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Breast cancer associated germline 
structural variants harboring small 
noncoding RNAs impact post-
transcriptional gene regulation
Mahalakshmi Kumaran1, Preethi Krishnan1, Carol E. Cass2, Roland Hubaux   5, Wan Lam5, 
Yutaka Yasui3 & Sambasivarao Damaraju   1,4

Copy Number Variants (CNVs) are a class of structural variations of DNA. Germline CNVs are known 
to confer disease susceptibility, but their role in breast cancer warrants further investigations. 
We hypothesized that breast cancer associated germline CNVs contribute to disease risk through 
gene dosage or other post-transcriptional regulatory mechanisms, possibly through tissue specific 
expression of CNV-embedded small-noncoding RNAs (CNV-sncRNAs). Our objectives are to identify 
breast cancer associated CNVs using a genome wide association study (GWAS), identify sncRNA 
genes embedded within CNVs, confirm breast tissue (tumor and normal) expression of the sncRNAs, 
correlate their expression with germline copy status and identify pathways influenced by the genes 
regulated by sncRNAs. We used an association study design and accessed germline CNV data generated 
on Affymetrix Human SNP 6.0 array in 686 (in-house data) and 495 (TCGA data) subjects served as 
discovery and validation cohorts. We identified 1812 breast cancer associated CNVs harboring miRNAs 
(n = 38), piRNAs (n = 9865), snoRNAs (n = 71) and tRNAs (n = 12) genes. A subset of CNV-sncRNAs 
expressed in breast tissue, also showed correlation with germline copy status. We identified targets 
potentially regulated by miRNAs and snoRNAs. In summary, we demonstrate the potential impact of 
embedded CNV-sncRNAs on expression and regulation of down-stream targets.

Globally, breast cancer (BC) is one of the most common cancers diagnosed among women1. It is estimated from 
twin studies that genetic factors contribute up to 30% of the risk for breast cancer2. To date, high, moderate and 
low penetrance single nucleotide variants associated with breast cancer explained only 50% of the heritable risk 
and much of the remaining genetic susceptibility (so-called missing heritability) remains unexplored3,4. However, 
majority of these variants are present in the intronic or intergenic regions and therefore precludes delineation of 
their role in breast cancer pathogenesis. Therefore, there is a need to explore the significance of other forms of 
genetic variants for their role in breast cancer heritability.

Copy Number Variations (CNVs), are a class of structural variations of DNA (>50 bp in size), which includes 
amplification or deletion of genomic segments. CNVs can influence phenotype in a variety of ways: through gene 
dosage (correlation of copy status and ensuing tissue specific gene expression changes), partial deletions in genic 
regions leading to fusion genes, or complete deletions of genes, and lastly, changes that lead to more complex 
levels of cis or trans regulatory functions5,6.

Recently, genetic susceptibility has been explained in part by common germline CNVs (>5% in frequency) 
and rare germline CNVs (1–5% in frequency) for sporadic and familial breast cancers, respectively6,7. A common 
germline CNV deletion affecting APOBEC3 loci resulted in a fusion protein, APOBEC3A_B, which was reported 
to confer breast cancer susceptibility in diverse populations6,8,9. Recently, we demonstrated that germline CNVs 
overlapping with protein coding genes are associated with breast cancer risk and prognosis. Also the associated 
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CNVs showed gene dosage effects, i.e., germline copy status (gain, loss or diploid status) and showed correlation 
with breast tissue gene expression7. Even though previous studies have suggested that a significant proportion of 
CNVs reside in the intergenic regions which harbor non-coding genes, there were no direct studies to address 
their relevance to breast cancer. We reasoned that studies of germline CNVs harboring small non-coding RNAs 
(hereafter referred to as CNV-sncRNAs) such as microRNAs (miRNAs), piwi-interacting RNAs (piRNAs), small 
nucleolar RNAs (snoRNAs) and transfer RNAs (tRNAs) and their relative levels of expression in breast tissues 
potentially offers biological insights into the role of CNV-sncRNAs in breast cancer risk.

sncRNAs are less than 200 nucleotides in size and include different classes of RNAs – miRNAs, piRNAs, 
snoRNAs and tRNAs. While miRNAs and piRNAs are known post-transcriptional regulators of gene expression, 
snoRNAs and tRNAs are also currently being investigated as potential regulators of gene expression. Although 
the canonical roles of snoRNAs and tRNAs include RNA modification/splicing and translation, respectively, novel 
functions of these RNAs are emerging. The nucleotide sequences within these RNAs show sequence homology 
with mature miRNAs and piRNAs. snoRNAs and tRNAs may undergo nucleolytic processing to unmask cryptic 
miRNAs and piRNAs. Dysregulation of all four classes of sncRNAs has been observed in various cancer types, 
including breast cancer, and its clinical significance has been addressed in some detail (miRNAs and piRNAs)10,11 
or is emerging (snoRNAs and tRNAs)12,13.

Germline single nucleotide polymorphisms (SNPs) present in pre-miRNA regions are known to affect their 
biogenesis and target binding efficiencies of miRNAs, thereby influencing disease predisposition14–16. Germline 
CNVs may also affect disease predisposition by independent mechanisms. For instance, a copy number deletion 
of a miRNA cluster present on chr22q11.2 locus is a classic example of a germline CNV as a genetic determinant 
of schizophrenia17–19. Additionally, germline CNVs and their embedded miRNAs (CNV-miRNAs) were shown 
to be associated with autism20, roles in brain aging and neurodegeneration21 and congenital heart disease22. Prior 
studies have predicted that the target genes conferring the phenotypes are likely regulated by CNV-miRNAs19. 
However, there is no direct experimental evidence to support this premise.

We hypothesized that germline CNVs are associated with the phenotype of breast cancer, and that 
CNV-sncRNAs are indeed expressed in breast tissues, show gene dosage effects and mediate the regulation of 
downstream target genes. We show evidence in support of this hypothesis and offer insights on the role of disease 
associated CNVs. Firstly, we identified germline breast cancer associated CNVs using a genome wide association 
study (GWAS) design (Fig. 1) and identified embedded sncRNA gene regions. Secondly, we showed that sncR-
NAs originating in CNVs are indeed expressed in breast tissues and show correlation with germline copy status. 
Thirdly, we identified the target mRNAs regulated by CNV-miRNAs. We therefore infer that cancer associated 
CNVs harboring sncRNAs contribute to the pathogenesis of breast cancer.

Results
Identification of germline CNVs encompassing sncRNA genes and their association with breast 
cancer risk.  We conducted a GWAS (discovery dataset) using 366 cases/320 controls and germline CNVs as 
polymorphic markers. We identified 7496 CNVs that were associated with breast cancer risk (q-value < 0.05)7. 
Of these, 59.3% of the CNVs mapped to genic regions including protein coding genes, non-coding RNA genes 

Figure 1.  Schematic of the study design adopted. The flowchart depicts the overall study design, summary of 
the datasets, and experimental platforms used at each stage of the analysis. Detailed protocols and data analysis 
methods are discussed in the methods section.
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and pseudogenes and the remaining 40.7% mapped to the non-genic regions. Among, the CNVs mapping to the 
genic regions, 25.0% (n = 1876) mapped to protein coding genes and another 23.9% CNVs (n = 1789) mapped to 
non-coding RNA genes, including genes for long non-coding RNAs, sncRNAs and to pseudogenes. We observed 
that 10.4% of the breast cancer associated CNVs (n = 776) mapped to both protein coding and non-coding genes 
because introns of the protein coding genes also serve as a source of non-coding RNAs (Fig. 2A). We have earlier 
described CNVs with embedded protein coding genes and their relevance to breast cancer7. Of the total 2565 
CNVs (1789 non-coding RNA genes plus 776 non-coding RNA genes originating from protein coding introns), 
we considered 1812 CNVs harboring four classes of sncRNA genes (miRNAs, piRNAs, snoRNAs and tRNAs) for 
further analysis as these are known to play a role in post-transcriptional gene regulatory mechanisms.

The distribution of sncRNA genes within the 1812 breast cancer associated CNVs included miRNA (n = 38) 
and tRNA genes (n = 15), embedded within 26 and 10 CNVs, respectively. Each of the miRNA and tRNA genes 
that mapped within CNVs were non-redundant, in that none originated from multiple chromosomal locations. 
In contrast, piRNAs and snoRNAs showed redundancy, in that the same piRNA or snoRNA genes were found 
within multiple CNV loci across chromosomes. For instance, 9865 redundant piRNA genes were mapped to 1760 
CNVs regions, of which 1292 piRNAs were unique. Seventy-one (or 66 non-redundant) snoRNAs were mapped 
to 52 CNV regions. (Supplementary Table S1). Individual frequencies of CNVs in cases and controls as well as the 
copy gain or copy loss frequencies are also summarized to facilitate comparisons. The average size of the associ-
ated CNVs was about 25 kb (range 50 bp to 9 Mbp). The number of sncRNA genes present within a CNV varied 
from 2 and 240, depending on the size of the CNV. About 36 CNVs harbored more than one class of sncRNAs, 
and piRNAs genes were predominant (Supplementary Table S1). Chromosomes 19, 9 and 1 showed the highest 
number of breast cancer associated CNVs, (295, 210 and 132, respectively), harboring sncRNAs (Fig. 2B), relative 
to other chromosomes. In summary, we have not only identified CNVs associated with breast cancer risk across 
the genome, but also the embedded CNV-sncRNAs.

We identified CNVs that overlapped with SNORD-115 and SNORD-116 clusters (chr15: 25296245-25326762) 
and were found to be associated with breast cancer (Supplementary Table S1). Deletion of these clusters were 

Figure 2.  Genome wide distribution of germline CNVs. (A) Distribution of genomic features overlapping 
germline CNVs. Figure shows a Venn diagram of the genome wide distribution of germline CNVs associated 
(q < 0.05) with breast cancer. Represented genic regions were: protein coding (25%) and non-protein coding 
genes including pseudogenes and small and long non-coding RNAs (23.9%). An overlap of these regions 
(10.4%) capture non-coding RNAs originating from the intronic regions of the coding genes. 40.7% of CNVs 
do not show embedded genes (genome build hg19), hence labelled as non-genic regions. (B) Distribution 
of associated CNV-sncRNAs across the chromosomes. Figure illustrates the distribution of breast cancer 
associated CNVs (q < 0.05) harboring small non-coding RNA genes (miRNA, piRNA, tRNA and snoRNAs) for 
all chromosomes.
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initially described in patients with Prader-Willi Syndrome (PWS)23. In our study, the SNORD locus showed both 
copy-gain (5–14%) and copy-loss (3–8%) in the cases but not in controls.

Validation of CNV breakpoints in TCGA dataset.  GWAS (n = 686, discovery stage) allowed us to iden-
tify CNVs (with embedded sncRNAs) that are associated with breast cancer risk. We used the TCGA cohort as 
a validation dataset to address the following: Firstly, to validate the CNVs from the discovery stage GWAS and 
to assess the replicability of copy number estimates between the datasets called by the same algorithm. Secondly, 
to examine breast tissue specific expression of sncRNAs embedded within CNVs. Thirdly, to identify regulatory 
potential of miRNAs (subset of all sncRNAs identified) using mRNA expression dataset from the same breast 
tumors from which sncRNAs were profiled.

We successfully mapped the 1812 CNVs (with embedded sncRNAs) from the discovery dataset to the TCGA 
dataset, thus validating the copy number estimates called by the algorithm (Supplementary Table S2). For com-
parisons of CNV break points in the discovery and TCGA data sets, we defined 100% overlap as those CNVs that 
had break points exactly matching or embedded within CNVs identified from either of the datasets. CNVs may 
have an influence on the level of expression of sncRNAs, and regulation of their downstream target mRNAs by 
diverse mechanisms. There is evidence to suggest that CNVs overlapping miRNA genes are more likely to exhibit 
phenotypic effects24, and we now extend this premise for other sncRNAs. Subsequent data analysis was based on 
TCGA cohorts for breast tissue expression analysis of sncRNAs and mRNAs from the matched samples.

Breast tissue specific expression of the CNV-sncRNAs in TCGA dataset.  Detailed analysis of sncR-
NAs identified in breast tumors and adjacent normal tissues using HiSeq (n = 254) and Genome Analyzer, (GA) 
(n = 215) platforms are summarized in Supplementary Table S3. Breast tissue specific expression of sncRNAs 
(miRNAs, piRNAs, snoRNAs and tRNAs) were analyzed. We compared the total number of sncRNAs expressed 
with the total number of sncRNAs originating from within the CNV regions. The total number of sncRNAs 
expressed were comparable between normal and tumor tissues. Similarly, we have also compared the total num-
ber of CNV-sncRNAs showing expression in normal and tumor tissues. (Figure 3). Overall, we have identified 
38 CNV-sncRNAs (14 miRNAs, 1 piRNA, 11 snoRNAs and 12 tRNAs) expressed in both breast tumors and 
adjacent normal tissues. While CNV embedded snoRNAs, tRNAs and piRNAs were expressed similarly in both 
tumor or adjacent normal tissues, a subset of miRNAs detected were present either in tumor or normal tis-
sues. Five of the miRNAs (hsa-miR-154-3p, hsa-miR-4999-5p, hsa-miR-382-3p, hsa-miR-487a-5p, hsa-miR-
539-5p) were expressed only in adjacent normal tissues, at the cut-off criteria of 5 read counts in 50% of the 
samples. Using a similar cut-off criterion, one miRNA (hsa-miR-4746-5p) was expressed only in tumor tissues 
(Supplementary Table S4). A higher number of piRNA genes mapped to the breast cancer associated CNVs. 
However, CNV-piRNA, hsa-piR-20636 was the only one expressed in breast tumor tissue. In case of the snoRNA, 
we noted the C/D box SNORD 116 from the PWS loci showed expression in both breast tumors and adjacent 
normal tissues.

Breast cancer associated CNV regions showing overlap between discovery and validation datasets, and har-
boring the embedded sncRNAs (n = 38) are summarized (Table 1). It is interesting to note that 27% of CNVs 
(showing expression of embedded sncRNAs) were also reported as copy variable regions in the 1000 Genomes 
Phase 3 Project. A majority of the CNV frequencies were higher in cases relative to controls, thereby explaining 
the limited overlap with the 1000 Genomes data which is generated from the control populations.

Correlation of expressed CNV-sncRNAs to copy status.  CNVs are known to confer gene dosage 
affects among the protein coding genes7,25, and whether CNV-sncRNAs also show gene dosage effects was inves-
tigated. Correlation of the expression of the CNV-sncRNAs with corresponding copy status was addressed using 
Pearson Correlation analysis. Overall, 15 sncRNAs (one piRNA, eight tRNAs, six snoRNAs) showed correlation 
(Supplementary Table S5 and Supplementary Fig. 1); of these 13 correlated at p-value < 0.05 and two correlated 
at p-value < 0.1. One piRNA and five tRNAs showed positive correlation whereas three tRNAs and six snoRNAs 
showed negative correlations. The positively correlated sncRNA genes showed r = 14% to 21% and p-values 10−2 
to 10−3. Negatively correlated snoRNAs showed r = −13% to −45% and p-values 10−2 to 10−11. Expression and 

Figure 3.  Expression profiles of small non-coding RNAs in breast tumor and adjacent normal tissues (HiSeq). 
Figure illustrates the expression profiles from the four classes of sncRNAs between tumor and adjacent normal 
tissues. Individual bar graphs capture the expressed total sncRNAs and CNV-sncRNAs. Data presented is from 
TCGA Illumina Hiseq (n = 254 cases and 18 adjacent normal).
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regulation of sncRNAs are thus complex; while a positive correlation with copy status indicates potential gene 
dosage effects, a negative correlation may potentially indicate gene disruption or epigenetic regulation. This kind 
of negative correlations were also noted by others26 and there is no clear consensus mechanisms identified to 
explain these correlations. We observed that negatively correlated tRNAs originated from intergenic regions, 
whereas negatively correlated snoRNAs originated from intronic regions. We did not observe any significant 
correlations between copy status and miRNA expression. This could be due to the diverse mechanisms regulating 
miRNA expression. We could not distinguish if the CNV-miRNA itself is regulated by upstream elements within 
the CNV region or a combination of all the above.

Gene targets for CNV-miRNAs and pathway analysis.  We reasoned that a germline copy status for 
CNV-miRNA may show pronounced effects on downstream mRNA targets. To demonstrate such effects, we 
stratified breast cancer cases (mRNA expressions from n = 198 breast tumors from HiSeq Platform) based on 
germline status. Therefore, a correlation between miRNA and mRNA expressions may reveal higher number 
of targets that are regulated as a function of CNV copy status, as an indirect measure of miRNA copies. For 
instance, we examined CNV embedded hsa-miR-4746-5p in 198 breast cancer cases; 52 cases exhibited copy 
gains and 146 were diploid. Gene targets for the CNV-hsa-miR-4746-5p were predicted using TargetScan and 

Discovery Dataset TCGA Dataset

CNV region Cytoband
length 
(bps) p-value q-value

CNV frequency 
gain/loss (%)

CNV region Small RNAs expressed in breast tissuesCases Controls

*chr14:101513466–101514318 14q32.31 853 7.71E-05 9.21E-04 5/1 0/0 chr14:101513466–101517099 hsa-miR-539-5p (+), hsa-miR-889-3p (+)

*chr14:101515194–101519779 14q32.31 4586 4.84E-05 6.52E-04 5/1 0/0 chr14:101513466–101517099; 
chr14:101517099–101527707 hsa-miR-655-3p (+), hsa-miR-487a-5p

*chr14:101519779–101525402 14q32.31 5624 5.53E-05 7.27E-04 5/1 0/0 chr14:101517099–101527707
hsa-miR-134-3p (+), hsa-miR-134-5p (+), 
hsa-miR-323b-3p (+), hsa-miR-382-5p (+), 
hsa-miR-485-3p (+), hsa-miR-382-3p

*chr14:101525779-101527707 14q32.31 1929 8.94E-04 5.41E-03 4/1 0/0 chr14:101517099-101527707 hsa-miR-154-3p (+), hsa-miR-154-5p (+),

chr19:4437681–4494605 19p13.3 56925 3.09E-04 2.53E-03 3/2 0/0 chr19:4424993–4664433 hsa-miR-4746-5p (+)

chr1:149676729–149684202 1q21.2 7474 9.33E-06 1.77E-04 2/5 0/16 chr1:149676729–149684202 hsa-piR-20636

chr15:25296245–25297449 15q11.2 1205 4.32E-04 3.26E-03 5/1 0/0 chr15:25296245–25297449 snoRNA_SNORD116-1-201 (+)

chr15:25297449–25300158 15q11.2 2710 5.92E-07 1.92E-05 8/1 0/0 chr15:25298903–25300158 snoRNA_SNORD116-2-201 (+)

*chr15:25300158–25306451 15q11.2 6294 2.26E-07 8.49E-06 9/1 0/0 chr15:25300158–25304384; 
chr15:25305396–25308383 snoRNA_SNORD116-3-201 (+)

chr15:25307985–25310508 15q11.2 2524 6.12E-08 2.82E-06 9/1 0/0 chr15:25305396–25308383; 
chr15:25308383–25310928 snoRNA_SNORD116-6-201 (+)

chr15:25310508–25316405 15q11.2 5898 9.95E-08 4.25E-06 9/1 0/0 chr15:25310928–25318258 snoRNA_SNORD116-8-201 (+)

chr15:25316405–25318258 15q11.2 1854 2.62E-07 9.64E-06 8/1 0/0 chr15:25310928–25318258 snoRNA_SNORD116-9-201 (+)

chr15:25318258–25324279 15q11.2 6022 9.95E-08 4.25E-06 8/2 0/0 chr15:25318258–25325686 snoRNA_SNORD116-9-201 (+),

chr15:25324512–25325686 15q11.2 1175 2.87E-06 6.76E-05 6/2 0/0 chr15:25318258–25325686 snoRNA_SNORD116-14-201 (+)

chr15:25325686–25326762 15q11.2 1077 4.61E-06 9.87E-05 6/1 0/0 chr15:25325686–25326762 snoRNA_SNORD116-15-201 (+)

chr16:2011427–2016398 16p13.3 4972 6.98E-04 4.58E-03 3/2 0/1 chr16:2011427–2016398 snoRNA_SNORA10-201 (−), snoRNA_
SNORA64-201 (−)

chr19:3975155–3984201 19p13.3 9047 3.09E-04 2.53E-03 3/2 0/0 chr19:3768181–4110048 snoRNA_SNORD37-201 (−)

chr1:148580449–148606453 1q21.2 26005 7.50E-09 4.65E-07 7/14 10/32 chr1:148580449–148632305 chr1.trna108-AsnGTT (−)

chr1:148705208-148768557 1q21.2 63350 7.26E-04 4.72E-03 4/11 4/22 chr1:148662374–148789654 chr1.trna107-AsnGTT (−)

chr1:149598086–149617469 1q21.2 19384 4.48E-10 4.08E-08 9/12 2/29 chr1:149598086–149631220 chr1.trna30-AsnGTT (+),

chr1:149661965-149670179 1q21.2 8215 3.70E-06 8.35E-05 4/8 1/19 chr1:149652461–149676729 chr1.trna94-GluTTC (−)

chr1:149670179–149676729 1q21.2 6551 3.60E-06 8.17E-05 2/6 0/17 chr1:149652461–149676729 chr1.trna92-PheGAA (−)

chr1:149676729–149684202 1q21.2 7474 9.33E-06 1.77E-04 2/5 0/16 chr1:149676729–149684202 chr1.trna90-ValCAC (−), chr1.trna91-
GlyCCC (−)

chr6:26286287–26287456 6p22.2 1170 2.38E-04 2.13E-03 3/4 0/1 chr6:26274458–26287456 chr6.trna2-MetCAT (+)

*chr19:1381502–1407359 19p13.3 25858 1.23E-04 1.29E-03 4/2 0/0 chr19:1342160–1547869 chr19.trna1-AsnGTT (+), chr19.trna14-
PheGAA (−)

*chr19:4658652–4771070 19p13.3 112419 3.09E-04 2.53E-03 3/2 0/0 chr19:4714925–4751218 chr19.trna13-ValCAC (−), chr19.trna2-
GlyTCC (+)

Table 1.  Germline CNVs in discovery cohort showing association with breast cancer risk and expression of 
embedded small RNAs in breast tumor tissues from TCGA. This table represents the selected CNV regions 
associated with breast cancer that also included one of the four classes of sncRNAs. The statistics represented 
in this table is based on the discovery dataset (cases/control = 686) and includes the CNV region mapped in 
validation dataset (TCGA). These sncRNAs were expressed in the breast tissue (either breast tumor or adjacent 
normal tissues or both) in the TCGA dataset. The rows marked with *symbol indicates the CNVs that are also 
seen as copy number variable regions in 1000 genomes Phase 3 project.
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these predicted targets were identified in the mRNA expression data sets (HiSeq platform). A correlation analysis 
revealed 25 common target genes for both diploid and copy gain cases; an additional 29 targets were identified for 
copy-gain cases (Supplementary Table S6). The miRNA-mRNA correlation (r) values were from −0.20 to −0.34; 
and from −0.27 to −0.42, for the diploid and copy gain cases respectively. The targets regulated by hsa-miR-
4746-5p among the copy gain cases were enriched for key signaling molecules (growth hormone, FLT3, NGF, 
PTEN, G-protein coupled receptor) and glutamine biosynthesis pathways. The identified targets in our study have 
been well addressed in literature for their association with cancer27–29.

Except for the CNV region overlapping with hsa-miRNA-4746-5p, copy status for other nine CNV-miRNAs 
showed predominantly a diploid status, and therefore the correlation between miRNA and mRNA expressions 
were restricted to cases (n = 195) with diploid status (Supplementary Table S6). Ingenuity Pathway Analysis of the 
identified target genes regulated by hsa-miR-655, hsa-miR-134-3p, hsa-miR-4746 showed significant enrichment 
of several pathways (Supplementary Table S7). hsa-miR-655-3p and hsa-miR-134-3p had a common target gene, 
DLD (dihydrolipoamide dehydrogenase) which plays an important role in cellular biosynthesis and degradation 
of amino acid pathways. In addition, miRNA-134-3p targeted CDK5 (Cyclin Dependent kinase 5)30,31, POLE 
(DNA polymerase epsilon, catalytic subunit)32 and RAN (member RAS oncogene family)33 with potential role 
in cell cycle.

Discussion
GWAS approaches have identified several SNPs of low penetrance that contributed to the genetic risk of breast 
cancer34–36. However, the putative causal variants have not been identified for a majority of GWAS identified loci 
and thus limit our understanding of the role of these variants in disease etiology. CNVs are complex genomic var-
iants which may show an overlap with protein coding and non-coding regions. Therefore, characterizing CNVs 
associated with breast cancer may offer potential mechanistic insights. CNVs can influence gene expression in 
several ways, including gene dosage effects and cis/trans regulation. In this study, we have addressed the role of 
germline CNVs with embedded sncRNAs in breast cancer. Although CNV embedded sncRNAs may play a role 
in disease pathogenesis, a direct demonstration of expression of sncRNA genes from CNV-sncRNAs was lacking5. 
This is the first study to identify associated CNVs containing four different classes of sncRNAs including miRNAs. 
We identified 1812 CNVs mapping to small RNA genes (38 miRNAs, 9865 piRNAs, 15 tRNAs and 71 snoRNAs) 
and significantly associated with breast cancer risk using a case-control approach. We gained insights into the 
associated CNV loci by quantifying the expression of the embedded sncRNA genes in both breast tumors and 
adjacent normal tissues.

sncRNAs play key roles in post-transcriptional gene regulation events, and variations in expression of sncR-
NAs may potentially affect their downstream targets. We identified a subset of CNV-sncRNAs that were expressed 
in both breast tumor and adjacent normal tissues. Since gene expressions are tissue specific, we expect only a 
small subset of sncRNAs to be expressed in breast tissues despite several sncRNA genes were annotated to the 
CNV regions. Recent studies on neurodevelopmental disorders have also identified CNVs were shown to be 
enriched with miRNA genes17–21. Several mechanisms have been proposed to explain the impact on the miRNAs 
based on the extent of CNV overlap with miRNA genes e.g., dosage effects attributed to loss of expression depend-
ing on the extent of overlap24. Other key findings of the study were as follows.

	 (i)	 Among the breast cancer associated CNVs (Table 1), four CNVs at 14q32.31 locus with embedded miRNA 
genes were confirmed as copy variable regions in the 1000 Genomes Phase 3 project. These CNV-miRNAs 
showed tissue specific expression in our study. Literature evidence suggests that regulated targets are in-
fluenced by levels of miRNA expression which in turn are regulated by feedback mechanisms37. Extending 
this premise, we reasoned that CNV-miRNA gene can potentially modulate expression levels and therefore 
affect downstream targets. However, we did not observe direct correlation of copy status and expression of 
the embedded-miRNAs. Instead, we observed that cases with germline copy gain regions with hsa-miR-
4746-5p regulated more target genes than cases with diploid copy status for the same miRNA. Pathway 
analysis of the regulated genes indicated their involvement in cell cycle, receptor mediated signaling, prolif-
eration and/or apoptosis.

	(ii)	 piRNAs are known to play a role in maintaining genomic stability by repression of transposons through 
gene silencing mechanisms38 and are well studied in gonadal cells39. However, the role of piRNAs in somat-
ic tissues and in cancer context are beginning to emerge. We showed piRNAs were differentially expressed 
between breast tumor and normal tissues and that piRNAs and their biogenesis pathway molecules (PIWI 
proteins) are prognostic10. miRNAs bind to the 3′-untranslated regions (UTR) of protein-coding genes 
and piRNAs also share similar mechanisms to mediate translational arrest or mRNA degradation10. In 
the Autism genetic database (AGD)40 which catalogs autism related CNV signatures, a higher proportion 
of CNVs harbored piRNA genes compared to other classes of small non-coding RNA genes. A similar 
trend was seen in this study wherein CNVs harbored several piRNAs compared to other sncRNAs, which 
cannot be fully attributed to multiple copies of piRNA genes. Instead, their tendency to be enriched in 
CNV regions may have evolutionary significance since earlier studies have noted that there are selective 
constraints on the origins of piRNA41 clusters in African populations. This is corroborated by the observed 
rates of insertion of transposable elements in African populations17. Although we mapped several piRNA 
genes to the breast cancer associated CNVs, only one (hsa-piR-20636) was expressed in both the breast 
tissues and showed trends of dosage effects. The functional significance of hsa-piR-20636 in the context of 
breast cancer warrants further studies.

	(iii)	 We identified breast cancer associated CNVs (q-value < 10−3) overlapping with SNORD-115 and 116 clus-
ters (15q11.2). Theses CNV were present only among breast cancer cases and showed a higher frequency of 



www.nature.com/scientificreports/

7Scientific REPOrtS |  (2018) 8:7529  | DOI:10.1038/s41598-018-25801-1

copy gain than copy loss. A previous study reported a CNV overlapping with the above loci at 15q11.2-13, 
spanning many protein and non-protein coding genes including the SNORD-115 and 116 clusters, which 
have been implicated in PWS23. In another study, wherein copy number gain in loci (chr15:24738239-
24749581) upstream of the SNORD-116 cluster but in PWS loci was associated with obesity42. These 
findings suggest that copy gain or loss at these loci may confer diverse phenotypes including breast cancer. 
Genotyping platforms and CNV calling algorithms may contribute to the variation in the detected CNV 
breakpoints, therefore fine scale analysis is needed to confirm the exact breakpoints to delineate the 
mechanisms by which germline CNVs exerts pleotropic effects. We observed expression of eight snoRNAs 
from the SNORD116 cluster, and the expression of SNORD37, SNORA10 and SNORA 64 in both tumor 
and adjacent normal breast tissues. There are no known target RNAs regulated by SNORD116 in humans. 
However, SNORD 37 (target: 28S rRNA A3697) guides methylation, snoRNA 10 (target RNA: 18S rRNA 
U210 and 28S rRNA U4491) and SNORA 64 (target RNA: 28S rRNA U4975) directs pseudouridylation 
of the corresponding target rRNAs43. This supports the premise, that CNV embedded snoRNAs may play 
a role in regulation and maturation of the rRNA targets, although more direct experimental evidence is 
needed. Understanding the biological functions of these RNAs in the context of breast cancer susceptibility 
or tumorigenesis is needed.

	(iv)	 tRNAs play a critical role in protein translation and previous studies have shown that expression of tRNAs 
and tRNA derived fragments were dysregulated in breast tumors13. Although the 1000 Genomes Phase 3 
project has catalogued CNVs overlapping tRNA genes in the human genome, the role of germline CNVs 
with embedded tRNA genes was not studied in a disease context. Studies with model organisms demon-
strated that copy number variation of tRNA genes alter the relative abundance of tRNAs, thereby altering 
codon usage18,23,44,45 and potentially stalling translation leading to formation of misfolded proteins46,47. 
The current study is the first to report the association of CNV-tRNAs with breast cancer and demonstrat-
ed their expression in breast tissues. Even though we correlated tRNA expression in breast tissues with 
germline copy status, our study limitation is in the direct extrapolation of findings to the tRNA abundance 
and their effects on translational mechanisms. Further, the weak but significant correlations observed 
between CNV status and tRNA expression levels may reflect the tight regulation. The primary goal of the 
study is to document that the germline CNV embedded tRNA genes are indeed expressed in breast tissues 
and that the germline CNV signatures show relevance to the etiological basis judging from the expression 
in tissues. While the current study focused on sncRNA, long non-coding RNAs are also known to regulate 
genes at the post-transcriptional level and their effects warrant independent investigations.

Conclusion
In summary, we identified and validated germline CNVs associated with breast cancer. The break points iden-
tified in the discovery cohort were independently confirmed using the TCGA dataset. We were able to use the 
TCGA datasets since our discovery data set and the TCGA datasets were profiled for CNVs with the Affymetrix 
Human SNP 6.0 array platform. We acknowledge the potential limitation in the absolute calls of copy status due 
to differences in the control populations used as a reference. However, the unique aspect of the study was the 
integrative analysis of CNV calls, sncRNA and mRNA expressions in matched TCGA subjects. We showed that 
germline CNVs can potentially influence tissue level gene expression through their embedded sncRNA genes. 
Our findings provide a compelling rationale that germline CNVs have functional consequences, possibly medi-
ated through gene dosage mechanisms.

Methods
Study ethics approval.  The study was approved by the local Health Research Ethics Board of Alberta 
(HREBA) - Cancer Committee. Written informed consents were obtained from all study participants. All 
experiments performed using specimens from study samples were carried out under approved guidelines and 
regulation.

Study subjects and whole genome platforms.  A schematic of the overall study design is summarized (Fig. 1) and 
details of the protocols followed are summarized below:

A: Discovery dataset: The study included women from Alberta, Canada with confirmed diagnosis of invasive 
breast cancer (cases, n = 422)7,48. The cases were non-metastatic at the time of diagnosis. Biological specimens 
and clinical-pathological information were accessed from the Alberta Cancer Research Biobank, located at the 
Cross-Cancer Institute, Edmonton, Alberta, Canada49.The controls (n = 348) included in this study were age 
matched healthy women (no personal or family history of cancer at the time of recruitment). The controls were 
accessed from a prospective cohort study called the Tomorrow Project50 based in Alberta, Canada. Affymetrix 
Human SNP 6.0 array data and information about the study participants and the specimens can be found else-
where34,48 and in the ensuing text.

B: Validation dataset (The Cancer Genome Atlas Project, TCGA): We have accessed the dataset from TCGA 
study with cases diagnosed with invasive breast cancer. This study meets the publication guidelines provided by 
TCGA (http://cancergenome.nih.gov/publications/publicationguidelines). We accessed level 1 and level 3 TCGA 
datasets for Whole Genome Copy number profiles, small RNA sequencing data and mRNA sequencing datasets, 
respectively. The datasets were available for 1088 Invasive breast cancer cases. We selected 516 cases based on the 
study inclusion criteria: (i) no history of other malignancy, (ii) no metastasis at the time of diagnosis and (iii) 
diagnosis of invasive ductal or lobular carcinoma.

http://cancergenome.nih.gov/publications/publicationguidelines
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Germline CNV dataset from TCGA: Affymetrix Human SNP array 6.0 platform.  We utilized Affymetrix gen-
erated (.CEL files) data from germline DNA. Based on the SNP genotype calls for the 516 cases, we performed 
population stratification analysis using Principal Component Analysis (PCA) as described in the ensuing text. We 
identified 495 cases with Caucasian ancestry which were used for the down-stream analysis.

Breast tissue transcriptome data set from TCGA for small non-coding RNAs: Next Generation Sequencing plat-
form.  We accessed datasets for small RNA sequencing files (level 1 data;.bam files) matching to 495 cases of 
Caucasian ancestry. Of these, sequencing data were available for 469 breast tumor tissues. However, for a subset of 
cases data were available on both tumor and adjacent normal tissues specimens. Sequencing data from Illumina 
HiSeq and Genome Analyzer (GA) platforms from TCGA were accessed (254 breast tumor samples and 18 adja-
cent normal samples from HiSeq and 215 breast tumor samples and 13 adjacent normal samples from GA).

Breast tissue transcriptome data set from TCGA for mRNAs: Next Generation Sequencing platform.  We accessed 
mRNA sequencing data from breast tumors generated on Illumina HiSeq platform. Level 3 data (Reads Per 
Kilobase Million, RPKM normalized) was used for all analysis. mRNA sequencing data was available for 198 
cases and these were matched with the data available for sncRNAs on the same HiSeq platform. This enabled the 
identification of post-transcriptionally regulated target mRNAs by CNV-miRNAs.

DNA extraction.  DNA was extracted from peripheral blood samples of cases and controls (discovery data-
set, n = 770). DNA isolation was carried out by using commercially available QiagenTM (Mississauga, Ontario, 
Canada) DNA isolation kits, as described earlier34,48.

Genotyping and Quality control.  DNAs extracted from study samples was genotyped using Affymetrix Human 
SNP array 6.0 following manufacturer’s protocol and are described elsewhere34. Affymetrix SNP array 6.0 has 
an independent set of probes for SNPs and CNVs. Genotyping quality control was assessed using Birdseed V2 
algorithm in Affymetrix genotyping console. Sample Contrast Quality Control (CQC) ≥ 1.7 indicates acceptable 
genotyping quality. All study samples (both discovery and validation data) had a CQC values >2.

Population stratification.  Principle component analysis was performed using EIGENSTRAT algorithm imple-
mented in Golden Helix SNP and Variation suite v8.5.0. Genotype data from 270 HapMap samples were used 
as reference to infer genetic ancestry of the study samples. Variance was accounted for by the top two principal 
components and a threshold of three standard deviations was set to determine the outliers.

Of the 770 samples in the discovery dataset, 686 samples co-clustered with the European ancestry samples 
from the HapMap data, and 84 samples were identified as outliers. Of the 516 TCGA samples, 495 samples were 
identified as belonging to the European ancestry and 21 samples were removed as outliers. Identity by descent 
(IBD) analysis did not reveal any cryptic relatedness among the study subjects as judged from the pair-wise cor-
relation cut off <0.25 in both datasets.

Copy number estimation and association analysis.  Copy Number Analysis was performed using Partek® 
Genomics Suite™ 6.6 (PGS) and the default parameters as described below. Affymetrix. CEL files served as the 
source files. The CNV analysis was performed for 686 samples (320 controls and 366 cases) and all sample nor-
malization was used to create a reference baseline to infer the relative copy number estimate. Genomic segmen-
tation algorithm implemented in the software was used to call the genomic segments based on the following 
default criteria: genomic markers >10; segmentation p-value threshold = 0.001; Signal/Noise (S/N) ratio = 0.3. 
The copy number status for each inferred segment was assigned based on the normalized intensity as diploid 
copy number = 1.7-2.3, copy gain >2.3 and copy loss <1.7. CNV association analysis was performed using 2 × 3 
Chi-square association test estimates the difference in frequency of a CNV (gain/loss/diploid) between the cases 
and controls. Data was corrected for multiple hypothesis testing using Benjamin-Hochberg false discovery rate 
method and CNVs with q-value < 0.05 were considered significant.

CNV estimation for the 495-breast cancer TCGA samples (validation set) was performed similar to the dis-
covery dataset, except for the normalization. We used HapMap 270 samples as a reference for a diploid status 
(controls) to infer copy status in TCGA samples (cases). Associated CNV regions and break-points from the 
discovery data set were mapped to the CNV profiles and break-points in TCGA samples.

Gene annotation for the CNV regions.  Breast cancer associated CNV regions were annotated for sncRNAs from 
the following sources: mature miRNAs using miRBase ver2051, snoRNAs using Ensembl52, piRNAs using piR-
NAdb53 and tRNAs54 using UCSC genome browser. Protein coding and lncRNA genes were annotated using 
UCSC.

Expression analysis of sncRNAs.  Partek® Genomics Suite was used for the analysis of sncRNAs and.bam files 
as a source of sequence data. TCGA samples (both breast tumor and adjacent normal tissues) sequenced using 
Illumina HiSeq platform and Genome Analyzer were analyzed separately using PGS. sncRNA annotation was 
based on the database sources described above. For sncRNA expression analysis, a cut-off at least 5 read counts in 
50% of the samples was considered for further analysis. We restricted integrative analysis of CNV status, sncRNAs 
and mRNAs to HiSeq data because read depths may vary between HiSeq and GA platforms.

Correlation of the breast tissue expression of sncRNAs with germline copy number estimates.  It was important 
to ascertain if there was a correlation between CNV copy status and expression of CNV embedded genes (e.g., 
encoding sncRNAs) in breast tumor tissues to assess the role of the latter in disease risk. We used Pearson 
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Correlation analysis (p-value < 0.1) to demonstrate the relationship between copy status and sncRNA expression. 
We used 198 samples with germline CNV data and compared with sncRNA expression in matched breast tumor 
tissues from the TCGA cohort. sncRNA read counts (5 counts in at least 50% of the samples as a cut-off) were 
RPKM normalized and log-transformed to compare with the germline copy status as a categorical variable. Copy 
number status for each inferred segment was assigned based on the normalized intensity as diploid copy number 
(i.e., 1.7–2.3), with copy gain >2.3 and copy loss <1.7, as described above. Even though sncRNAs may originate 
from multiple genomic locations, we considered only expression of RNAs present within the breast cancer asso-
ciated CNV regions.

Target predictions for miRNAs embedded within CNVs, tissue level mRNA-miRNA expressions and correlations 
with copy status.  Target mRNAs for the 10 miRNAs were predicted in silico using TargetScan version 7.1. We 
accessed level 3 data for mRNA (HiSeq) from the TCGA cohort which is RPKM normalized and log-transformed. 
All of the predicted targets were expressed in the HiSeq mRNA data (albeit at varying expression levels). We 
performed RPKM normalization and log transformation of the miRNA expression data from HiSeq. The samples 
(n = 198) were initially classified into two groups based on their copy number status; Diploid and copy gains. 
Correlated mRNA-miRNAs were identified using Pearson Correlation coefficients and a negative correlation with 
r ≤ −0.2 and p-value < 0.05 was considered as indicative of regulated genes.

Ingenuity Pathway Analysis (IPA).  Data were analyzed using IPA (QIAGEN Inc., https://www.qiagenbioinfor-
matics.com/products/ingenuitypathway-analysis) to identify potentially affected pathways. Coding genes tar-
geted by miRNAs were used as an input to assess the pathways involved. Separate analysis was conducted for 
the genes identified in the stratified groups based on copy status. Enrichment p-value < 0.05 was considered 
significant.
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