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. Mirtrons are non-canonical microRNAs encoded in introns the biogenesis of which starts with splicing.

. They are not processed by Drosha and enter the canonical pathway at the Exportin-5 level. Mirtrons
are much less evolutionary conserved than canonical miRNAs. Due to the differences, canonical

: miRNA predictors are not applicable to mirtron prediction. Identification of differences is important

. for designing mirtron prediction algorithms and may help to improve the understanding of mirtron

. functioning. So far, only simple, single-feature comparisons were reported. These are insensitive to

. complex feature relations. We quantified miRNAs with 25 features and showed that it is impossible to

- distinguish the two miRNA species using simple thresholds on any single feature. However, when using

© the Principal Component Analysis mirtrons and canonical miRNAs are grouped separately. Moreover,
several methodologically diverse machine learning classifiers delivered high classification performance.
Using feature selection algorithms we found features (e.g. bulges in the stem region), previously
reported divergent in two classes, that did not contribute to improving classification accuracy, which
suggests that they are not biologically meaningful. Finally, we proposed a combination of the most
important features (including Guanine content, hairpin free energy and hairpin length) which convey a
specific pattern, crucial for identifying mirtrons.

. MicroRNAs (miRNAs) are a class of short (~22 nt), non-coding RNA molecules'. They regulate gene expres-
© sion at the post-transcriptional level®. Their canonical biogenesis pathway starts with transcription from inde-
© pendent genes, which forms primary miRNA hairpins (pri-miRNA)?. This is followed by cleavage performed
. by the Microprocessor complex, consisting of Drosha and DGCRS8 proteins®*, which produces a stem-loop pre-
: cursor miRNA referred to as pre-miRNA hairpin. Pre-miRNA is then transported to the cytosol by exportin-5°
and is further processed by the enzyme Dicer. The enzyme cleaves the terminal loop, leaving a miRNA duplex.
. Generally it is assumed that only one strand of the duplex is functional and joins the Argonaute protein to form
. the RNA-induced silencing complex (RISC)®, while the other strand is degraded. However, recent short-read
© NGS data show that many hairpins produce functional mature miRNA from both duplex arms’. Functional,
° mature miRNA guides RISC to the target mRNAs through complementary binding, which leads to suppression
. of translation or accelerated degradation®. A multitude of studies have shown that miRNAs may be aberrantly
. expressed in various states, e.g. in cancer® ', vascular diseases'""? or inflammation’*~'6. Recently efforts are made
© to use specific miRNAs as diagnostic or therapeutic agents!”!®. Also there is evidence that miRNAs participate in
 host-microbiome communication'®.
: Mirtrons are miRNAs originating from a non-canonical biogenesis pathway that omits Drosha cleavage®.
They are byproducts of intron splicing. Mirtrons were first discovered as short introns that formed hairpins with
: similar characteristics to those of pre-miRNAs?"*, i.e. conserved stem regions and variable terminal loop?'. Those
. pre-miRNAs undergo lariat-debranching by a debranching enzyme (DBR1) and enter the canonical miRNA bio-
: genesis pathway at the exportin-5 level. These are often called canonical mirtrons. There are also two other types
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of mirtrons called 3'-tailed and 5'-tailed mirtrons®. These molecules undergo lariat-debranching by the DRB1
protein and 5 or 3’ trimming by RNA exosome. Afterwards they similarly enter the canonical miRNA biogene-
sis pathway at the exportin-5 stage. Although the conservation patterns of mirtrons and canonical miRNAs are
similar, only few mirtrons are evolutionarily conserved. For instance in a study by Wen et al.® it was shown that
human and mouse genomes share only 13 mirtrons out of a total of 478 and 488 mirtrons reported respectively.

Mirtrons were characterized in multiple experimental studies carried out on invertebrate??>*!, mamma-
lian**?* and plant samples. Most recent studies were based on the analysis of small RNA NGS datasets. These
works reported on the differences between canonical and non-canonical miRNAs and tried to determine specific
mirtron structural characteristics and sequence patterns. It was shown that all mirtron types in comparison to
bulk intronic sequences, exhibit higher GC content in the duplex regions, which also results in lower free energy
(FE)***%, In comparison to canonical miRNAs mirtron hairpins are in general longer and show a higher rate of
internal loops and bulges®*?’. Another important structural feature is the overhang, i.e. a short unpaired sequence
of nucleotides on the stem end of the molecule. Canonical pre-miRNAs exhibit a typical 0:2 (5:3’) AG overhang
as a result of Drosha cleavage. The overhang was reported as optimal for recognition by exportin-5%. Mirtrons
that are derived directly from splicing (canonical mirtrons) have usually a 1:1 nucleotide overhang with a G from
the GU splice donor at the 5" end and a G from the AG splice acceptor on the 3’ end*'. However, for other mir-
tron types other configurations are also possible, e.g. 2:3, 0:3%. The most common sequence patterns of mirtrons
come from the fact that they are partly produced by the precise splicing machinery. Thus, the exon-neighboring
mirtron ends are dominated by GU’s in case of 5p arms of canonical and 3’-tailed mirtrons, and AG’s in case of
3p arms of canonical and 5'-tailed mirtrons?®*. Moreover the 3p arms of 5-tailed mirtrons are pyrimidine rich
due to the polypirimidine tract within intron?*?*. In case of some 3’ tailed mirtrons the GU in 5p arms may be
substituted with xU due to the action of a 5-directed exoribonuclease?”.The above characteristics are simple and
based on single features and may miss more complex relations and dependencies. In the presented work we use
more advanced computational tools to investigate the canonical miRNA vs mirtron differences in a multidimen-
sional space.

There are many tools for computational prediction of miRNAs which are based on diverse methodologies. So
far among the most successful were methods based on SVM?-34 However, other approaches were also tested, e.g.
Random Forest classifier was used in MiPred®® and was also chosen as best performing method in HuntMi*. A
novel Markov random walk based method was implemented in miRank”, while deKmer*® is a quantum mechan-
ics inspired method. Usually, new tools are developed with the use of enlarged feature sets and new, larger or
improved data sets. Several studies emphasized on the influence of the training set class balance and the negative
sample set composition on predictor performance®****. In general, each new study shows that the new tool
outperforms all remaining ones. However due to the differences in training and test sets a reliable comparison
of performance is difficult. Only recently Sacar Demirci et al. developed a framework - izMiR* and performed a
large scale comparison of 13 state-of-art miRNA predictors. They concluded that consensus predictors provide
the highest performance but none of the single predictors reliably outperforms the others. Our re-analysis of
data provided by Sacar Demirci et al.*’ showed that most predictors acquired considerably lower sensitivity for
mirtrons than for canonical miRNAs (Fig. 1 and Supplementary Table S1). This shows that dividing the problem
of miRNA prediction into canonical and non-canonical miRNA prediction may lead to further improvement of
the field.

So far there were only a few attempts to develop computational models dedicated to mirtron predic-
tion. Chung et al.?® developed an SVM predictor, which was trained based on only 14 experimentally proven
Drosophila mirtrons, while Joshi et al.*” proposed an automated procedure for filtering introns for non-canonical
miRNAs.

In this work we analyze over 900 miRNAs, propose a set of features to characterize pre-miRNA hairpins and
explore the set of known mirtrons in a multidimensional feature space by applying PCA. We use selected features
to train a group of machine learning-based predictors that are able to classify a pre-miRNA molecule as canonical
or intron-derived. This project gives the basics for further development of a whole-genome mirtron predictor.

Methods

In the study we used two datasets. First, the miRBase set (Supplementary Table S2) consisted of mirtrons and
canonical miRNAs deposited in miRBase (Release 21, 06/14). To date Wen et al.>* provided the most comprehen-
sive but also stringent mirtron/canonical miRNA annotation, therefore we used it in our study. From the data-
base we extracted hairpin and mature miRNA sequences from both arms. We restricted the set to pre-miRNAs
yielding functional mature miRNAs from both hairpin arms. The set contained 216 mirtrons and 707 canonical
miRNAs. The second set we used, called putative mirtrons set (Supplementary Table S3) consisted of 201 novel
mirtron loci annotated in study by Wen et al.?*. Their sequences were gathered using UCSC browser - hairpin
coordinates were made available in supplementary tables of Wen et al.*. Hairpin secondary structures and free
energies for both sets were calculated using RNAfold (version 2.3.3) from ViennaRNA Package with default
options.

Training and test sets. Data from the miRBase set and the putative mirtrons set were used to construct the
training set and the test set. In order to do so, 200 randomly chosen canonical miRNAs from miRBase set were
merged together with the putative mirtrons set. These miRNAs formed the test set. The remaining miRNAs from
miRBase set formed the training set. This approach resulted in total count of 723 (216 mirtrons/507 canonical
miRNAs) in the training set and 401 miRNAs (201 mirtrons/200 canonical miRNAs) in the test set. The exploratory
analysis and machine learning were performed on the training set while methodology validation on the fest set.
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Figure 1. Performance of state-of-the-art miRNA predictors is worse in case of mirtrons than in case
of canonical miRNAs. The dashed line denotes equal performance, points above the line denote higher
performance for mirtrons, points below denote higher performance for canonical miRNAs. The sensitivities
delivered by miRNA predictors available through izMIR framework*’ (Decision Tree-based - red, Naive Bayes-
based - blue, Ensemble - green) were always higher for canonical miRNAs (below dashed line). For the sake of
clarity only labels of ensemble predictors were printed.
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Figure 2. We proposed a set of 25 features to quantitatively characterize miRNA hairpins. We divided a model
hairpin into three regions: the mature5p arm, mature3p arm and the interarm region. Each of the regions, as
well as the whole hairpin, was characterized by its length and nucleotide content. Additionally, the hairpin is
characterized by its free energy, number of short (<4 nt) and long loops (> =4), the overhang and the length
of the terminal loop. Hairpin_FE is the free energy calculated with RNAfold from the ViennaRNA Package.
Overhang is the difference between number of unpaired nucleotides at the stem of the hairpin. Positive values
indicate 5’ overhang while negative ones 3’ overhang.

Feature definitions. We used 25 features for characterizing miRNA hairpins. The lengths of the hairpin and
both arms of mature miRNAs were defined as the number of nucleotides within each region. Hairpin free energy
was calculated using RNAfold from ViennaRNA Package which uses Minimum Free Energy algorithm (MFE)*!.
It was normalized by dividing it by hairpin length. Hairpin and mature miRNA nuleotide compositions were
defined as percentages of each base occurring in a particular region. Interarm region was defined as the part of the
hairpin between 5p and 3p arm where terminal loop can be found. We calculated its length and nucleotide com-
position. Overhang was calculated using mature sequences and predicted secondary structure. Positive values of
the overhang refer to unpaired bases on the 5’ hairpin end, while negative values refer to unpaired bases on the 3’
end. We also calculated the numbers of small loops - sequence of less than 4 unpaired nt, large loops - sequence
of more than 4 unpaired nt, and the length of the terminal loop. All features were calculated using an in-house R
script (see “Data availability” section) and are shown in Fig. 2.
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Statistical comparison of feature distributions. We used Wilcoxon rank sum test for statistical compar-
ison of distributions of calculated numerical features. We considered p-values below 0.01 as statistically significant.

Data visualization. For data visualization we performed Principal Component Analysis (PCA). Linearly
dependent features needed to be excluded from PCA calculations, therefore we arbitrarily decided to drop uracil
compositions in all investigated hairpin regions, i.e. hairpin_U, mature5p_U, mature3p_U and interarm_U. The
calculations were performed using the R prcomp function with prior data normalization. ggplot2 package was
used for plotting. The first two PCs explained 37,6%, while first three 46,8% of all variance.

Classifierimplementation and testing. We implemented six commonly used, methodologically diverse
classifiers:

1. Logistic Regression calculated using glm function

2. Linear Discriminant Analysis using Ida function from MASS package with default parameters

3. Support Vector Machine using svm function from e1071 package with default radial kernel and default
parameters

4. Naive Bayes without smoothing using naiveBayes method from e1071 package

Decision Tree without pruning using tree package

6. Random Forest using RandomPForest package and default parameters (500 trees)

o

Classifier performance was measured using 5-fold cross validation.
For each of classifiers we calculated the following performance measures:

» Sensitivity

TP
Sens = ——
TP + EN 1)
o Specificity
TN
Spec = ——
TN + FP (2)
o Areaunder curve (AUC) - Area under ROC curve
e F1-Score:
Fl . 2% TP
" 2% TP+ FP + FN (3)

o Mathew’s Correlation Coefficient (MCC)

TP x TN — FP %« FN

MCC =
J(TP + FP) % (TP 4 FN) % (TN + EP) % (TN + FN) (4)

Feature importance. Analysis of feature importance was performed using three approaches: (i) single fea-
ture predictor accuracy, (ii) Stepwise Forward Selection (SFS) algorithm and (iii) Random Forest Importance
calculated using Boruta package*?. SFS was performed for the SVM classifier method with F1 score as the perfor-
mance measure, while Boruta by definition uses Random Forest with Z-score importance returned.

Methodology validation. The methodology was tested in a two-step analysis. Data points from the test set
were projected onto the PCA biplot drawn for training set. To do this, test set points were first scaled with scaling
parameters calculated for the first set and then projected onto PC1 vs PC2 plane using the transformation matrix
calculated for training set.

In the second step we classified mirtrons and canonical miRNAs from the test set using classifiers trained on
the training set.

Data availability. Data tables containing studied dataset are available in CSV format in Supplementary
Materials. The source code is freely available through GitHub (https://github.com/ror94/Mirtrons), distributed
under the version 2 of the general public license (GPL v.2).

Since user-friendly and publicly accessible web-servers represent the future direction for developing practi-
cally more useful models***-%8, we shall make efforts in our future work to provide a web-server for the method
presented in this paper.

Results

The aim of the study was to identify and explore the differences between canonical miRNAs and mirtrons using
advanced computational tools. We also wanted to select a set of features that can possibly help determining
whether particular miRNA sequences are derived from canonical or mirtron precursors. The study was based
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name Wilcoxon test | Mirtron median | Canonical median
1 hairpin_A 1.25%107% 17.24 24.14
2 hairpin_C 1.64*103 29.69 22.58
3 hairpin_G 3.50%107%° 31.38 25.88
4 hairpin_length 4.23%107%¢ 67.00 83.00
5 hairpin_U 8.71%107% 21.53 27.62
6 harpin_FE 4.56*10° —0.43 —0.48
7 interarm_A 8.90*10717 18.14 25.00
8 | interarm_C 7.62%107% 28.57 18.75
9 interarm_G 1.28%107° 28.57 25.00
10 | interarm_length 3.50%10°° 17.00 16.00
11 | interarm_U 5.08* 1012 21.43 28.57
12 | large_loops 1.28%107° 0.00 0.00
13 | mature3p_A 1.11*10~% 10.00 22.73
14 | mature3p_C 5.34%107% 45.45 22.73
15 | mature3p_G 5.69%10°%° 14.29 22.73
16 | mature3p_length | 1.55%10°° 21.00 22.00
17 | mature3p_U 9.32%10°! 27.27 27.27
18 | mature5p_A 7.08%1073 20.83 22.73
19 | mature5p_C 2.62%1077 13.64 21.74
20 | mature5p_G 2.09%10°7° 50.00 26.09
21 | mature5p_length | 8.76%1072 22.00 22.00
22 | mature5p_U 5.98%107% 16.00 27.27
23 | overhang 2.65%1071° —1.00 —2.00
24 | small_loops 1.19%107! 4.00 4.00
25 | t_loop_length 2.07*1073 5.50 7.00

Table 1. The comparison of feature distributions in mirtron and canonical miRNAs was performed using
Wilcoxon rank sum test implemented in R. Setting statistical significance to p-value less than 0.01 showed
significance in all but three features: Uracyl composition of 3p arm of mature miRNA (mature3p_U), number
of internal hairpin loops smaller than 4 nucleotide (small_loops) and the length of mature 5p arm (mature5p_
length). Medians of mirtron and canonical miRNAs were calculated to show the direction of differences.

on two datasets: miRBase set and putative mirtrons set from which we constructed the training and test sets (for
details see Methods).

We designed a set of 25 numerical features to characterize miRNA hairpins. These included features based on
nucleotide content, free energy and structural motives. They are visualized in Fig. 2 (for detailed feature defini-
tions see Methods).

We first used a standard, non-parametric statistical test, Wilcoxon rank sum test to compare mirtrons and
canonical miRNAs in the training set. The results indicated that the two groups differ significantly in terms of
all but three features, i.e. uracil composition of 3p arm (mature3p_U), length of 5p arm of the mature miRNA
(mature5p_length) and number of small loops (small_loops) (Table 1). Although average and median values of
most features differ, their distributions strongly overlap, what makes it impossible to distinguish the two miRNA
species using simple thresholds on any single feature (Fig. 3). Therefore multivariate analysis was used for further
data exploration.

We explored datasets in the multidimensional space using PCA. PCA managed to compress the training set,
so that 37,6% of all variance was captured in first two principal components (PCs) and 46,8% in first three PCs. In
the two dimensional biplot we can observe that mirtrons and canonical miRNAs group separately. Feature vectors
shown in Fig. 4 suggest that features with most contribution to separation are: mature5p_G and mature3p_C,
which are higher in the mirtron group and hairpin_A, interarm_A, mature3p_A, mature3p_G and mature5p_C,
which are higher in the group of canonical miRNAs. Apart from that, hairpin_length and mature3p_length seem
to be important for the distinction, since they point clearly in the direction of canonical miRNAs.

In order to investigate the importance of designed features, we have built several standard, methodologically
diverse classifiers: Logistic Regression (LR), Random Forest (RF), Linear Discriminant Analysis (LDA), Decision
Tree (DT), Support Vector Machines (SVM), and Naive Bayes (NB). Almost all of them managed to classify
properly both groups with sensitivity greater than 0.8 and specificity greater than 0.9 (Table 2). As number of
samples in both groups were not equal, we used F1 score and Matthews Correlation Coeflicient (MCC) as major
parameters for assessing the classifier performances. Both metrics indicated that the two best classifiers are SVM
and RF (Table 2). The results showed that combined features provide enough information to make the distinction
between mirtrons and canonical miRNAs. We have also tested SVM classifier on the test set resulting in 186 True
Positives and 15 False Negatives obtaining 0.93 sensitivity and 0.95 specificity (Table 3).

We investigated the importance of particular features in three ways (i) using the performance of single feature
predictors, (ii) using the SFS algorithm*® and (iii) using the feature selection algorithm in the Boruta package*
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Figure 3. Histograms of all investigated features were produced with marked and labeled medians in R Studio.
In columns there are features of mature 5p arm of mirtron, mature 3p arm, interarm region, precursor and
miscellaneous features, in rows: A, C, G, U content and length. Features with greatest relative distance of means
such as G content of 5p arm of mature miRNAs, C content od 3p arm and A content of whole hairpin structure
are expected to carry most of information about a class of miRNA.
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Figure 4. Principal Component Analysis performed on training set compressed over 37% of variance in

first two components. It revealed separate grouping of mirtrons and canonical microRNAs and some hidden
relations between variables and miRNA classes. In general, the features that contribute most to class distinction,
are the ones whose vectors point in the direction of a particular group of molecules. Here those most important
features are: cytosine in 3p arm (mature3p_C), guanine composition of 5p arm (mature5p_G), cytosine
composition of interarm region (interarm_C), adenine composition of 3p arm (mature3p_A) and length of
precursor (hairpin_length).

SCIENTIFICREPORTS | (2018) 8:7560 | DOI:10.1038/s41598-018-25578-3 6



www.nature.com/scientificreports/

1 | Support Vector Machines 0.926 0.945 0.935 0.901 0.859
2 | Random Forest 0.870 0.957 0.914 0.883 0.836
3 k‘;‘:layrs Diseriminant 0.935 0.919 0927 0881 | 0830
4 | Logistic Regression 0.875 0.941 0.974 0.867 0.816
5 | Decision Tree 0.861 0.943 0.902 0.863 0.808
6 | Naive Bayes 0.875 0.894 0.884 0.824 0.746

Table 2. Classifier performance comparison over all designed features. Each classifier performance was
evaluated using five metrics: Sensitivity, Specificity, Area Under Curve (AUC), F1-Score and MCC. Results are
sorted by decreasing value of F1 and MCC.

Mirtron 186 10

Predicted

Canonical 15 190

Table 3. Confusion matrix of mirtron prediction using SVM model trained on 25 features. Prediction resulted
in 0.925 sensitivity and 0.95 specificity.

1 mature5p_G 0.699 0.921 0.810 0.742 0.646
2 mature3p_C 0.653 0.925 0.789 0.714 0.615
3 hairpin_length 0.639 0.864 0.752 0.650 0.509
4 mature3p_A 0.583 0.852 0.718 0.604 0.445
5 hairpin_A 0.362 0.937 0.649 0.476 0.380
6 hairpin_C 0.412 0.882 0.647 0.488 0.335
7 hairpin_G 0.366 0.907 0.637 0.453 0.324
8 interarm_C 0.213 0.943 0.578 0.312 0.244
9 interarm_length 0.129 0.966 0.548 0.206 0.179
10 harpin_FE 0.107 0.963 0.535 0.177 0.143
11 mature5p_length 0.107 0.935 0.521 0.161 0.067
12 mature3p_length 0.079 0.959 0.519 — —
13 mature5p_A 0.000 1.000 0.500 — —
14 mature5p_C 0.014 0.988 0.501 — —
15 mature3p_G 0.033 0.992 0.512 — —
16 interarm_A 0.009 0.996 0.503 — —
17 interarm_G 0.019 0.986 0.502 — —
18 overhang 0.139 0.925 0.532 — —
19 small_loops 0.000 1.000 0.500 — —
20 large_loops 0.000 1.000 0.500 — —
21 t_loop_length 0.005 0.996 0.500 — —

Table 4. Single feature predictors were built using Support Vector Machines (SVM) classifiers. Each classifier
performance was evaluated using five common metrics: Sensitivity, Specificity, Area Under Curve (AUC), F1-
Score and Matthews correlation coefficient (MCC). Most of classifiers did not capture enough information to
effectively classify mirtrons what resulted in very low sensitivity and high specificity. Only four classifiers were
strong enough to provide a satisfying distinction - Guanine composition of 5p arm (mature5p_G), Cytosine
composition of 3p arm (mature3p_C), length of precursor (hairpin_length) and Adenine composition of 3p
arm (mature3p_A). These results are in line with statistical tests and PCA we performed on the dataset.

(for setup details see Methods). Boruta by its definition relies on Random Forest, while for single feature predic-
tion and SFS we used our second best predictor - SVM.

Out of 21 features only top 11 single feature predictors acquired an MCC value greater than 0 and only top
7 had an AUC showing any meaningful predictive value (AUC;0.6) (Table 4). Clearly single features are insuffi-
cient for distinguishing mirtrons and canonical miRNAs. This is consistent with observed distributions of feature
values in Fig. 3. Among single feature predictors the best performing were based on: guanine content of 5p arm
miRNA (sensitivity 0.699, specificity 0.921), cytosine content of 3p arm (sensitivity 0.653, specificity 0.925) and
hairpin length (sensitivity 0.639 and specificity 0.864) (Table 4).
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1 mature5p_G 0.742
2 harpin_FE 0.820
3 mature3p_A 0.858
4 overhang 0.866
5 hairpin_G 0.885
6 hairpin_length 0.897
7 large_loops 0.909
8 mature3p_G 0912
9 mature5p_C 0915
10 hairpin_A 0.917
11 interarm_length 0916
12 t_loop_length 0.916
13 mature3p_length 0.917
14 interarm_G 0914
15 hairpin_C 0.913
16 interarm_A 0.911
17 mature5p_length 0.906
18 mature3p_C 0.905
19 mature5p_A 0.911
20 small_loops 0.899
21 interarm_C 0.901

Table 5. Output from Stepwise Forward Selection algorithm. F1 metric was the highest for the first 13 features,
indicated in bold.

1 mature5p_G 30.237
2 hairpin_length 24.944
3 mature3p_C 23.593
4 mature3p_A 22.983
5 harpin_FE 19.495
6 hairpin_G 14.645
7 hairpin_A 14.643
8 mature3p_G 14.441
9 interarm_length 13.555
10 hairpin_C 12.235
11 mature5p_C 10.992
12 interarm_C 10.225
13 interarm_A 9.177
14 overhang 8.863
15 mature5p_A 7.197
16 interarm_G 4.967
17 small_loops 4.488
18 mature3p_length 3.043
19 mature5p_length 2.875
20 large_loops 2.520
21 shadowMax 2315
22 t_loop_length 1.857
23 shadowMean —0.023
24 shadowMin —2.258

Table 6. Output from Boruta feature selection algorithm. Scores significantly higher (p < 0.01) than scores of
shadow attributes are indicated in bold.
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Figure 5. Feature selection using Stepwise Forward Selection procedure. In the procedure, features were
sequentially added to the model in the way that maximized the F1 metric at each addition. The optimal subset
contained first 13 features, for which the model acquired the best performance.

Importance

Figure 6. Blue boxplots depict minimal, average and maximum Z score of a shadow attribute. Yellow

boxplots correspond to tentative attributes (t_loop_length, large_loops), whereas green ones represent
confirmed features. TOP5 features stand out clearly from the rest: mature5_p_G, hairpin_length, mature3p_A,
mature3p_C and hairpin_FE. Boruta measures the impact of randomizing a particular feature on the classifier
performance, thus it may be used to asses the amount unique information that a feature encodes. The
importance of the features mature3p_length and mature5p_length is comparable to shadow attributes, which
serve as a baseline for feature usefulness.

1 | Support Vector Machines 0.945 0.951 0.948 0.917 0.882
2 | Random Forest 0.879 0.965 0.922 0.896 0.855
3 k‘::layrs Diseriminant 0940 0925 0932|0888 | 0840
4 | Logistic Regression 0.884 0.941 0.976 0.874 0.823
5 | Decision Tree 0.870 0.941 0.906 0.866 0.811
6 | Naive Bayes 0.880 0.905 0.893 0.838 0.767

Table 7. Classifier performance comparison over top 13 features returned by Stepwise Forward Selection algorithm.
Each classifier performance was evaluated using five metrics: Sensitivity, Specificity, Area Under Curve (AUC), F1-
Score and Matthews correlation coeflicient (MCC). Results are sorted by decreasing value of F1 and MCC.

The top of the ranking delivered by Boruta was consistent with the ranking of single feature predictors show-
ing that GC content and miRNA length related features were the most useful among others (Table 6). However
there is an interesting difference in the rank of hairpin free energy (hairpin_FE), which is placed in the middle
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Figure 7. Datapoints representing proposed candidate mirtrons in study by Wen et al.”* were projected on the
Principal Component space produced by PCA performed on training set. Generated biplot shows similarities
between verified mirtrons and candidate in the space of chosen features as they strongly overlap on a plot.

Mirtron 184 11
Canonical 17 189

Predicted

Table 8. Confusion matrix of mirtron prediction using SVM model trained on 13 features. Prediction resulted
in 0.915 sensitivity and 0.945 specificity.

of single feature predictors ranking while being the 5-th most important feature according to the Boruta rank-
ing. Such a discrepancy indicates that on its own, free energy is not discriminative with respect to canonical/
non-canonical miRNA, however in conjunction with other features it significantly improves classification accu-
racy. It also shows that the information conveyed in the hairpin_FE feature is unique, since its randomization
during Boruta importance estimation leads to a substantial drop of prediction accuracy. The SFS ranking similarly
emphasizes the importance of hairpin_FE, which was ranked as the second most important feature. The top 5 of
the SFS ranking also contains the overhang, which was in the middle of the ranking delivered by Boruta (Table 6).
Figure 5 presents the changes upon addition of consecutive features in the SFS algorithm. The classification accu-
racy improves quickly during addition of the initial top 3 features. Then, it increases slightly upon addition of
overhang and continues to improve afterwards. The optimal subset according to SFS algorithm contains 13 fea-
tures. The F1 is approximately 0.92.

Boruta also showed that the usefulness of some of designed features with respect to the classification task is
doubtful, since their importance was comparable to randomly generated shadow features (Fig. 6). These features
included large_loops and t_loop_length - marked as tentative, and mature3p_length, mature5p_length - having
only marginally higher importance.

This analysis showed that a combination of several features is able to detect the specific pattern which allows
distinguishing between the two classes of miRNA.

We retrained our classification models on the training set using the top 13 features from the SFS algorithm.
This resulted in a meaningful performance improvement of all models (Table 7).

Finally we validated the outcome of the study using the fest set which consists of intron hairpins with a high
potential of being mirtrons based on mappings of their genomic locations and numbers of reads? and canonical
miRNAs from miRBase that did not participate in preliminary data exploration. We used the transformation
matrix derived from the training set PCA to calculate the PC coordinates of new samples. As shown in Fig. 7 the
projected test set data (plotted as crosses) strongly overlap with samples from the training set (plotted as circles).
This holds true in case of both, canonical miRNAs (red) and mirtrons (blue). This denotes in the investigated
feature space the putative mirtrons are very similar to the confirmed mirtrons. In addition 184 out of 201 putative
mirtrons (87%) and 189 out of 200 (95%) canonical miRNAs were correctly classified by our best classification
model (Table 8).
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Discussion

The primary goal of the study was to explore the differences between canonical miRNAs and mirtrons. Both
miRNA classes have the same biological role - post-transcriptional gene regulation, but mirtrons originate from
a modified biogenesis pathway. To date various studies indicated high GC content in duplex regions and high
free energy of mirtrons with respect to bulk introns?"***. These properties were confirmed in our analysis with
respect to canonical miRNAs. Mature G and C content features were at the top of calculated feature importance
rankings (Tables 4 and 6). Interestingly the features related to general hairpin nucleotide contents were not as
informative. Although free energy in mirtrons was higher, the difference was not very pronounced. In the PCA
plot the free energy vector pointed neither towards mirtrons nor canonical miRNAs (Fig. 4). A feature with
such characteristics is not usually expected to contribute significantly to the classification accuracy. Still, the free
energy was one of the most important features, ranked 5th by Boruta (Table 5) and 2nd by SES (Table 6), meaning
that its removal from the set of features would significantly lower the accuracy of distinction. Our study shows
that nucleotide content features with addition of energy calculations detect an important mirtron specific pattern.

Investigation of length based features confirmed that the two classes of miRNA differ in terms of hairpin
lengths. However, conversely to some studies?>?’, in the analyzed training set the hairpins of canonical miRNAs
were longer - median length of 83 nt in comparison to 67 nt in mirtrons (Table 1). The hairpin_length vector in
the PCA plot points toward the canonical miRNAs indicating higher values in those molecules. In the study by
Hung et al.?® the authors reported that bulges and long internal loops may be more prevalent in mirtrons and thus
mirtron hairpins may be more similar to random hairpin sequences than canonical miRNAs. As a consequence
penalization of unpaired regions when assessing mirtrons may not be appropriate. This suggestion was based on
a much smaller mirtron dataset i.e. only 14 D. melanogaster mirtrons. Our results do not support this fact. The
features that quantify loop presence and lengths were not significant in statistical tests of differences (Table 1) also
their importance in classification was low (Tables 5 and 6), which implies that mirtrons and canonical miRNAs
share similar characteristics in terms of internal loops and bulges. Another important miRNA feature is the
overhang. The typical 0:2 overhang in canonical miRNAs is a result of the Drosha cleavage®*. Mirtrons bypass this
part of miRNA genesis pathway. Therefore one might expect that there might be a difference in terms of overhang
length. For instance mirtrons that are derived directly from splicing were reported to have a 1:1 nucleotide over-
hang?. In the explored training set the overhang proved to be beneficial for the classification (ranked 4th in the
SFS ranking). However the fact that it was ranked in the middle of Boruta ranking denotes that the information
it carries may also be encoded in some other features. Such redundancy would explain its lower impact on classi-
fication accuracy as measured by Boruta.

High classification accuracy produced by all tested machine learning methods (Table 2) shows that mirtrons
form a distinct group of molecules that can be confidently distinguished from canonical miRNAs based on the
proposed features. Moreover, we showed that it is possible to reduce the set of features to a subset of 13 features,
with special emphasis on the most pronounced properties differing the analyzed miRNA types, i.e. the G content
in the mature 5p arm, the hairpin length, the A and C content in mature 3p arm and hairpin free energy.

The PCA projection of test set showed that putative mirtrons group together with miRBase mirtrons.
Moreover, classification of putative mirtrons resulted in 87% of samples classified as mirtrons. Although these
results cannot be perceived as a strict test of accuracy, they show that annotation based on hairpin sequence fea-
tures correlates well with the outcome of genetic location annotation. This supports the validity of the proposed
approach of hairpin characterization and suggests that it may be possible to improve prediction of new mirtrons
using computational tools.

Conclusion
In this work, we proposed a set of quantitative features for characterizing miRNA hairpins. We used PCA,
machine learning classifiers and feature selection algorithms to identify and explore the differences between
mirtrons and canonical miRNAs. The most important differences were related to nucleotide content in the duplex
region combined with hairpin free energy. Clearly, the 5p arm mature regions of mirtrons were richer in Guanine
and simultaneously, their 3p arms were richer in Cytosine. On the other hand the mature 3p arms of canonical
miRNAs were shown to be richer in Adenine. In addition mirtrons were characterized by higher free energy levels
and shorter hairpin lengths. Although our study is consistent with the outcomes of several experimental works on
mirtron/canonical miRNA differences, we cannot confirm that the two miRNA classes differ in terms of bulges
and internal loops.

Our results show that sequence-based miRNA classification is consistent with genomic location-based anno-
tation. This work will be used as a starting point for further in silico mirtron prediction.
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