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Microbiome-metabolome 
signatures in mice genetically prone 
to develop dementia, fed a normal 
or fatty diet
Elena Sanguinetti   1, Maria Carmen Collado2, Vannina G. Marrachelli3, Daniel Monleon   3,5, 
Marta Selma-Royo2, Mercedes M. Pardo-Tendero3, Silvia Burchielli4 & Patricia Iozzo   1

Cognitive decline, obesity and gut dysfunction or microbial dysbiosis occur in association. Our aim was 
to identify gut microbiota-metabolomics signatures preceding dementia in genetically prone (3xtg) 
mice, with and without superimposed high-fat diet. We examined the composition and diversity of 
their gut microbiota, and serum and faecal metabolites. 3xtg mice showed brain hypometabolism 
typical of pre-demented stage, and lacked the physiological bacterial diversity between caecum 
and colon seen in controls. Cluster analyses revealed distinct profiles of microbiota, and serum and 
fecal metabolome across groups. Elevation in Firmicutes-to-Bacteroidetes abundance, and exclusive 
presence of Turicibacteraceae, Christensenellaceae, Anaeroplasmataceae and Ruminococcaceae, 
and lack of Bifidobacteriaceae, were also observed. Metabolome analysis revealed a deficiency in 
unsaturated fatty acids and choline, and an overabundance in ketone bodies, lactate, amino acids, 
TMA and TMAO in 3xtg mice, with additive effects of high-fat diet. These metabolic alterations were 
correlated with high prevalence of Enterococcaceae, Staphylococcus, Roseburia, Coprobacillus and 
Dorea, and low prevalence of S24.7, rc4.4 and Bifidobacterium, which in turn related to cognitive 
impairment and cerebral hypometabolism. Our results indicate an effect of transgenic background 
on gut microbiome-metabolome, enhanced by high-fat diet. The resulting profiles may precede overt 
cognitive impairment, suggesting their predictive or risk-stratifying potential.

Abnormalities in the intestinal microbiota have been described in association with numerous diseases, most 
frequently obesity and bowel inflammation1,2. Recent evidence suggests that the microbiota may be strongly 
involved in the pathogenesis of neuropathologies3. Among them, psychiatric conditions, autism and Parkinson’s 
disease have received most attention, whereas there seem to be no studies addressing Alzheimer’s disease (AD) 
and dementia. These epidemic diseases are growing in prevalence at an alarming rate, fostered by population 
aging, and by an increasing frequency and severity of predisposing conditions4. Recent findings document that in 
mice and humans with AD, neurodegenerative changes occur in the gut, similar to the brain5,6. Obesity is among 
commonest risk factors for cognitive decline and AD, and high-fat diet has been shown to accelerate cognitive 
deterioration, especially in genetically predisposed models7,8. High-fat diets are known to modify gut function 
and bacteria composition9.

Microbiota-mediated signals can reach the brain via neural and circulating routes10. The microbiota regu-
lates the transport of nutrients across the gut barrier, and produces absorbable or non-absorbable metabolites, 
affecting circulating and faecal metabolic profiles11,12. These can modulate systemic inflammation, i.e. a hall-
mark of obesity and neurodegenerative diseases, or cross the blood-brain barrier to act directly on the brain12–14. 
Metabolites, whose synthesis, modification or absorption have been ascribed to the microbiota include lipids 
and lipoproteins, amino acids, glutamate, choline, acetate, butyrate, glycerol and modulators of inflammation 
and oxidative stress, which are considered crucial in regulating neurological development and preservation15–23.
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In spite of the notion that the gastrointestinal environment varies profoundly from the proximal to the distal 
end of the intestine, affecting bacteria composition, most of the available knowledge is based on faecal bacteria 
obtained from the very end of the intestine24.

Here, we postulated that the combined characterization of microbiome, and circulating and faecal metabo-
lome might reveal signatures and provide mechanistic insight related to neurodegenerative disease, and its accen-
tuation by high-fat feeding. We studied 3xtg transgenic mice at an early cerebral disease stage and control mice, 
both undergoing normal or high-fat feeding. We examined their caecum and colon microbiota composition and 
diversity (within and between intestinal segments), and also metabolites in faeces (caecum and colon) and serum. 
In vivo cerebral metabolism and cognitive function were assessed to confirm the subclinical disease stage.

Results
General characterization.  We characterized n = 45 mice, grouped in normal diet-fed (ND, n = 9), high-
fat diet-fed (HFD, n = 9), ND-fed triple transgenic (3xtg, n = 8) and HFD-fed 3xtg mice (3xtg-HFD, n = 7). Diet 
was administered up to 8 months of age, when body weight, cognitive performance by Y-maze test, and brain 
glucose metabolism by 18F-2-fluoro-2-deoxyglucose positron emission tomography/computed tomography ([18F]
FDG PET/CT) were assessed. At the end of the dieting period, 8-month-old HFD mice were heavier than ND 
mice (51.8 ± 2.6 vs 41.7 ± 1.5, p < 0.01; growth curves, Fig. S1), whereas a tendency was shown in 3xtg-HFD vs 
3xtg mice (39.7 ± 1.8 vs 35.5 ± 1.0, p = 0.1). As per design, we aimed to target the pre-demented stage, thus the 
Y-maze test showed a non-significant ∼20–40% cognitive decline in 3xtg models. Two [18F]FDG PET/CT images 
of control ND mice were excluded due to persistent hyperglycaemia on the imaging day. A marked (∼30–40%) 
reduction in cerebral [18F]FDG extraction was observed in 3xtg and 3xtg-HFD mice compared to controls, espe-
cially in the hippocampus and temporal cortex, consistent with a pre-demented state (Table 1).

Impact on the metabolome.  We quantified 77 and 99 metabolites in all serum and faecal (caecum and 
colon) samples, respectively (Tables S1-2), and built chemometric models for detecting global and individual met-
abolic trends (Fig. 1, Figs S2–5). Serum analysis by Principal Component Analysis (PCA) showed distinct clusters 
in 3xtg compared to control mice, indicating genotype-induced changes in metabolome (Fig. 1a). More specif-
ically, we observed a clear separation along the first Principal Component (PC1, 46.54% of variance) between 
3xtg and control mice, regardless of diet, suggesting a stronger metabolic impact of 3xtg genotype than HFD. 
Serum metabolites explaining this separation pattern are given in the PCA loading plot (Fig. S2). Metabolites 
and samples segregation in response to diet and disease were attenuated at faecal level, where a greater effect of 
HFD compared to 3xtg genotype was observed in the determination of samples segregation (Fig. 1b,c). To further 
explore the metabolomic relationships between 3xtg genotype and diet, we built separated partial least-squares 
discriminant analysis (PLS-DA) models discriminating 3xtg and control mice, under ND or HFD (Figs S3–5). 
These plots highlighted a strong separation between 3xtg and controls in both serum and fecal extracts, regard-
less of diet, and revealed greater HFD-mediated separation in 3xtg compared to control mice. For serum and 
faecal metabolites, we quantified relative fold-changes in all possible binary comparisons to evaluate the extent of 
metabolomic variations in the different groups (Figs 2–3), thus observing that both 3xtg genotype and HFD affect 
some metabolites in the same direction, but to a different extent, prevailing for the 3xtg background.

Impact of diet.  A significant increase in inflammatory marker (glycoprotein acetylation biomarker, GlycA), lac-
tate and albumin lysil serum levels was observed in HFD compared to ND mice (Fig. 2). At faecal level, group 
comparisons did not show regional differences between colon and caecum tracts (Fig. 3) and a large interin-
dividual variation in metabolic profiles seemed to attenuate group effects. A tendency towards higher ribose, 
threonine, threonine-ornithyne, glycerol and fatty acid levels, and lower proline, acetate and ethanol amounts was 
observed in HFD compared to control mice (especially in colon), but only colon ribose levels achieved statistical 
significance.

Impact of disease.  The 3xtg genotype induced strong metabolic changes in host (serum) metabolome, but minor 
changes in host-microbial co-metabolome (faeces) (Figs 2–3). Differences in serum metabolome of 3xtg com-
pared to control mice, regardless of diet, included elevation in inflammatory markers (GlycA), lactate, albumin 
lysil, leucine and isoleucine, and deficient levels of unsaturated fatty acids, very low density lipoprotein (VLDL), 
and choline. In addition, higher levels of trimethylamine (TMA) and a tendency to trimethylamine N-oxide 
(TMAO) elevation occurred in 3xtg mice compared to controls. At faecal level, 3xtg mice were characterized by a 
pronounced increase in ornithine-tyrosine levels compared to controls, in both colon and caecum.

Standardized Uptake Value 
(%ID/g*mmol/l) ND HFD 3xtg 3xtg-HFD

Hippocampus 2.93 ± 0.25 2.70 ± 0.36 1.87 ± 0.14**,^ 1.80 ± 0.19**,^

Frontal cortex 2.51 ± 0.23 2.61 ± 0.37 1.73 ± 0.16^ 1.77 ± 0.23^

Temporal cortex 2.36 ± 0.12 2.47 ± 0.31 1.56 ± 0.16*,^^ 1.41 ± 0.14**,^^

Table 1.  Regional cerebral glucose metabolism as determined by [18F]FDG-PET. Mann-Withney U statistical 
test. Data are mean ± standard error of the mean. *p < 0.05. **p < 0.01: 3xTg and 3xTg-HFD vs ND. ^p < 0.05. 
^^p < 0.01: 3xTg and 3xTg-HFD vs HFD.
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Combined impact of diet and disease.  The combined effect of HFD and 3xtg genotype amplified the changes 
observed in each component alone. As expected, the comparison of 3xtg genotype under HFD vs control animals 
under ND showed the largest number of statically significant differences and fold changes (Fig. 2). Similar to 
3xtg mice, high aminoacids (leucine, isoleucine, glycine) and albumin lysil serum levels were detected compared 

Figure 1.  The metabolome of 3xtg mice differs more from control mice than mice under HFD. PCA score plots 
based on the NMR metabolomic profile of serum (a), and fecal extracts from colon (b) and caecum (c). Each 
symbol represents a single sample shaped and coloured according to the respective group.

Figure 2.  The serum metabolome of 3xtg mice differs from control mice, and HFD exerts additive effects. 
Relative fold changes for control and 3xtg mice under normal or HFD on NMR integrals for metabolic regions 
with higher VIP scores in PLS-DA serum analysis. Bars represent fold-change in metabolite content for each 
comparison (increased content: positive bars; decreased content: negative bars). ND, ND-fed control mice; 
3xtg, ND-fed 3xtg mice; HFD, HFD-fed control mice; 3xtgHFD, HFD-fed 3xtg mice. *p < 0.05; **p < 0.01; 
***p < 0.001.
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to controls. The amount of systemic inflammatory markers (GlycA) was elevated, but not higher than in 3xtg 
under ND, due to already high inflammatory levels in this group. Instead, a further elevation in glucose, lactate, 
glycerol and glutamate levels was observed compared to controls and to 3xtg under ND. Likewise, fatty acid (but 
not VLDL) deficiencies were also amplified in 3xtg-HFD, compared to each condition (3xtg or HFD) alone. 
Finally, TMA and TMAO levels were progressively greater from ND to 3xtg and to 3xtg-HFD. Important, the 
combination of HFD and 3xtg genotype affected ketone bodies pathways in an alternative way compared to 
the above listed metabolites, due to the opposing effects of HFD, lowering and 3xtg, elevating acetoacetate and 
3-hydroxibutyrate. The net effect resulted in a significant reduction of ketone bodies in 3xtg-HFD mice compared 
to controls. In faeces, ornithine-threonine and acetoin levels were significantly higher in the colon of 3xtg-HFD 
compared to ND mice (Fig. 3).

Impact on the microbiome.  A total of 2,895,848 quality-filtered 16 S rDNA sequences were obtained from cae-
cum and colon faecal extracts (52,651.8 ± 34,735.2 seq/sample) and clustered into 23,874 Operational Taxonomic 
Units (OTUs).

Impact of location.  Analysis of Similarity (ANOSIM) test showed significant differences at OTU level between 
colon and caecum microbiome (R = 0.184, p = 0.039). In group analysis, they were significant in ND (R = 0.184, 
p = 0.043) but not in 3xtg mice (R = 0.007, p = 0.412).

Higher Bacteroidetes (27.57% vs 13.0%, p = 0.0016, p Bonferroni correction = 0.0096, false discovery 
rate, FDR = 0.0075) and lower Firmicutes (64.41% vs 81.97%, p = 0.0025, p Bonferroni correction = 0.015, 
FDR = 0.0075) were present in colon compared to caecum samples in ND mice. However, no differences at phy-
lum level were observed between colon and caecum samples in the 3xtg group.

At family level, caecum samples showed higher levels of Lachnospiraceae (18.02% vs 10.28%, p = 0.036) and 
lower levels of S24.7 (13% vs 27.56%, p = 0.0016) than colon samples in ND. Conversely, only Enterococcaceae 
family was significantly different between colon and caecum samples in 3xtg mice (2.31% vs 0.09%, respectively, 
p = 0.012). In linear discriminant analysis effect size (LEfSe) tests, S24.7 family was significantly enriched in ND 
colon compared to caecum samples (linear discriminant analysis, LDA, score > 5, p < 0.05), while Enterococcaceae 
family was enriched in 3xtg colon compared to caecum samples (LDA score = 4.5, p < 0.05). At OTU level, we 
found significant differences in 30 OTU belonging mostly to Firmicutes and Bacteroidetes phyla when ND colon 
and caecum samples were compared, while only 8 OTU significantly differed in 3xtg. Higher abundance of 
Oscillospira (p = 0.035) and lower abundance of Enterococcus spp. (p = 0.05) genera was detected in caecum com-
pared to colon samples in 3xtg (data not shown).

Figure 3.  The fecal metabolome of 3xtg mice is altered with respect to control mice. Relative fold changes for 
in test groups (HFD, and 3xtg mice under ND or HFD) versus control ND mice, derived from NMR integrals 
of metabolic regions with higher VIP scores in the PLS-DA analysis in colon and caecum faecal extracts. Bars 
represent fold-change in metabolite content in each comparison (increased content: positive bars; decreased 
content: negative bars). ND, ND-fed control mice; 3xtg, ND-fed 3xtg mice; HFD, HFD-fed control mice; 
3xtgHFD, HFD-fed 3xtg mice. *p < 0.05; **p < 0.01; ***p < 0.001.
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Higher Shannon diversity index (p = 0.022), but no differences in microbial richness measured by Chao1 
index (p = 0.512), was observed in caecum compared to colon samples in ND. Conversely, no alpha diversity 
(Shannon and Chao1 indexes), was reported between colon and caecum samples in 3xtg mice (Fig. S6).

Impact of diet.  Redundancy Analysis (RDA) showed significant differences in microbial composition between 
HFD and ND mice, in colon (p = 0.006) and caecum samples (p = 0.001) (Fig. 4b), as confirmed by ANOSIM 
tests (colon: R = 0.209, p = 0.023; caecum: R = 0.213, p = 0.032).

At family level, lower abundance of Bifidobacteriaceae (p = 0.029), Lactobacillaceae (p = 0.071) and S24.7 
(p = 0.055) and higher abundance of Rikenellaceae (p = 0.0013, FDR = 0.023), Mogibacteriaceae. (p = 0.0074, 
FDR = 0.074), Lachnospiraceae (p = 0.012, FDR = 0.072) Enterococcaceae (p = 0.022, FDR = 0.09), were detected 
in HFD compared to ND colon samples. Similar results were found in caecum samples, where lower levels of 
Bifidobacteriaceae (p = 0.063) and S24.7 (p = 0.029), and higher abundance of Rikenellaceae (p = 0.00077, 
FDR = 0.013), Enterococcaceae (p = 0.0088, FDR = 0.052) and Staphylococcaceae (p = 0.0092, FDR = 0.052) were 
observed in the HFD compared to ND group.

At genus level, lower abundance of Unclassified Peptococcaceae (p = 0.013), Bifidobacterium and Lactobacillus 
spp (p = 0.029 and 0.072, respectively) and higher abundance of Unclassified Rikenellaceae (p = 0.0013, 
FDR = 0.042), Unclassified Mogibacteriaceae (p = 0.007), and Unclassified Enterococcaceae (p = 0.022) were 
observed in HFD compared to ND colon samples.

DESeq 2 test confirmed diet-based differences between groups, specifically lower abundance of Bifidobacterium  
and Lactobacillus were found in HFD than ND mice (p < 0.0001, FDR < 0.0001 for both). In caecum samples, 
we also observed lower abundance of Bifidobacterium spp (p = 0.036) and Ruminococcus (p = 0.043), and higher 
abundance of Staphylococcus (p = 0.009) and Clostridium spp (p = 0.07) genera in HFD compared to ND mice. 
Most significant findings in pooled samples (caecum and colon) are shown in Supplementary Figure 7.

At OTU level, we found significant differences in 37 OTU belonging mostly to Firmicutes, Bacteroidetes 
and Actinobacteria phyla (Table S3) in colon, and also 37 OTU in caecum when ND and HFD groups were 
compared (Table S4). No differences in Shannon diversity index and lower Chao1 richness index (p = 0.086, 
colon; p = 0.0223, caecum) were observed in HFD compared to ND groups (Fig. S6). LEfSe tests revealed that 
at family level in ND mice, S24.7 was significantly enriched in colon, while Bifidobacteriaceae were highly abun-
dant in caecum (Fig. 5a). In HFD mice, Enterococcaceae and Rikenellaceae were representative of colon, whereas 
Lachnospiraceae and Staphylococcaecae were abundant in caecum samples. Venn diagram showed a core of 13 
families shared between diet groups and locations (Fig. 5c). Bifidobacteriaceae family was exclusively present in 
ND colon and caecum. Christensenellaceae, Mogibacteriaceae and Rikenellaceae were present in HFD colon and 
caecum. Staphylococcaceae and Enterococcaceae, were shared between ND colon and HFD colon and caecum.

Figure 4.  HFD and 3xtg determine a dramatic rightward shift in the overall composition of gut microbiota. 
RDA plot at OTU level between animal groups and diet intervention. The analysis revealed a clear-cut 
separation between HFD and ND mice (a,b), and between 3xtg and control mice (c,d). Each symbol represents 
a single sample shaped and coloured according to the respective group.
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Impact of disease.  RDA showed differences in the microbial composition of colon (p = 0.001) and caecum sam-
ples (p = 0.001), between ND and 3xtg (Fig. 4c,d), as confirmed by ANOSIM tests (colon: R = 0.696, p = 0.001; 
caecum: R = 0.326, p = 0.001).

At family level, lower abundance of S24.7 (p = 0.018) and higher abundance of Enterococcaceae (p = 0.0077, 
FDR = 0.081) and Turicibacteraceae (p = 0.0081, FDR = 0.081) were detected in 3xtg compared to ND 
colon samples. Similar results were found in caecum samples, in which lower levels of S24.7 (p = 0.029) and 
Bifidobacteriaceae (p = 0.045) were detected in 3xtg compared to ND mice. At genus level, lower abundance 
of Bifidobacterium spp (p = 0.045) and rc4.4 (p = 0.042), and higher abundance of Roseburia (p = 0.049) 
were detected in 3xtg compared to ND caecum. LEfSe analyses confirmed that, at family level S24.7 and 
Lachnospiraceae was significantly enriched in ND colon and caecum, respectively, while Enterococcaceae and 
Turicibacteriaceae were associated to 3xtg colon samples (Fig. 5b). Families belonging to Ruminococcaceae and 
Anaeroplasmataceae were representative of 3xtg caecum samples. At genus level, Turicibacter and Staphylococcus 
were significantly enriched in 3xtg colon samples, whereas Anaeroplasma was associated to 3xtg caecum samples. 
Most significant findings in pooled samples (caecum and colon) are shown in Supplementary Figure 7.

Venn diagram showed a core of 13 families shared between 3xtg and control mice in both locations (Fig. 5d). 
Turicibacteraceae family was associated to 3xtg colon, while Christensenellaceae to 3xtg caecum. Bifidobacteriaceae 
was related to ND colon and caecum, whereas Anaeroplasmataceae was linked to 3xtg colon and caecum. Finally, 
Staphylococcaceae and Enterococcaceae families were shared between ND colon and 3xtg colon and caecum.

At OTU level, we found significant differences in 48 OTU (Table S5) in colon and 62 OTU in caecum 
(Table S6) when ND and 3xtg groups were compared. Alpha diversity analysis showed no group differences in 
Shannon diversity index, but lower Chao1 richness index (p = 0.0195) in 3xtg than ND colon samples (Fig. S6). 
No significant difference was found in caecum, though the tendency was the same.

Impact of combined location, diet and disease.  Principal Coordinates Analysis (PCoA) of the samples clearly 
separated 3xtg from control animals, in both weighted (Fig. 6a) and unweighed (Fig. 6b) plots (PC1 accounting 
for 8.7% and 30.94% of the variance in unweighted and weighted UniFrac analysis, respectively), indicating that 
the microbiota between groups is compositionally distinct. In addition, the different diet groups are well defined 
and clustered. ANOSIM tests confirmed the overall significant difference between groups and intestinal locations 
(R = 0.477, p = 0.001). Similar results were found when microbiome of ND, HDF, 3xtg and 3xtg-HFD groups in 
each intestinal location (colon: R = 0.53, p = 0.001; caecum: R = 0.589, p = 0.001) were compared.

Together with UniFrac data, ADONIS (permutational manova, PERMANOVA) showed significant differ-
ences at OTU level between diet groups and sample location (p = 0.0006). In addition, RDA highlighted sig-
nificant differences in the microbial composition between the diets and disease status in colon (p = 0.001) and 
caecum (p = 0.001) (Fig. 6c,d).

Alpha diversity analysis showed no differences in Shannon diversity index, but higher Chao1 richness index 
(p < 0.0001 in colon and p = 0.0256 in caecum) between groups and locations, as higher richness was found in 
ND followed by HFD group (Fig. S6).

Figure 5.  HFD consumption, 3xtg background and location significantly influence the composition of the gut 
microbiome. LEfSe test-identified LDA scores showed the significant bacterial difference due to the effect of 
diet and location (a, ND and HFD, colon and caecum), and disease and location (b, ND and 3xtg, colon and 
caecum). Venn diagram showed shared families across groups (c, diet and location; d, disease and location).
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Microbiome and metabolome associations.  Heatmap generated to examine correlations between colon 
microbiota and serum metabolome in ND and 3xtg mice (Fig. 7) showed three main clusters: I) lactate, malate, 
acetylcarnitine, glutamate, succinylacetone, glycerol, citrate, etc; II) proline, methylalanine, methionine, creatine 
phosphate, leucine, isoleucine, glutamine, alanine, methylsuccinate, etc; III) cholesterol, lipoproteins and fatty 
acids. Bifidobacterium and Unclassified s24.7 levels, which were shown to be defective 3xtg mice, were related to 
high lactate, malate and aminoacid levels, and to low cholesterol, low density lipoprotein (LDL) and fatty acid 
amounts. Coprobacillus, Dorea and other bacterial strains were also negatively related to cholesterol and fatty 
acid levels. Abundance of rc4.4, which was shown to be deficient in 3xtg mice, was associated negatively with 
circulating aminoacids and positively with cholesterol and fatty acids levels. Both Unclassified s24.7 and rc4.4 
were negatively correlated with the amount of circulating choline compounds and inflammatory marker GlycA. 
Conversely, Staphylococcus and Unclassified Enterococcus (shown to be overabundant in 3xtg) were positively 
associated with lactate, malate, acetylcarnitine, succinylacetone, pyruvate and aminoacid levels. Overall, bacteria 
correlating with an adverse metabolic profile, as defined by 3xtg characteristics, were primarily Enterococcaceae, 
Staphylococcus, followed by Roseburia, Coprobacillus, Dorea, Enterococcus, Christenellaceae. The ones relating to 
the reverse healthier profile were s24.7, rc4.4, Bifidobacterium, Dehalobacterium, Peptococcaceae, Acinetobacter.

Microbiome and brain associations.  Heatmap generated to examine correlations between caecum-colon 
microbiota and cerebral parameters (Alternation triplets, n and %, and glucose metabolism) across groups 
(Fig. 8) showed that cerebral hypometabolism was associated with higher abundance of Firmicutes phy-
lum, Anaeroplasmataceae and Erysipelotrichaceae families, and Coprobacillus, Clostridium, Anaeroplasma 
and Roseburia genera, and lower abundance of Bacteroidetes phylum, Peptococcaceae, Rikenellaceae, 
Dehalobacteriaceae and s24.7 families, and rc4.4, Dehalobacterium, Unclassified Coriobacteriacea, Unclassified 
Rikenellaceae, Unclassified s24.7.

Furthermore, we observed that higher abundance of Bifidobacteriaceae and Erysipelotrichaceae families, and 
Bifidobacterium and rc4.4 genera were positively correlated with cognitive function, whereas negative associations 
occurred with Coprobacillus, Dorea, Roseburia, and Unclassified Peptococcaceae.

Discussion
The emerging biology of gut-brain crosstalk has revealed the existence of a complex bidirectional system25, in 
which neurodegenerative processes affecting the brain also occur in the gut5,6, and vice versa, factors primarily 
influencing the gut microbiota, e.g. high-fat diets, increase the risk of neurodegeneration. We addressed these 
interrelations by comparing normal and high-fat feeding in control mice and in a transgenic mouse model of neu-
rodegenerative disease. This model was studied prior to the development of full-blown cognitive deficits, which 

Figure 6.  Isolated and combined HFD plus 3xtg background determine a clear-cut separation in microbiota 
composition. Beta-diversity PCA using weighted (a) and unweighted-UniFrac distances (b). RDA plot at 
OTU level between groups (c, colon; d, caecum). Each symbol represents a single sample shaped and coloured 
according to the respective group.
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we have shown to occur later in life26. In the current disease stage, our 3xtg mice showed the typical cerebral 
hypometabolism that precedes dementia in humans27. Several novel results emerged from our study.

The most salient finding was the dramatic rightward and clear-cut shift occurring in the overall composition 
of the microbiota in 3xtg compared to ND mice, and defining a global microbiota pattern which enabled to clearly 
identify subjects that are going to be demented. Another specific trait of 3xtg mice was the loss of differences in 
microbial diversity between caecum and colon, as opposed to control mice, in which the caecum showed superior 
diversity than the colon, due to higher amounts of Firmicutes and lower Bacteroidetes at phylum level, and higher 
Lachnospiraceae and lower S24.7 at family level. Bacterial richness was also defective in 3xtg mice, as documented 
by Chao1 indices. In normal gut physiology, the caecum and colon reflect very different functions, and a greater 
diversity in their microbial composition - as observed in our healthy mice - is therefore expected. The lack of 
this trait in our 3xtg mice may indicate that these intestinal segments have lost their distinctive milieu. In fact, 
recent reports document that neurodegeneration involves intestinal walls (beyond brain), leading to functional 
abnormalities in 3xtg mice5,6. This may affect microbial composition and function. Notably, 3xtg mice were char-
acterized by an elevation in Firmicutes compared to Bacteroidetes abundance in both gut tract, and these traits 
were associated with cerebral hypometabolism. Most important, specific families were exclusively represented in 
the 3xtg model, and absent in ND mice. These were Turicibacteraceae (colon), Christensenellaceae (caecum) and 
Anaeroplasmataceae (both colon and caecum). Conversely, Bifidobacteriaceae were absent in 3xtg mice, while 
being well represented in the control ND model (colon and caecum), in agreement with their positive association 
with cognitive function. In the colon, 3xtg mice also showed higher amounts of Enterococcaceae. In the cae-
cum, lower abundance of S24.7 and rc4.4, and higher amounts of Ruminoccaceae and Roseburia occurred. Some, 
but not all of these bacterial alterations, along with the reduction in bacterial diversity and richness have been 
described in dysmetabolic, low-grade inflammatory and inflammatory bowel states28–31, in agreement the high 
serum levels of GlycA (marker of inflammation) observed in our 3xtg mice. Our data lend support to the concept 
that abundance differences in very selected bacterial families are specifically related to a high-risk to develop 
dementia in our mouse model, and warrant studies to examine direct cause-effect relationships.

We explored serum and faecal metabolomes, and their correlations with bacteria. Notably, our PCA analysis 
explained 46% of changes in serum metabolites occurring in 3xtg compared to ND mice, indicating a strong and 
selective relationship between disease and metabolome. In fact, subgroup analyses showed well-defined serum 

Figure 7.  Associations between colon microbiome and serum metabolome. Heatmap shows associations 
between metabolite profile and relative abundance of specific bacterial families and genera in ND and 3xtg 
groups. Red to blue scale: positive to negative associations. Pearson’s correlations were employed in agreement 
with data distribution, verified by Shapiro-Wilk test. *p < 0.05.



www.nature.com/scientificreports/

9ScIentIFIc REPOrTS |  (2018) 8:4907  | DOI:10.1038/s41598-018-23261-1

and faecal metabolite clusters in 3xtg versus control mice. Also important was that these metabolomics alterations 
were significantly correlated with the prevalence of Enterococcaceae, Coprobacillus, Staphylococcus, Roseburia 
and Dorea, belonging to the Firmicutes phylum, mostly in the Clostridia and Lachnospiraceae class and families, 
and with deficiencies in S24.7, rc4.4, Bifidobacterium, Dehalobacterium. Coherently, associations between most 
of these taxa and cerebral metabolism and/or cognitive function were also detected. One striking finding in 
faecal metabolites was the elevated presence of amino acids ornithine and thyrosine. Ornithine provides cere-
bral protection against ammonia, whereas thyrosine has neuroexcitatory properties, and Clostridia modulate 
amino acid metabolism. The pathophysiological significance of this finding in the context of neurodegeneration 
deserves further investigation. Serum metabolomics patterns seen in 3xtg mice were typical of neurodegenera-
tive diseases. First, reductions in unsaturated fatty acids, LDL and VLDL, as seen in 3xtg mice, compromise the 
important contribution of lipids to neuronal cell structure (50% of neuronal membranes), energy storage and 
signal transduction, and relate to the development of AD16–18. Second, the brain is an avid consumer of glucose, 
and our 3xtg mice showed a gross impairment in brain glucose uptake. The accompanying increase in ketone 
bodies, i.e. β-hydroxybutyrate, acetoacetate, and acetone may serve as protective alternative fuel during brain 
glucose starvation, as suggested in humans with mild-cognitive impairment (MCI)32. The impairment in brain 
glucose metabolism has been implicated in the pathogenesis of hyperglycemia and hyperlactatemia in patients 
with MCI and AD32,33, and these substrate excesses were found in our 3xtg mice. Lactate is a modulator of cere-
bral Aβ production, and its levels are abnormal in brain and cerebrospinal fluid (CSF) of AD subjects34,35. Third, 
remarkable alterations were found in amino acid metabolism in 3xtg mice, consisting in high levels of methio-
nine (precursor of homocysteine), leucine (activator of the mammalian target of rapamycin, mTOR, signalling36) 
and isoleucine (relating to insulin resistance with other branched-chain amino acids37), alanine and glutamate 
(important in neurotransmission). These pathways have been implicated in the pathogenesis of cerebrovascular 
disease and dementia38, β-amyloid brain accumulation39, enhanced neurofibrillar tangle formation40, and gluta-
matergic dysregulation21. We also report elevated TMA, TMAO levels (regulating tau aggregation41), and choline 
deficiency (precursor of acetylcholine, a cholinergic neurotransmitter implicated in memory and AD42), in 3xtg 
mice. Altogether, these results suggest that metabolite changes known to compromise brain structure and func-
tion occur in 3xtg mice, prior to the development of overt dementia, and correlate with the abundance of selected 
gut bacteria, revealing potential mechanisms underlying the complex interaction linking gut and neurodegener-
ative disease.

High-fat diets have a profound impact on gut microbiota9. Extending previous observations, we found that a 
HFD modifies bacterial composition in both colon and caecum, also leading to lower richness compared to ND. 
In both caecum and colon, HFD mice showed high relative abundances of Firmicutes than Bacteroidetes at phy-
lum levels, Rikenellaceae, Lachnospiraceae, Enterococcaceae and S24.7 at family level, as well as increased amount 
of faecal ribose. Higher post-prandial colonic motility has been described in response to HFD consumption, and 
ribose affects gut activity43,44. Elevations in Clostridium and Staphylococcus were also observed in the caecum. 
HFD mice were depleted in protective Bifidobacteriaceae and Lactobacillaceae (Bifidobacterium and Lactobacillus 

Figure 8.  Associations between gut microbiome and cerebral parameters. Heatmap generated from Spearman 
correlation analysis shows associations between brain parameters (cognitive function and glucose metabolism) 
and relative abundance of specific bacterial phyla, families and genera across groups, in caecum and colon. Red 
to blue scale: positive to negative associations. Spearman’s correlations were employed in agreement with data 
distribution, verified by Shapiro-Wilk test. *p < 0.05. *p < 0.05.
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at genus level), which maintain mucosal barrier integrity and constrain endotoxin formation, preventing inflam-
mation and metabolic complications45,46. Coherently with this, GlycA levels were high in our HFD mice.

We and others have shown that a HFD promotes cognitive impairment in both humans and mice, and that 
the acceleration of cognitive decline is particularly evident in older 3xtg-HFD mice26. In this study, compared to 
HFD or 3xtg alone, summative outcomes were seen in selected microbial families and genera in 3xtg-HFD mice, 
resulting in severe depletion of S24.7, Peptococcaceae, Dehalobacteriaceae families, and rc4.4 genus, and excess 
of Clostridium genus abundance. In the metabolome of HFD and 3xtg mice, most changes occurred in a similar 
direction, leading to strong additive effects in 3xtg-HFD mice, compared to HFD and 3xtg alone. One important 
distinctive feature was also noted, as 3-hydroxybutyrate and acetoacetate were high in 3xtg and low in HFD, com-
pared to ND mice. Ketones are considered protective in Alzheimer’s brains, as they may compensate for cerebral 
glucose hypometabolism47,48. Therefore, the ketone deficiency caused by HFD in our 3xtg-HFD mice can be an 
important mechanism whereby HFD accelerates progression of cognitive impairment in 3xtg mice26.

The study has some limitations. It involved male mice to limit data variability, considering that males seem 
more vulnerable than females to the impact of HFD-induced obesity (i.e. a target risk factor for dementia), on 
weight gain, metabolic alterations, deficits of learning, and hippocampal synaptic plasticity49. However, it would 
be relevant to extend findings to females, since the number of women with obesity and/or dementia is also 
high. Furthermore, the study was conducted in mice, and therefore its translational significance remains to be 
examined.

In conclusion, our study shows that high-fat feeding and genetic predisposition to neurodegenerative disease 
share abnormalities in the resulting microbiome and metabolome, which are additive and seem unfavourable to 
brain health. Most important, distinctive signatures, including selected microbial families and metabolic changes, 
and the lack of bacterial diversity between colon and caecum were exclusively found in association with 3xtg 
mice, and coherent associations were identified between microbiota changes and cognitive reductions or cer-
ebral hypometabolism. Our findings have important implications, as an excellent discrimination was shown in 
microbial-metabolome profiles between groups, and 3xtg mice were pre-demented, suggesting that the above 
clear-cut microbiome-metabolome deviations occur early in the course of neurodegenerative disease.

Methods
Animal model and study design.  The study involved n = 18 B6129SF2/J (stock no:101045, The Jackson 
Laboratory, Bar Harbor, Maine) and n = 15 triple transgenic (3xtg) male mice (B6;129-Psen1tm1MpmTg[APPSwe, 
tauP301L]1Lfa/Mmjax stock no:004807, MMRRC034830, The Jackson Laboratory), randomly stratified as follow: 
I) normal diet-fed mice (ND, B6129SF2J, n = 9, 11% kcals from fat, Mucedola, Italy); II) high-fat diet-fed mice 
(HFD, B6129SF2J, n = 9, 58% kcals from fat, Mucedola); III) ND-fed 3xtg mice (3xtg, n = 8) and IV) HFD-fed 
3xtg mice (3xtg-HFD, n = 7). The slight discrepancy in group sizes was due to higher 3xtg mortality. Animals 
were housed in standard cages (n = 4–5 mice/cage) under controlled conditions (12-hour light/12-hour dark 
cycles, 22 °C), with ad libitum access to food and water. Veterinary and animal care staffs were responsible for 
the monitoring of animal welfare and health for all the duration of the study. Diet was administered from 2 to 
8 months of age, when body weight, cognitive performance and brain glucose metabolism were assessed. Then, 
animals were euthanized by an anaesthetic overdose, and blood and faecal samples (caecum and colon) collected 
for analyses of serum and faecal metabolome, and gut microbiota. The experimental protocol was notified to the 
Ministry of Health (Dept. of Public Veterinary Health) in accordance with the D.L.116/92 implementation of 
directive EEC 609/86 regarding the protection of animals used for experimental and other scientific purposes, 
and adheres to standards articulated in Reporting of In Vivo Experiments (ARRIVE) guidelines.

Cognitive analysis by Y-maze test.  Cognitive performance was measured by a spontaneous alternation test 
(Y-maze, Panlab, Harvard Apparatus, Spain). Each subjects was allowed to freely move through the maze for 8 min-
utes, whereas a visual automatic tracking system (Panlab) recorded the number of alternation triplets explored.

Brain glucose metabolism by [18F]FDG PET/CT.  On the experimental day, each animal was transferred 
to the imaging facility. Anaesthesia was induced and maintained in overnight-fasted mice by ∼2% (v/v) isofluorane 
inhalation (IsoFlo®, Abbott Laboratories, IL, USA), a standard method for rodent based on minimal handling and 
safety, and breath frequency and body temperature were monitored. Then, a 60-minute dynamic PET scan was 
acquired after i.p. 18F]FDG injection, by an IRIS PET/CT small-animal tomograph (Inviscan SAS, France). Volumes 
of interest were manually drawn on PET/CT images by AMIDE software (AMIDE-bin 1.0.5) in the hippocampus, 
frontal and temporal cortex. Regional [18F]FDG uptake was expressed as standardized uptake value (SUV), i.e. the 
ratio between tissue activity (kBq/ml) at 60 min post-injection, and weight-normalized injected dose (kBq/g).

Serum and faecal metabolites by 1H-NMR Spectroscopy.  Blood samples (n = 33) were centrifuged 
(2200 RCF, 10 min) to obtain serum. Faecal samples (n = 27, caecum; n = 28, colon) were suspended in Milliq 
water (100 µL) and centrifuged (14800 rpm, 5 minutes) for 3 consecutive times to obtain the extract. Extracts 
(20 μl) supplemented with D2O (2 μl) were transferred into 1-mm NMR tubes. 1H-NMR spectra (8000 Hz width) 
were recorded in a Bruker Avance DRX 600 spectrometer (Valencia, Spain), equipped with a triple resonance 
1 H/13 C/31 P probe. Samples were measured at 310 K and a single-pulse presaturation experiment was acquired in 
all samples. The water signal was saturated with weak irradiation during the recycle delay. Data were Fourier trans-
formed after the free induction decay was multiplied by a 0.3 Hz exponential line-broadening function. Spectra 
were processed using MestReNova 8.1 (Mestrelab Research S.L., Spain) and transferred to MATLAB (MathWorks, 
2012) using in-house scripts for data analysis. The chemical shift region including resonances 0.50–4.70 ppm (the 
aliphatic region) and 5.20–10.00 ppm (the aromatic region) was investigated. Metabolite spin systems and reso-
nances were identified by literature data and Chenomx resonances database (Chenomx NMR 7.6). Spectra were 
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normalized to total aliphatic spectral area to eliminate differences in metabolite total concentration, binned into 
0.01 ppm buckets and then subjected to mean-centering before multivariate analysis. Signals belonging to selected 
metabolites were integrated and quantified using semi-automated in-house MATLAB peak-fitting routines. Final 
metabolite levels were calculated in arbitrary units as peak area normalized to total spectral area.

NMR profile and statistical analyses.  Metabolomics data analysis was performed using in-house 
MATLAB scripts and PLS_Toolbox (Eigenvector Research). PCA was applied to NMR spectra data sets, to find 
low-dimensional embeddings of multivariate data. PCs were chosen to explain at least 70% of the variance. The 
loading plots of the corresponding PC were used to detect the position of most discriminative variables in the 
NMR spectra. To maximize the separation between samples, PLS-DA was applied. Permutation test was per-
formed to check overfitting of the PLS-DA models. The multivariate chemometric models were cross-validated 
with 10-fold Venetian blind cross-validation. In each run, 10% of data were left out of the training and used to 
test the model. Spectral regions with high variable importance in projections (VIP) coefficients obtained during 
PLS-DA are more important in providing class separation during analysis, while those with small VIP coefficients 
provide little contribution to classification. P-values ≤ 0.05 were regarded as statistically significant.

Faecal microbiome by 16S rDNA gene sequencing.  Total DNA was isolated from faecal samples 
(n = 27, caecum; n = 28, colon) by MasterPure Complete DNA&RNA Purification Kit (Epicentre, Illumina, WI, 
USA), with some modifications, as previously described50. Isolated DNA concentrations were measured using 
a Qubit® 2.0 Fluorometer (Life Technology, CA, USA) and normalized to 10 ng/μL. The V3-V4 region of 16 S 
rDNA gene was amplified by PCR using Illumina adapter overhang nucleotide sequences following Illumina pro-
tocols. The multiplexing step was performed using Nextera XT Index Kit (Illumina, CA, USA). PCR product was 
checked with a Bioanalyzer DNA 1000 chip (Agilent Technologies, CA, USA) and libraries were sequenced using 
a 2 × 300 pb paired-end run (MiSeq Reagent kit v3) on a MiSeq-Illumina platform (FISABIO sequencing service, 
Valencia, Spain) according to manufacturer’s instructions (Illumina). Reagents employed for DNA extraction and 
PCR amplification were also sequenced as controls.

Bioinformatics and statistical analysis.  Quality assessment was performed by prinseq-lite program 
(min_length:50; trim_qual_right:20; trim_qual_type:mean; trim_qual_window:2051). R1 and R2 from sequenc-
ing where joined using fastq-join from ea-tools suite52. Data were obtained using an ad-hoc pipeline written in 
RStatistics environment53 and data processing was performed by QIIME pipeline (version 1.9.0)54. Chimeric 
sequences and sequences that could not be aligned were removed. The clustered sequences were utilized to 
construct OTUs tables (97% identity), then classified into phylum, family, genus taxonomic levels based on the 
Greengenes database. Sequences, that could not be classified, or classified as Cyanobacteria and Chloroplasts 
(representing ingested plant material), were removed. Alpha diversity indices (Chao1 and Shannon), UniFrac beta 
diversity, and PERMANOVA were used to test significance. ANOSIM test was employed for group-comparison in 
microbiota communities. Calypso software version 7.36 (http://cgenome.net/calypso/) was used with total sum 
normalization (TSS) for the statistical analysis, and also Cumulative Sum Scaling normalisation (CSS) for multi-
variate tests (RDA). Venn diagram for shared phylotypes was generated with the same software. LEfSe was used to 
detect unique biomarkers (LDA score >3.0) in relative abundance of bacterial taxonomy55. P-values ≤ 0.05 were 
regarded as statistically significant.

Data availability.  The datasets generated and analysed during the current study are not publicly available, 
but will be available from the corresponding author on reasonable request.
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