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Genetic risk score of common 
genetic variants for impaired 
fasting glucose and newly 
diagnosed type 2 diabetes 
influences oxidative stress
Minjoo Kim1, Minkyung Kim1, Limin Huang2,3, Sun Ha Jee4 & Jong Ho Lee   1,2,3

We tested the hypothesis that the cumulative effects of common genetic variants related to 
elevated fasting glucose are collectively associated with oxidative stress. Using 25 single nucleotide 
polymorphisms (SNPs), a weighted genetic risk score (wGRS) was constructed by summing nine risk 
alleles based on nominal significance and a consistent effect direction in 1,395 controls and 718 patients 
with impaired fasting glucose (IFG) or newly diagnosed type 2 diabetes. All the participants were 
divided into the following three groups: low-wGRS, middle-wGRS, and high-wGRS groups. Among 
the nine SNPs, five SNPs were significantly associated with IFG and type 2 diabetes in this Korean 
population. wGRS was significantly associated with increased IFG and newly diagnosed type 2 diabetes 
(p = 6.83 × 10−14, odds ratio = 1.839) after adjusting for confounding factors. Among the IFG and type 
2 diabetes patients, the fasting serum glucose and HbA1c levels were significantly higher in the high-
wGRS group than in the other groups. The urinary 8-epi-PGF2α and malondialdehyde concentrations 
were significantly higher in the high-wGRS group than in the other groups. Moreover, general 
population-level instrumental variable estimation (using wGRS as an instrument) strengthened the 
causal effect regarding the largely adverse influence of high levels of fasting serum glucose on markers 
of oxidative stress in the Korean population. Thus, the combination of common genetic variants with 
small effects on IFG and newly diagnosed type 2 diabetes are significantly associated with oxidative 
stress.

Oxidative stress has been reported as a contributing factor for the development of type 2 diabetes, diabetic com-
plications and cardiovascular diseases1. Increased oxidative stress is associated with insulin resistance (IR), dys-
lipidemia, β-cell dysfunction, impaired fasting glucose (IFG), impaired glucose tolerance (IGT) and, ultimately, 
type 2 diabetes. Isoprostanes, which are derived from polyunsaturated fatty acids, are the most valuable biomark-
ers of oxidative stress and lipid peroxidation in biological systems2. Isoprostane assays measure the urinary levels 
of F2-isoprostanes, which become elevated in response to arachidonic acid peroxidation. Among these products, 
8-epi-prostaglandin F2α (8-epi-PGF2α) is particularly important because it is the best-studied F2-isoprostane. 
According to previous studies, 8-epi-PGF2α is a predictor of glycemic control and oxidation status in patients with 
type 2 diabetes3. In addition, 8-epi-PGF2α is a reliable marker of IGT4.

The genetic risk score (GRS) represents an integrative analytical approach for type 2 diabetes risk predic-
tion that can be used efficiently and effectively to construct genome-wide risk measures based on the findings 
of genome-wide association studies (GWAS)5–7. Recent genetic risk assessment studies of type 2 diabetes have 
evaluated the predictive value of cumulative genetic scores8,9. The further development and improvement of a 
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multi-single nucleotide polymorphism (SNP) GRS have led to better disease prediction and prevention in an 
independent ethnic population. We assessed the likelihood that currently available genetic information could be 
used to enhance disease prediction by constructing a GRS selected from 35 susceptibility variants for elevated 
fasting glucose10 to test the hypothesis that the cumulative effects of these common genetic variants of IFG and 
type 2 diabetes are associated with oxidative stress. To strengthen this study, we also performed a Mendelian 
randomization analysis to investigate the causal effects of fasting serum glucose on markers of oxidative stress.

Results
The IFG and newly diagnosed type 2 diabetes patients (n = 718) included a significantly higher proportion of 
males who were older and heavier than the normal fasting glucose (NFG) controls (n = 1,395). The IFG and 
type 2 diabetes patients also exhibited significantly higher systolic and diastolic blood pressure (BP), triglyceride 
levels, fasting serum glucose levels, homeostatic model assessment of IR (HOMA-IR) scores, and hemoglobin A1c 
(HbA1c) levels than the controls. In addition, the subjects with IFG and newly diagnosed type 2 diabetes presented 
higher levels of urinary 8-epi-PGF2α and plasma malondialdehyde (MDA) than the controls (Table 1). The allelic 
frequencies of the 25 SNPs are shown in Table 2.

Association of each SNP with IFG and newly diagnosed type 2 diabetes.  Using 25 SNPs from 
15 loci, a weighted genetic risk score (wGRS) was constructed using nine association signals based on nominal 
significance and a consistent effect direction in a Korean population (Table 2). Five SNPs (GCKR rs1260326, 
CDKN2A/B rs10811661, MTNR1B rs1387153, rs2166706, and rs10830963) were significantly associated with 
IFG and type 2 diabetes (p = 9.0 × 10−6, 1.0 × 10−5, 1.09 × 10−4, 4.1 × 10−5, and 8.9 × 10−5, respectively) after 
adjusting for age, sex, and body mass index (BMI), and rs1260326 in GCKR exhibited the strongest association 
in the Korean sample. Additionally, rs2191349 in DGKB, rs1799884 and rs4607517 in GCK, and rs11558471 in 
SLC30A8 were nominally associated with IFG and type 2 diabetes (p = 0.011, 0.027, 0.045, and 0.002, respec-
tively) after adjusting for age, sex, and BMI. Moreover, wGRS was significantly associated with increased IFG 
and newly diagnosed type 2 diabetes [p = 6.83 × 10−14, odds ratio (OR) per risk allele = 1.839, 95% confidence 
interval (CI) = 1.568–2.157] after adjusting for age, sex, and BMI (Table 2). According to the weighted tertile 
analysis, an increased number of risk alleles were associated with an increased OR for IFG and type 2 diabetes risk 
(Supplementary Figure S1).

Associations between wGRS and clinical characteristics.  The IFG and type 2 diabetes patients 
exhibited a significantly higher wGRS than the NFG controls (1.93 ± 0.02 vs. 1.73 ± 0.02, p < 0.001) both before 
and after adjusting for age, sex, and BMI. Among the total study participants, wGRS was positively correlated 
with fasting serum glucose (r = 0.177, p < 0.001), HbA1c (r = 0.169, p < 0.001), HOMA-IR (r = 0.078, p < 0.001), 
8-epi-PGF2α (r = 0.101, p < 0.001), and MDA (r = 0.134, p < 0.001). In the NFG controls, wGRS was positively 
correlated with fasting serum glucose (r = 0.126, p < 0.001). In the IFG and type 2 diabetes patients, HbA1c 
(r = 0.153, p = 0.004), HOMA-IR (r = 0.087, p = 0.023), 8-epi-PGF2α (r = 0.197, p < 0.001), and MDA (r = 0.231, 
p < 0.001) showed significant positive correlations with wGRS, and fasting serum glucose tended to be correlated 
with wGRS (r = 0.072, p = 0.055).

Investigation of the combined effects of wGRS on clinical features and oxidative stress.  All 
the participants were divided into the following three approximately equally sized strata according to the wGRS, 

NFG (n = 1,395)
IFG and type 2 
diabetes (n = 718) p-value p′-value

Sex (male/female) 482/913 374/344 <0.001 —

Age (year) 48.0 ± 0.31 52.8 ± 0.40 <0.001 —

BMI (kg/g) 23.7 ± 0.08 25.0 ± 0.11 <0.001 —

Waist-to-hip ratio 0.88 ± 0.00 0.90 ± 0.00 <0.001 0.368

Systolic BP (mmHg) 119.6 ± 0.41 126.8 ± 0.60 <0.001 <0.001

Diastolic BP (mmHg) 75.2 ± 0.30 79.0 ± 0.40 <0.001 0.013

Triglyceride (mg/dL)§ 118.1 ± 1.90 144.3 ± 3.34 <0.001 0.001

Total cholesterol (mg/dL)§ 197.3 ± 0.95 199.3 ± 1.38 0.314 0.458

HDL cholesterol (mg/dL)§ 54.2 ± 0.35 50.6 ± 0.50 <0.001 0.068

LDL cholesterol (mg/dL)§ 119.9 ± 0.86 121.6 ± 1.28 0.418 0.304

Fasting serum glucose (mg/dL)§ 86.9 ± 0.20 118.4 ± 0.97 <0.001 <0.001

Insulin (μIU/dL)§ 9.09 ± 0.11 9.68 ± 0.24 0.301 0.674

HOMA-IR§ 1.96 ± 0.03 2.85 ± 0.08 <0.001 <0.001

HbA1c (%)§ 5.68 ± 0.02 6.52 ± 0.05 <0.001 <0.001

8-epi-PGF2α (pg/mg creatinine)§ 1497.3 ± 24.0 1761.4 ± 35.5 <0.001 <0.001

Malondialdehyde (nmol/mL)§ 8.21 ± 0.06 11.8 ± 0.24 <0.001 <0.001

Table 1.  Clinical characteristics of the study participants. Mean ± SE. §Tested via logarithmic transformation. 
The p-value was derived from an independent t-test between two groups. The p′-value was derived from an 
independent t-test between two groups after adjusting for age, sex, and BMI.
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as described in Supplementary Table S1: low-wGRS, middle-wGRS, and high-wGRS groups. The characteristics 
of the IFG and type 2 diabetes patients in the three groups are shown in Table 3. The fasting serum glucose and 
HbA1c levels of the high-wGRS group were significantly higher than those of the low- and middle-wGRS groups. 
The HOMA-IR score was also significantly higher in the high-wGRS group than in the low-wGRS group. The 
urinary 8-epi-PGF2α and plasma MDA concentrations recorded in the IFG and type 2 diabetes patients in the 
three groups are shown in Fig. 1. The urinary 8-epi-PGF2α and plasma MDA levels were significantly higher in the 
high-wGRS group than in the low- and middle-wGRS groups. The characteristics of the NFG control subjects in 
the three groups are shown in Supplementary Table S2. The fasting serum glucose level in the high-wGRS group 
was significantly higher than that in the low-wGRS group. Among the total study participants, the fasting serum 

SNP Nearby genea
Risk 
alleleb

RAF (case/
control)

Unadjusted Adjustedc

p-value OR (95% CI) p-value OR (95% CI)

rs340874 PROX1 C 0.654/0.370 0.991 1.001 (0.878–1.140) 0.957 1.004 (0.874–1.153)

rs1260326 GCKR C 0.487/0.420 0.000028 1.331 (1.155–1.488) 0.000009 1.356 (1.185–1.550)

rs11708067 ADCY5 A 0.999/0.997 0.184 4.090 (0.511–32.730) 0.143 4.970 (0.582–42.415)

rs7756992 CDKAL1 G 0.580/0.561 0.228 1.082 (0.952–1.229) 0.082 1.128 (0.985–1.291)

rs9368222 CDKAL1 A 0.510/0.485 0.130 1.103 (0.972–1.251) 0.060 1.137 (0.995–1.300)

rs7747752 CDKAL1 C 0.560/0.541 0.234 1.080 (0.951–1.226) 0.089 1.124 (0.982–1.285)

rs2191349 DGKB T 0.700/0.666 0.023 1.171 (1.022–1.342) 0.011 1.207 (1.045–1.394)

rs1799884 GCK T 0.208/0.175 0.009 1.237 (1.055–1.450) 0.027 1.209 (1.022–1.430)

rs3757840 GCK T 0.619/0.596 0.149 1.101 (0.966–1.254) 0.356 1.067 (0.930–1.224)

rs4607517 GCK A 0.246/0.213 0.014 1.204 (1.038–1.398) 0.045 1.175 (1.004–1.375)

rs11558471 SLC30A8 A 0.627/0.581 0.004 1.211 (1.064–1.378) 0.002 1.240 (1.082–1.422)

rs7034200 GLIS3 A 0.427/0.408 0.233 1.081 (0.951–1.228) 0.216 1.089 (0.951–1.247)

rs10811661 CDKN2A/B T 0.606/0.537 0.000017 1.325 (1.166–1.507) 0.000010 1.358 (1.186–1.555)

rs4506565 TCF7L2 T 0.031/0.026 0.294 1.221 (0.841–1.774) 0.241 1.268 (0.853–1.886)

rs7903146 TCF7L2 T 0.035/0.028 0.197 1.265 (0.885–1.808) 0.119 1.353 (0.925–1.977)

rs12243326 TCF7L2 C 0.003/0.002 0.860 1.117 (0.327–3.823) 0.968 0.972 (0.240–3.938)

rs11603334 ARAP1 G 0.947/0.940 0.324 1.149 (0.872–1.515) 0.601 1.081 (0.807–1.447)

rs1387153 MTNR1B T 0.466/0.414 0.001 1.236 (1.088–1.403) 0.000109 1.304 (1.140–1.492)

rs2166706 MTNR1B C 0.475/0.418 0.00039 1.258 (1.108–1.429) 0.000041 1.326 (1.159–1.517)

rs10830963 MTNR1B G 0.482/0.432 0.002 1.224 (1.078–1.389) 0.000089 1.309 (1.144–1.497)

rs2293941 PDX1 A 0.458/0.476 0.269 0.931 (0.820–1.057) 0.209 0.918 (0.803–1.049)

rs17271305 FAM148B/VPS13C/C2CD4A/B G 0.158/0.179 0.118 0.865 (0.720–1.068) 0.076 0.840 (0.693–1.018)

rs4502156 FAM148B/VPS13C/C2CD4A/B T 0.460/0.437 0.163 1.094 (0.964–1.242) 0.108 1.116 (0.976–1.276)

rs11071657 FAM148B/VPS13C/C2CD4A/B A 0.658/0.654 0.768 1.020 (0.893–1.166) 0.896 1.009 (0.877–1.162)

rs10423928 GIPR A 0.214/0.198 0.220 1.102 (0.994–1.288) 0.208 1.111 (0.943–1.309)

wGRS 2.4364E-12 1.712 (1.473–1.990) 6.8265E-14 1.839 (1.568–2.157)

Table 2.  Association of 25 SNP loci with IFG and type 2 diabetes in a Korean population. The results of logistic 
regression analysis are shown. OR, odds ratio; 95% CI, 95% confidence interval; wGRS, weighted genetic risk 
score. aInformation in the original report is shown. bRisk allele reported in previous reports. cAdjusted for age, 
sex, and BMI. wGRS was calculated including SNPs with nominal significance (p < 0.05).

Low wGRS 
(n = 183)

Middle wGRS 
(n = 227)

High wGRS 
(n = 308) p-value

Age (year) 53.0 ± 0.88 52.8 ± 0.66 52.6 ± 0.59 0.928

BMI (kg/m2) 25.1 ± 0.22 24.9 ± 0.21 25.1 ± 0.17 0.744

Waist-to-hip ratio 0.91 ± 0.00 0.90 ± 0.00 0.90 ± 0.00 0.367

Fasting serum glucose 
(mg/dL)§ 116.4 ± 2.10b 116.7 ± 1.74b 120.7 ± 1.37a 0.011

Insulin (μIU/dL)§ 8.80 ± 0.31 9.57 ± 0.36 10.3 ± 0.45 0.082

HbA1c (%)§ 6.37 ± 0.08b 6.38 ± 0.09b 6.73 ± 0.08a <0.001

HOMA-IR§ 2.52 ± 0.10b 2.73 ± 0.11a,b 3.13 ± 0.17a 0.008

Table 3.  Characteristics of the IFG and type 2 diabetes groups subdivided by the wGRS into three groups. 
Mean ± SE. §Tested via logarithmic transformation. The p-value was derived from a one-way ANOVA among 
the three groups. All letters indicating p < 0.05 were derived from Bonferroni’s post hoc test. Comparisons 
without a significant difference are indicated by the same letter, and significant differences are indicated by 
different letters.
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glucose, HbA1c, HOMA-IR, urinary 8-epi-PGF2α, and plasma MDA concentrations were significantly different 
between the different wGRS groups (Supplementary Table S3).

Causal estimates from a Mendelian randomization analysis.  The causal effects of fasting serum 
glucose on markers of oxidative stress were inferred through instrumental variable (IV) estimation techniques. 
The corresponding causal relationships were also assessed based on the association of wGRS with markers of 
oxidative stress (Supplementary Table S4). General population-level causal effects were assessed as IV estimates, 
where wGRS was used as an IV in the total study participants (Supplementary Table S5). As a result, one unit of 
fasting serum glucose (mg/dL) was associated with higher levels of oxidative stress markers, including urinary 
8-epi-PGF2α and plasma MDA (all p < 0.001).

Association between specific SNPs and markers of oxidative stress.  Based on the results shown in 
Table 2, we performed a multiple regression analysis to determine the direct contributors to urinary 8-epi-PGF2α 
and plasma MDA. rs2191349 (standardized β = 0.067, p = 0.004) and rs10811661 (standardized β = 0.061, 
p = 0.008) were merged as significant direct contributors to urinary 8-epi-PGF2α, and rs4607517, rs11558471, 
rs1387153, rs2166706, and rs10830963 tended to contribute to the association with urinary 8-epi-PGF2α 
(Supplementary Table S6). In addition, all nine SNPs emerged as direct contributors to plasma MDA, except that 
rs2191349 only presented a tendency to contribute to the association (Supplementary Table S6).

Discussion
In the present study, we examined nine susceptibility SNPs for IFG and newly diagnosed type 2 diabetes in a 
Korean population and constructed a wGRS to evaluate the influence of this genetic information on oxidative 
stress. The aggregation of common genetic variants influencing IFG and newly diagnosed type 2 diabetes plays 
a significant role in oxidative stress, despite having only small effects on glucose levels individually. wGRS was 
shown to be associated with the level of urinary 8-epi-PGF2α, which is the most reliable biomarker of lipid perox-
idation and oxidative stress11. The urinary 8-epi-PGF2α levels were significantly higher in the high-wGRS group 
than in the low- and middle-wGRS groups of subjects with IFG and newly diagnosed type 2 diabetes. Moreover, 
general population-level IV estimation (using wGRS as an instrument) strengthened the causal effect regarding 
the largely adverse influence of high levels of fasting serum glucose on markers of oxidative stress in the Korean 
population.

A highly significant correlation between blood glucose and urinary 8-epi-PGF2α has been previously reported, 
suggesting that glycemic control is related to the determinants of lipid peroxidation12. Similarly, enhanced for-
mation and release of 8-epi-PGF2α by porcine vascular smooth muscle cells cultured under hyperglycemic con-
ditions have been observed13. In the present study, the subjects with a high wGRS presented significantly higher 
serum glucose levels and HOMA-IR than those with a low wGRS in both the control and IFG and type 2 diabetes 
groups. Furthermore, the patients with IFG and newly diagnosed type 2 diabetes exhibited higher concentrations 
of urinary 8-epi-PGF2α and plasma MDA, which is a lipid peroxidation biomarker1. Moreover, compared with 
the subjects in the low- and middle-wGRS groups, significantly higher concentrations of urinary 8-epi-PGF2α and 
plasma MDA were observed in the IFG and newly diagnosed type 2 diabetes patients with a high wGRS. Thus, 
the higher fasting serum glucose and HOMA-IR observed in the subjects with high wGRS might be explained 
by elevated oxidative stress levels. Previous studies have demonstrated that oxidative stress plays the major role 
in IR pathogenesis14,15. There are several well-accepted mechanisms through which oxidative stress induces IR, 

Figure 1.  Differences in 8-epi-GPF2α and malondialdehyde concentrations among the three groups of IFG and 
type 2 diabetes patients. Mean ± SE. ∮Tested via logarithmic transformation. One-way ANOVA was performed 
to calculate p-values. All letters indicating p < 0.05 were derived from Bonferroni’s post hoc test. Comparisons 
without a significant difference are indicated by the same letter, and significant differences are indicated by 
different letters.
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including the activation of serine/threonine phosphorylation, disturbance of the cellular redistribution of insulin 
signaling components, decreased GLUT4 gene transcription, and alteration of mitochondrial activity16. Indeed, 
further support is provided by studies showing that IR can be ameliorated by antioxidant treatment17,18.

In the current study, the IFG and type 2 diabetes patients showed steady increases in fasting serum glucose, 
insulin, HbA1c, and HOMA-IR across the wGRS groups. In addition, all these glucose-related markers were pos-
itively correlated with wGRS in the IFG and type 2 diabetes patients. In a previous study, Go et al.19 confirmed 
the cumulative incidence rates of type 2 diabetes according to the quartile-based GRS; moreover, fasting plasma 
glucose and HbA1c steadily increased across the quartile-based GRS groups, which was consistent with the pres-
ent study. In contrast to the IFG and type 2 diabetes patients, the NFG controls only showed a gradual increase 
in fasting serum glucose across the wGRS groups, which was additionally positively correlated with wGRS. Since 
wGRS was constructed using diabetes-related SNPs, fasting serum glucose and such glucose-related markers 
were positively correlated with wGRS. The high-wGRS group presented a higher potential risk probability for IFG 
and type 2 diabetes than the low-wGRS group because the high wGRS was constructed using the number of risk 
alleles with significantly high ORs. Therefore, the presence of a number of diabetes-related risk alleles could have 
more adverse effects on the risk of IFG and type 2 diabetes.

Polygenic risk scores have recently generated much interest for assessing the explanatory power of risk vari-
ants in the clinical management and prevention of type 2 diabetes20. However, currently available genetic infor-
mation can only be used for predicting the development of type 2 diabetes, and the detailed relationship between 
GRS and the clinical features of type 2 diabetes is unclear. In the present study, we selected nine genetic variants 
associated with elevated fasting serum glucose levels in the Korean population and constructed a wGRS of IFG 
for type 2 diabetes development to evaluate the possibility that currently available genetic information can be 
translated into clinical practice. The constructed GRS (wGRS) showed a much stronger association with IFG 
and newly diagnosed type 2 diabetes than with any individual SNP. wGRS was also associated with the fasting 
serum glucose levels, HbA1c levels, and HOMA-IR score in the IFG and newly diagnosed type 2 diabetes patients. 
Additionally, wGRS was strongly and significantly associated with the concentrations of urinary 8-epi-PGF2α and 
plasma MDA in the IFG and newly diagnosed type 2 diabetes patients. Indeed, the causal relationship between 
fasting serum glucose and markers of oxidative stress was confirmed in the present study when wGRS was used as 
an IV. Thus, the combined effects of numerous common variants associated with slight effects on elevated fasting 
serum glucose are associated with the risk of oxidative stress.

In a recent study, both rs1260326 and rs780094 in GCKR were shown to be functional variants associated 
with type 2 diabetes and metabolic syndrome in a European population21. GCKR, which is a glucokinase reg-
ulatory protein produced in hepatocytes, binds glucokinase (GCK) and is involved in glucose metabolism22. 
Vaxillaire et al. showed that the GCK −30A allele is a true risk factor for the development of both IFG and type 
2 diabetes, suggesting that this allele has a significant impact on β-cell function impairment23, which is consist-
ent with our findings regarding rs1799884 in GCK. In the present study, only rs1260326 was detected on the 
Korean chip (K-CHIP) and was markedly associated with the risk of IFG and type 2 diabetes. CDKN2A/B, the 
cyclin-dependent kinase inhibitor 2 A/B gene, impacts diabetes risk across various ethnicities and geographical 
locations via β-cell mass and proliferation24. MTNR1B, a melatonin receptor gene, is a common variant associated 
with an increased risk of future type 2 diabetes and impaired early insulin secretion25. DGKB, the diacylglycerol 
kinase βgene, which regulates the intracellular concentration of the second messenger diacylglycerol, was also 
recently associated with fasting glucose and type 2 diabetes risk26,27. A previous functional study of SLC30A8 
suggested that reduced zinc transport increases type 2 diabetes risk28,29.

Oxidative stress plays a crucial role in the pathophysiology of type 2 diabetes and has been observed to be 
higher in type 2 diabetes patients than healthy controls30. The higher expression of the nine established SNPs 
observed under diabetic conditions in the present study might be governed by higher oxidative stress in dia-
betics. The first established gene/SNP in the current study, GCKR, which is associated with insulin-like growth 
factor-binding protein 1 (IGFBP1) levels, inhibits a glucokinase responsible for key functions such as glucose 
homeostasis and the conversion of glucose in pancreatic β-cells and liver hepatocytes31. The functional rs1260326 
missense variant in GCKR, which is associated with decreased serum IGFBP1 and an increased risk of type 2 dia-
betes31. Oxidative stress, leading to reduced mammalian target of rapamycin (mTOR) signaling, may play a role 
in the development of IR32. Because IGFBP1 expression is strongly regulated by insulin, it serves as an excellent 
marker of IR in type 2 diabetes patients. Second, intracellular hyperglycemia promotes abnormal diacylglycerol 
(DAG) accumulation which induce the activation of protein kinase C (PKC). DAG is converted to phosphatidic 
acid (PA) by diacylglycerol kinase (DGK), and enhanced DGK activity leads to a reduction in excess DAG accu-
mulation induced by high glucose. Atsumi et al.33 revealed that oxidative stress induced by high glucose can 
cause inhibition of DGK, possibly through redox modification of DGK. Based on a previous study, the T allele of 
rs2191349 near DGKB could lead to increased DGK activity, resulting in an excessive reduction of DAG levels, 
induced by hyperglycemic conditions. Third, possession of common risk alleles at the SLC30A8 locus, encoding 
the β-cell granule zinc transporter, may affect Zn2+ concentrations and, thus, susceptibility to oxidative stress. 
Zinc is known for its antioxidative properties and has been extensively studied as a possible treatment option for 
diabetic patients34,35. Zinc supplementation was found to lower fasting glucose levels in carriers of the common 
type 2 diabetes risk allele at rs1155847136. Fourth, Kong et al.24 emphasized the roles of CDKN2A/B products 
and related proteins in the regulation of β-cell mass, proliferation, and insulin secretory function, in addition to 
roles in other metabolic tissues. Furthermore, a relationship between CDKN2A/B and oxidative stress has been 
reported, which is highly correlated with the hypermethylation of CDKN2A/B37. Last, melatonin receptors have 
been found throughout the body in many tissues and it has been shown that melatonin inhibits insulin secre-
tion by pancreatic β-cells. Melatonin treatment improves BP, the lipid profile, and markers of oxidative stress 
in patients with metabolic syndrome38. The presence of copper ions could stimulate antioxidative stress mecha-
nisms, including the synthesis of melatonin and its receptor. However, these mechanisms also likely include the 
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activation of oxidative stress-related genes39. Taken together, the data indicate that the risk allele of MTNR1B is 
associated with a reduced antioxidative stress reaction due to a decrease in copper ions, which are involved in 
the synthesis of melatonin and its receptor. Therefore, melatonin cannot inhibit oxidation reactions catalyzed by 
reactive oxygen species scavengers, thus increasing fasting serum glucose as well as lipid peroxidation40.

The present study was the first to predict IFG and type 2 diabetes using a GRS based on the concentrations of 
8-epi-PGF2α and MDA, which are hallmarks of the intermediate phenotype of oxidative stress. In interpreting 
these findings, the typical limitations of cross-sectional observational studies should be considered, and these 
findings are indicative of the evaluated associations rather than prospective predictions. Additionally, we specifi-
cally focused on a representative group from the Korean population; thus, these results may not be generalizable 
to other ethnic groups. It could be more powerful to re-evaluate the nine identified SNPs in a replication cohort; 
therefore, a future investigation is warranted to define the causal variants within these loci to dissect their role in 
oxidative stress, which is a contributing factor for the development of IFG and type 2 diabetes. Despite these limi-
tations, the present results show that the cumulative effects of common genetic variants associated with increased 
fasting serum glucose are also associated with oxidative stress, such as increases in the urinary 8-epi-PGF2α and 
plasma MDA concentrations. The causal relationship between fasting serum glucose and markers of oxidative 
stress was confirmed through Mendelian randomization analysis. Therefore, this study indicates that a higher 
fasting serum glucose level could be an exact adverse effector of oxidative stress. As knowledge of genetic varia-
tion increases, preclinical genetic screening tools might enhance the prediction and prevention of clinical events.

Methods
Study population.  In total, 2,113 study participants with NFG, IFG, and newly diagnosed type 2 diabetes 
between the ages of 20 and 86 years were recruited from the Health Service Center (HSC) during routine check-
ups at the National Health Insurance Corporation Ilsan Hospital in Goyang, Korea (January 2010–March 2015). 
Based on the data screened from the HSC, subjects presenting with IFG and type 2 diabetes were referred to the 
Department of Family Medicine or Internal Medicine, and their health and glucose profiles were then re-assessed. 
The diagnosis of diabetes or IFG was based on the fasting serum glucose levels (≥126 mg/dL or 100–125 mg/dL, 
respectively). The exclusion criteria included a current diagnosis and/or history of cardiovascular disease, liver 
disease, renal disease, pancreatitis, or cancer and the regular use of any medication. All the study participants pro-
vided written informed consent, and the Institutional Review Board of Yonsei University and the National Health 
Insurance Corporation of Ilsan Hospital approved the study protocol, which complied with the Declaration of 
Helsinki.

SNP selection and genotyping.  Based on a GWAS, 50 SNPs were established at type 2 diabetes loci 
showing the strongest associations with glycemic traits10. We selected 35 established SNPs associated with 
glycemic traits, particularly fasting glucose, including rs340874 near PROX126; rs1260326 and rs780094 near 
GCKR26,41; rs11708067 and rs11717195 near ADCY526,41; rs7651090 near IGF2BP242; rs7708285 near ZBED342; 
rs936822, rs7756992, and rs7747752 near CDKAL142–44; rs17762454 near SSAR1/RREB142; rs2191349 near 
DGKB26; rs1799884, rs6975024, rs4607517, and rs3757840 near GCK26,42,43,45,46; rs11558471 near SLC30A826,47; 
rs7034200 near GLIS326; rs10811661 near CDKN2A/B42; rs3829109 near DNLZ42; rs4506565, rs7903146, and 
rs12243326 near TCF77 L226,41,42,47; rs11603334 near ARAP142,47,48; rs1387153, rs10830963, and rs2166706 near 
MTNR1B26,43,46,49–51; rs116193319 and rs2293941 near PDX142,48; rs17271305, rs4502156, and rs11071657 near 
FAM148B/VPS13C/C2CD4A/B26,41,43,47; and rs10423928, rs2302593, and rs11671664 near GIPR41,42.

Genotyping was performed using an Axiom® 2.0 Reagent Kit (Affymetrix Axiom® 2.0 Assay User Guide; 
Affymetrix, Santa Clara, CA, USA), and the genotype data were produced using the K-CHIP, which is available 
through the K-CHIP consortium. The K-CHIP was designed by the Center for Genome Science at the Korea 
National Institute of Health (4845–301, 3000–3031). The detailed procedure was described in a previous report52. 
Ten fasting glucose-related SNPs were not included in the K-CHIP; therefore, 25 SNPs were used for the subse-
quent analysis.

GRS construction.  Among the 25 SNPs, we constructed a wGRS using nine SNPs showing nominal sig-
nificance (p < 0.05) and a consistent effect direction in the Korean population. Based on Bonferroni’s threshold 
(p < 0.002, 0.05 divided by 25), five SNPs remained after multiple testing. To maximize statistical power, all the 
SNPs with a nominal p-value <0.05 were included in the following risk score analysis. The estimate was analyzed 
by performing a logistic regression of the association between the number of risk alleles and the IFG and type 
2 diabetes status. The wGRS was calculated by multiplying each estimated β-coefficient by the number of corre-
sponding risk alleles (0, 1, or 2).

Laboratory assessments.  All anthropometry information has been previously described53. The partici-
pants’ weights and heights were measured to calculate their BMI (kilograms per square meter). The waist cir-
cumstance was measured to calculate the waist-to-hip ratio, and BP was assessed using an automatic BP monitor 
after a resting period of at least 20 min. After overnight fasting for at least 12 h, venous blood samples and urine 
samples were collected and stored at −80 °C and −20 °C, respectively. To assess the lipid profile, serum triglycer-
ide, total cholesterol, and high-density lipoprotein (HDL) cholesterol levels were measured using commercial kits 
and an auto analyzer, and low-density lipoprotein (LDL) cholesterol levels were calculated using the Friedewald 
formula. The fasting serum glucose level and glucose-related markers, including insulin, HOMA-IR score, and 
HbA1c, were also measured. These laboratory assessments, including the lipid profile and glucose-related markers, 
have previously been described in detail53. Commercial assay kits were used to detect the urinary 8-epi-PGF2α 
and plasma malondialdehyde (MDA) concentrations54.
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Statistical analysis.  The statistical analyses, which included an independent t-test to compare two groups, 
determination of Pearson’s correlation coefficient to examine the relationships between wGRS and traits (varia-
bles), one-way ANOVA to compare three groups according to wGRS, a logistic regression to calculate the OR and 
95% CI, a chi-square test to determine the frequency of the risk allele, and a general linear model UNIANOVA to 
adjust for confounding factors, were performed using SPSS v.24.0 (IBM/SPSS, Chicago, IL, USA). Skewed varia-
bles were log transformed, and all tests were considered statistically significant at a two-tailed p-value < 0.05. The 
causal effect of fasting serum glucose on markers of oxidative stress was analyzed under an IV regression with a 
two-stage least squares estimation method for all the subjects using wGRS as an instrument. In the first stage, the 
linear regression of fasting serum glucose on wGRS was calculated. In the second stage, the predicted values of 
fasting serum glucose were used as covariates in the linear regression analysis with markers of oxidative stress as 
the dependent variable. All the regressions were performed after adjustment for age, sex, and BMI.
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