were corre-
lated within the whisker and limb regions where we had the most complete reconstructions. If these two features 
co-varied, this would suggest they were regulated by a common process, or that the presence of one increased the 
numbers of the other. We found that the density of PAs was not significantly correlated with the number of LMAs 
(Fig. 4; pooled: y = 0.158 + 0.067x , p > 0.42 (Bonferroni corrected), R2 = 0.122; plucked: y = −1.774 + 0.207x , 
p = 0.051 (Bonferroni corrected), R2 = 0.578; sham: y = 1.00–0.057x, p > 0.675 (Bonferroni corrected), R2 = 0.23; 
least-squares regression; see Statistical Supplement, p. 6). The lack of a correlation between LMA and PA density 
suggests that independent processes drive their respective formations.

Figure 2.  (A) Density of PAs plotted for five identified cortical areas (Sham: n = 10; Plucked: n = 9). Bars 
show mean across animals within a treatment (sham or deprived); circles show data points from individual 
animals. Color denotes group. (B) Comparison of the total number of PAs in plucked and control mice within 
the anatomically-identified barrel, forelimb and hindlimb areas. The PA count spans a factor of two in both 
conditions.
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Sensory deprivation has no effect on quantitative measures of network topology.  The pial net-
work can be conceptually subdivided into a backbone, formed by multiple connected LMAs, from which offshoots 
branches emerge and lead into penetrating arteries, with or without additional bifurcations along the offshoot 
branch. In the rodent these offshoots tend to be short, leading to PAs that dive immediately after leaving the pial 
backbone99. The offshoot’s topological structure can be quantitatively assessed by considering the number of ver-
tices (either a bifurcation or a penetrating site) per branch (with longer branches with multiple bifurcation being a 
rare case). Here we report offshoot size by considering all vertices, regardless of location along the branch99.

We found that the offshoot branching structure in the forelimb/hindlimb region differed from the other cor-
tical regions (see Statistical Supplement, p. 38). However, we found no effect of sensory deprivation on the over-
all offshoot branching structure (p = 0.17, χ2(1) = 1.86) or offshoot remodeling in any of the cortical regions 
(p = 0.78, χ2(4) = 1.75) (see Statistical Supplement, p. 36). Combined with the lack of LMA-associated structural 
changes, these results show that the topological structure of the network (both at the backbone and offshoot lev-
els) was not affected by sensory deprivation.

Discussion
We analyzed the topology of the pial arteriole network to observe the effects of sensory deprivation on the num-
ber of penetrating arterioles, leptomeningeal anastomoses, and higher order network structure. Surprisingly, we 
found that the density of PAs was regularly distributed in primary sensory cortices despite the large variance in 
the number of PAs across animals (Fig. 2). While we did not analyze the capillary network density or structure, 

Figure 3.  Lemtomeningeal anastomoses density was higher in the hindlimb representation of somatosensory 
cortex, but was not altered by sensory deprivation. (A) Density of LMAs for five cortical sensory areas. (B) 
Comparison of the total number of LMAs in sham-treated and plucked mice within the anatomically-identified 
barrel, forelimb, hindlimb areas. The LMA count spans a factor of three. Bars show means across animals within 
a treatment group, circles are data points from individual animals.

Figure 4.  Relationship between number of LMAs and PAs. The number of PAs vs the number of LMAs within 
the barrel, forelimb, and hindlimb regions. While the number of PAs and LMAs trend together, the two vascular 
features were not significantly related (Linear regression fit by least squares, pooled data: p > 0.42, Bonferroni 
corrected, t(17) = 1.54; plucked: p = 0.051, Bonferroni corrected, t(7) = 3.10; sham: p > 0.79, Bonferroni 
corrected, t(8) = 0.28), suggesting that they develop independently. Each circle represents an individual mouse. 
Lines indicate linear fit.
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this result is consistent with previous studies that found penetrating arteriole distribution and capillary density 
to be unrelated to cortical columns93,109. We found a similar large variation in number of LMAs (Fig. 3) across 
animals that was unaffected by sensory deprivation. However, we observed a higher density of LMAs (Fig. 3) 
and a lower vertices-per-offshoot ratio in the hindlimb and forelimb representations than in visual and auditory 
areas (Fig. 5). These differences likely due to the position of the hindlimb region, right at the watershed between 
the MCA and PCA rather than some aspect of its neural activity, as hindlimb LMA density was higher than fore-
limb LMA density, and they both have similar patterns of vascular and neural activation during natural behav-
iors54,60–62, suggesting that these area-specific differences are not due to patterns of activation.

Why might pial arteries be less plastic than capillaries in response to alteration of neural activity? Previous 
work has found large differences in the architecture of the cerebral arterial network among mouse strains, show-
ing a strong genetic component to the pial arterial network formation42,88,108. Recent single-cell transcriptomics 
work has elucidated the differential expression of genes by endothelial cell, smooth muscle and pericytes in blood 
vessels throughout the vascular tree110. It is likely that these vessel and cell-type specific gene expression contrib-
utes to differences in vascular remodeling. Recent mechanistic studies have also shown that pericytes play a role 
in maintaining capillary diameter111, potentially providing a mechanism for capillary plasticity. Lastly, arterioles 
have their own intrinsic vasomotor dynamics independent of neural activity63,112 which may play a more domi-
nant role in shaping the pial arteriole network than neural activity.

This study aimed to elucidate the role of sensory deprivations on the preservation of vascular features during 
developmental pruning that provide fault tolerance, LMAs, as well as PAs within the arteriole network. Previous 
studies have shown that vibrissae deprivation lowers metabolic activity in the barrel cortex31, affected neural activ-
ity22, and capillary density36. Our results show that deprivation does not alter the structure of the pial arterial net-
work. Because our studies were histological, we cannot rule out the possibilities sensory deprivation causes changes 
in blood flow or vessel tone. However, our results suggest that the large-scale vasculature structure is robust to 
perturbations of neural activity, and that there are region-specific differences in vascular structure that should 
be taken into account when comparing the hemodynamic responses in different areas. Specifically, the hindlimb 
representation has a substantially higher density of LMAs than other primary sensory regions. These area-specific 
differences could be used to study the roles of LMAs in vascular perfusion43 and neurovascular coupling113.

The LMAs of the pial vasculature play a critical role in rerouting blood around an occlusion of a pial arteri-
ole94–98, reducing the size of the ischemic zone. Because of the LMAs imbue the pial network with a robustness 
against occlusions, any genetic or environmental factors that shape the development of the LMAs could impact 
stroke severity43. Previous work has found that large variations in the number of anastomoses (due to genetics, 
strain differences, age, or other factors), and these variations play a key role in determining the susceptibility to str
oke42,88,108,114–116. Our work shows that, unlike genetic factors, early environmental experience, specifically sensory 
deprivation, does not have an impact on the connectivity of the pial vasculature.

Methods
Animals.  All experimental procedures were approved by the Institutional Animal Care and Use Committee 
(IACUC) at the Pennsylvania State University. All experiments were performed in accordance with relevant 
guidelines and regulations. Both male (n = 9) and female (n = 10) mice from six different C57BL/6 litters were 
used in this study. All mice were obtained from Jackson Laboratory and bred in our vivarium. Mice were main-
tained on a 12-hour light-dark cycle with ad libitum access to food and water.

Figure 5.  Quantification of network topology with a vertex-per-offshoot metric. Offshoot branches are 
vascular segments that emerge from the main backbone of the pial network (i.e. the portion that remains 
on the pial surface) and lead to penetrating arteries. For each such branch, we count the number of vertices 
(either a bifurcation or a penetrating artery). Plot of the mean vertex/offshoot ratio across cortical area. Bars 
show means, circles are individual animals. There was no effect of deprivation on the vertex/offshoot ratio, 
but the hindlimb area had a lower ratio than the vibrissa, visual and auditory cortex. The forelimb area had a 
significantly lower ratio than visual and auditory cortex. *p < 0.05; **p < 0.01; ***p < 0.001.
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Whisker deprivation.  Plucking began on postnatal day 2 (P2). All pups in the litter (both sham and plucked) 
were simultaneously removed from their cage and placed in an incubator (Brinsea Products Inc, TLC-40 Advance 
Parrot Brooder, 35 °C and 25% humidity) before and after whisker manipulation. The pups were then rubbed with 
bedding from their cage before being returned to the dam to prevent rejection20. For the plucking/sham proce-
dures, pups were initially induced with 5% isoflurane and oxygen as anesthesia, then maintained at 1–3% through 
the duration of the procedure. All macrovibrissae on the right whisker pad were plucked under a stereoscopic 
microscope. Care was taken to ensure the whisker follicles were not damaged during the procedure. Control mice 
were subjected to the same anesthetic regimen as plucked animals. The macrovibrissa on both sides of the control 
animals were gently stimulated during the procedure to mimic the manipulation required for whisker plucking. 
After the procedure, the mice were returned to the incubator and allowed to recover from the anesthesia, before 
being returned to the dam. Plucking was done every 24–36 hours until P30. We did not make within animal com-
parisons because whisker deprivation induces alterations of neural activity on the side ipsilateral to the whisker 
deprivation91,92.

Histology.  Between ages P45 and P65, mice were deeply anesthetized with 5% isoflurane in oxygen and peri-
cardially perfused with physiological saline using a peristaltic pump. Once the perfusate was clear of blood, 25 mL 
of an India ink solution (1:2 ratio of India ink to physiological saline, filtered and heated to 65 °C)117 was infused 
using a luer-lock syringe. The ink perfusion filled arteries, capillaries and veins. Transcardial dye perfusion has the 
added advantage of only labeling perfused vascular vessels that will be supplying the brain with blood. The com-
mon transgenic labels for endothelial cells (e.g. Tie2) are also expressed by lymphatic vessels118. If any dura matter 
(which contains lymphatic vessels119,120) were to stay attached to the cortical surface, the use of genetic markers 
might falsely identify these lymphatic vessels as part of the cerebral vasculature. The mouse’s head was submerged 
in 4% paraformaldehyde in 0.1 mol/L phosphate buffer solution overnight. On the following day, the brain was 
extracted from the skull with great care to maintain pial vasculature, and sunk in 4% paraformaldehyde and 30% 
sucrose solution. In order to visualize the pial vascular network, the brain was dissected into cortical slabs for 
tangential sectioning and placed between two glass microscope slides33,99. High-resolution images were taken of 
the cortical slab pial vasculature before sectioning (Zeiss SteREO Discovery.V8 with Zeiss Achromat S 0.5 × FWD 
134 mm objective; QImaging Retiga 2000R CCD camera). The cortical slabs were then mounted pial-side up on a 
freezing microtome and sectioned. The cortical sections were stained for cytochrome oxidase (CO)121 to visualize 
primary sensory areas (vibrissae-related cortex, the forelimb- and hindlimb-related regions, and both visual and 
auditory cortex). The boundaries between the cytochrome oxidase-delineated primary sensory areas and the 
lighter surrounding areas were manually traced. Given the contrast of the staining between the CO rich regions 
and the adjacent tissue, we estimate that we could reconstruct the boundaries of the cytochrome oxidase-rich 
sensory regions with ±50 µm accuracy. This is consistent with previous studies that used surface-recorded intrin-
sic optical signals to target neural recordings to a single barrel column33,122, and reported agreement between 
functional calcium signals and CO-delineated visual cortex123.

Vascular and anatomical reconstructions.  To create a complete image of the flattened cortical slab, 
vascular images were stitched together using Adobe Photoshop CS6 or the ImageJ plug-in MosaicJ. A manual 
tracing program (code available at: https://github.com/pbl007/dataExtractor_v2_1) was used to map the MCA 
and its connections to the anterior and posterior cerebral arteries (ACA and PCA, respectively) as well as pene-
trating arterioles (PAs), and LMAs, and codify the results in graph notation99. Mapping was done blinded to the 
treatment condition for 7 of the 19 mice. To determine the extent of the region fed by each PA, a Voronoi polygon 
tiling was generated, using the PAs as the centers of the polygons94. The surface vasculature reconstruction was 
aligned to the cytochrome oxidase labeled sensory areas using penetrating arterioles that were visible through the 
tangential sections. The watershed line was determined by manually bisecting the LMAs that connected the MCA 
territory to the ACA/PCA territories. These LMAs were identifiable as narrow vessels that joined two arterial 
bifurcations. In an anastomoses, the acute angles of these two bifurcations point towards each other89,103, rather 
than in the same direction, as is seen with offshoots off of an arteriole that is not an anastomoses99. LMAs often, 
but not always, exhibit a sinusoidal shape.

Using the cytochrome oxidase-stained sections as a reference, the spatial boundaries of the vibrissae rep-
resentation, forelimb and hindlimb regions, and the primary visual and auditory cortices were aligned with the 
vascular graph in MATLAB. The area of each primary sensory region was calculated in MATLAB. No compensa-
tions for shrinkage due to fixation were performed. A PA was counted as being inside a sensory region only if the 
majority of the area enclosed by its Voronoi polygon was inside the region. While the topology of the network is 
preserved in the fixed brain, the dimeters of the fixed vessels will likely differ from the natural in vivo conditions. 
Because of this limitation, we did not quantify the pial vessel diameters.

Statistics and Power calculations.  We calculated (post hoc) that for our sample size, we could detect an 
effect size (d) of ~1.2, using a one-tailed t-test, a 1-beta of 0.8, and an alpha of 0.05 (G * Power)124. This effect size 
is much smaller than inter-strain differences in mice88, and should be more than adequate for detecting any phys-
iologically relevant differences. Our sample size was comparable to, or larger than previous anatomical studies of 
the cerebral angioarchitecture88,99,114,125. In some cases where a complete reconstruction of a cortical region could 
not be performed, we omitted the cortical region from the relevant analysis.

Generalized linear model.  Counts of LMAs, PAs, and branching in multiple cortical areas from the same 
animal cannot be considered to be independent measurements. To account for the dependency between these 
data (which underestimates error variance), and to efficiently deal with the hierarchy of our experimental design, 



www.nature.com/scientificreports/

8SCiENtifiC RePorTS |  (2018) 8:9860  | DOI:10.1038/s41598-018-27910-3

we used a generalized linear model (GLM)90 to test the effects of sensory deprivation on vascular structure. In 
addition, GLMs can account for non-normal error structures inherent to count data126, which are typically better 
approximated by Poisson or Negative Binomial distributions127.

We modeled the number of LMA and PA within a cortical region using a log-linear Poisson model as follows:

β β ε






 = + +

C
A

Rlog
(1)0 1

where C was the LMA, PA, or branch count, A was area (mm2) of the cortical region, R was a categorical variable 
denoting the identity of the cortical region, and ε was the measurement error. We tested whether the mean count 
(β0) was altered by sensory deprivation (S), age (Y), or sex (G). We also allowed for random variation (u 1) in the 
overall PA/LMA counts due to individual mice (M):

S Y G u M (2)0 1 2 3 1β γ γ γ= + + +

We also allowed for the effect of age to differ among treatments (S):

γ α α= + S (3)2 0 1

and for sensory deprivation to differentially impact the region (R) specific counts:

β γ γ= + S (4)1 2 3

Thus, our full, mixed-effect model was:

γ α α γ γ γ= + + ∗ + + + ∗ + +C S Y Y S G R S R Mu Alog( ) ( ) ( ) log( ) (5)1 0 1 3 4 5 1

and ⁎( ) denoted an interaction effect between treatment and region. Note that the term Alog( ) was an offset to the 
model to account for differences in areas of regions, not a free parameter to be fit. This model was fit using the lme4 
package128 in R (version 3.4.2). Further details of the model are described in the Statistical Supplement (page 1).

To test whether a factor (specifically: sensory-deprivation, cortical region, age, sex) had a significant impact 
on overall LMA/PA/branch counts or LMA/PA/branch counts within a given area, we constructed a reduced 
model, which omitted the factor to be tested. We then conducted a maximum likelihood ratio (MLR) test between 
a model which included the factor and the reduced model. MLR tests yielding p-values <0.05 indicated that the 
factor contributed significantly to the variance of the count data. We performed post-hoc analysis on significant 
MLR results using Tukey’s honest significance difference (HSD) test to examine differences among the levels sig-
nificant variables and correct for multiple comparisons.

To test whether the assumption of a Poisson error distribution was correct, we visually inspected the rela-
tionship between the model residuals and the fitted values, and saw no clear relationship between them. We 
conducted a χ2-test on the ratio of residual variance (vr) to residual mean (µr) (Ha: vr > µr, LMA: χ2(85) = 0.80, 
PA: χ2(85) = 0.98; Ha: vr < µr, LMA: χ2(85) = 0.19, PA: χ2(85) = 0.03 (corrected)) which indicated that the 
mean-variance relationship was satisfied. Further details can be found in the Statistical Supplement (pages 19, 
30, and 37).

Data and code availability.  Data and R code used in this paper is available for download at: https://github.
com/DrewLab/Adams_Winder_Blinder_Drew_DataAndCode.
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