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A dual layer broadband 
radar absorber to minimize 
electromagnetic interference in 
radomes
Thtreswar Beeharry1,2, Riad Yahiaoui1, Kamardine Selemani2 & Habiba Hafdallah Ouslimani1

A thin broadband dual-layer radar absorber based on periodic Frequency Selective Surfaces (FSS) to 
tackle Electromagnetic Interference (EMI) in radomes is presented in this article. The proposed structure 
consists of periodically arranged metallic patterns printed on two dielectric substrates separated 
by an optimized air gap. Under normal incidence, the proposed structure exhibits at least 89.7% of 
absorption in the whole band of 4.8 GHz to 11.1 GHz for both Transverse Electric (TE) and Magnetic 
(TM) polarizations. For oblique incidences, a very slight decrease in the bandwidth is observed in the 
upper frequency band until 30° and the absorption remains very interesting for higher incidences. The 
structure is λ/7.2 (λ is the wavelength in free space) thin compared to the center frequency (8.2 GHz). In 
addition, parametric studies have demonstrated that at least 90% of absorption can be produced with 
our structure by adjusting the thicknesses of the dielectric substrates. Another issue that is presented 
and discussed in this paper is a new approach for evaluating the performance of absorbers. In fact, 
studies show that the absorber can compete with other recent broadband absorbers. After fabricating 
the structure, the measurements were found to be in good agreement with the simulation results.

Electromagnetic wave absorbers cover a range of applications in defense systems1 such as reduction of radar cross 
section, stealth applications, reduction of EMI between electronic equipments and others. On ships for example, 
several antennas and radars are mounted inside radomes which may contain metallic objects such as cable ducts. 
Reflected electromagnetic waves due to these metallic objects cause EMI critical issues. The metallic ducts also 
cause indirect echoes, shadow and blind zones. Covering metallic parts with radar absorbers can decrease con-
siderably the reflections, and hence the indirect echoes. For practical reasons, broadband thin absorbers covering 
part or the whole frequency band of radars and antennas are best suitable for these applications. Jaumann absorb-
ers2–4 and Salisbury screens5–7 are very good examples of radar absorbers. Multilayer Jaumann absorbers suffer 
from large thickness and bulkiness as each layer produces a single narrow band resonance. Based on metamaterial 
technique8–13, FSS are well tailored periodically arranged resonant structures printed on dielectric substrates14–17. 
FSS improve the bandwidth, reduce bulkiness and thickness of the absorber compared to Jaumann absorbers. 
FSS based absorbers suffer from a narrow bandwidth (high quality factor; Q = f0/Δf−3dB) because of their reso-
nant structures. In order to enlarge the bandwidth, two of the popular techniques used, consist of incorporating 
resonating elements working at nearby frequencies by arranging then on the same plane18–21 or by using multi 
layers22–24. Both techniques lead to a drop in the absorption (sometimes the reflection, S11 > −10 dB) at certain 
frequencies in the bandwidth. Using several elements on the same plane is very difficult to implement due to 
lack of space in a small unit cell. Moreover, using different resonating elements on a single unit cell can lead to 
an asymmetrical design and hence degrading the performance considerably for oblique incidences and different 
polarizations. By following the same reasoning a multilayer structure can considerably increase the total height 
of the absorber. Using well customized magnetic materials25, can decrease the thickness26 but they can be very 
expensive. For these reasons, designing thin broadband radar absorbers with easily available dielectrics especially 
for low frequencies (VHF/UHF) and the gigahertz regime (radio frequency and microwave) is very complicated 
and is a challenging topic. In this paper, we present a thin ultra-broadband radar absorber operating in the band 
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of 4.8 GHz–11.1 GHz achieving more than 89.7% of absorption in the whole band for both TE and TM polar-
izations at normal incidence. We also demonstrate that by decreasing the total thickness of the absorber, more 
than 90% of absorption is obtained without affecting consequently the frequency band. The absorption remains 
unchanged until 30° showing an absorption efficiency of more than 89.7% with a slight decrease in bandwidth 
(reduction of 1.1 GHz in the upper band). Results remain very interesting until 50° of incidence. The designed 
structure achieves a low profile which can reach thickness value that is very close to the theoretical limit26 as 
detailed later in the paper.

Results
Design and simulation results.  The unit cell of the proposed dual layer absorber is depicted in Fig. 1. The 
absorber is composed of two layers separated with an optimized air gap of thickness, g = 1.5 mm. For the simula-
tions, copper having . ∗5 8 10 S/m7  of electric conductivity and 0.0175 mm of thickness is used for the metallic 
patterns and ground plane, and dielectric FR4 of relative permittivity ε = 4.2 and loss tangent δ = 0.018 is used for 
the two dielectric substrates. The first FR4 layer, whose thickness, h1, is equal to 3.2 mm, is backed with a ground 
plane to prevent transmission. On top of the first layer, a half-moon-shaped resonator (HMSR) is deposited. The 
HMSR is obtained by removing, from a circular patch of radius R1 = 5.45 mm and center C1 (x = 0 mm, 
y = 0 mm), a circular section having radius R2 = 4.2 mm and center, C2 (x = 2 mm, y = −2 mm). A ring-shaped 
resonator (RSR), of outer radius R4 = 3.5 mm, and inner radius R3 = 2 mm, is deposited on top of the second FR4 
layer which has a thickness, h2, equal to 0.5 mm. The unit cells (HMSR and RSR) are arranged in periods of 
Px = Py = 13.75 mm.

Absorption is given by the formula A(ω) = 1 − |S11(ω)|2 − |S21(ω)|2. The first layer of our structure is backed by 
a metallic plate so no transmission occurs. Hence, in our case, A(ω) = 1 − |S11(ω)|2. The absorption of the whole 
structure is presented in Fig. 2a. As shown in Fig. 2a, for normal incidence, the absorption rate is more than 89.7% 
in the whole band of 4.8 GHz to 11.1 GHz for TE and TM modes. Simulation results for oblique incidences of lin-
early polarized TE wave are shown in Fig. 2b. For oblique incidences until θ = 30°, the absorption remains more 
than 89.7% but the bandwidth is very slightly decreased. For 40° of incidence, the absorption rate is higher than 
80% in the band of 4.8 GHz–9.5 GHz and remains above 64% until 11.1 GHz. For 50° of incidence, the absorption 
is deteriorated but remains significant (>78%) in the band of 4.8 GHz–8.7 GHz and more than 50% in the band 
of 8.7 GHz–11.1 GHz. These results remain extremely interesting for a large band absorber. The results for oblique 
incidences concerning TM polarization (not shown) are the same as those of TE polarization.

Figure 1.  (a) On the Left hand side: Top view of layer 1 with the HMSR. On the right hand side: Top view of 
layer 2 with the RSR. (b) Perspective view of the proposed absorber. The first layer is backed with a metallic 
ground. The second layer is separated from the first layer by an air gap of 1.5 mm.
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Absorption mechanism.  To understand the absorption mechanism of our structure, we will first study the 
behavior of each layer. Figure 3a depicts the absorption of each layer and the inset shows three different cases. 
In cases ‘a’ and ‘b’ only the first layer backed with a metallic plate is studied. In case ‘c’ the whole structure the 
(metallic ground, first layer, air gap and second layer) is simulated. In the three cases absorption is calculated by 
A(ω) = 1 − |S11(ω)|2. For the first layer, when the HMSR is oriented as in case ‘a’ of Fig. 3a, the segment of the patch 
excited by the electric field (green points on the patch) is not the same as the segment excited by the magnetic field 
(blue points on the patch). Hence, the reflection for TE represented by curve ‘a1’ and TM represented by curve ‘a2’ 
are not the same. Moreover, a very low absorption is observed for both TE and TM modes. Therefore, the patch 
oriented as in case ‘a’ is not efficient. When the HMSR is rotated by 45°, as in case ‘b’, the structure becomes more 
interesting as the electrical and magnetic field interact with exactly the same segments of the patch. TE and TM 
modes become equal as shown by curve ‘b’ (only TE is plotted to simplify the figure).

Furthermore, the absorption is considerably increased. The absorption is at least 70% between 4.7 GHz 
and 8.2 GHz and at least 50% between 8.2 GHz–11.6 GHz. In order to further reduce the reflection in the band 
8.2 GHz–11.6 GHz, the second layer is introduced. When layer 2 is placed at 1.5 mm above the first layer whose 
patch is rotated by 45°, as shown in case ‘c’, the reflection of the whole band is reduced. As shown by curve ‘c’, the 
absorption is at least 89.7% for both TE and TM modes between 4.9 GHz and 11.1 GHz. We can also observe a 
shift in the resonant frequencies when we compare the absorption rates of the first layer and the final structure. 
In order to understand this phenomenon, a parametric study on the thickness of the air gap, g, has been done. 
The study included the reflections and the imaginary parts of the effective impedances of the first layer and 
of different thicknesses of g. Frequency dependent input impedance of the structure is given by the formula 
Z(ω) = (1 + S11(ω))/(1 − S11(ω)). The real part and imaginary part of the normalized effective input impedance 
must be close to 1 and 0 respectively in order to match the impedance of free space (377 Ω or 1 if normalized). 
The sign of the imaginary part of the effective impedance (reactance) indicates whether the whole structure is 
having a capacitive or an inductive behavior. If the reactance is positive, the behavior is inductive and if the latter 
is negative, the structure has a capacitive behavior. A decrease in the reactance value also means that a capacitive 
coupling have taken place and an increase in the latter means an inductive coupling have taken place. The reflec-
tions and the reactances for different values of g under normal incidence of linearly polarized TE wave are plotted 
in Fig. 3b. The first row of Fig. 3b, corresponds to the reflection and the second row corresponds to the reactance. 
To begin with, we compare the resonance frequencies of first the layer only (red curve) to that of when the second 
layer is added and g = 0 mm (blue curve). We can observe that when we add the second layer, the first frequency 
peak splits into two adjacent resonances, the second resonance shifts to the right and the third resonance shifts 
tho the left (first column, first row of Fig. 3b). The splitting of the first resonance is due to two adjacent inductive 
(blue arrows) and capacitive (red arrows) couplings brought by the second layer (first column, second row). 
When the gap is increased from 0 mm to 1.5 mm (green curve), the inductive coupling increases and all the fre-
quency resonances move towards higher frequencies (second column of Fig. 3b). When the gap is increased from 
1.5 mm to 3 mm (orange curve), the first resonance frequency does not change, the second moves to the right, 
and the third to the left (third column, first row of Fig. 3b). We can observe from their reactance (third column, 
second row of Fig. 3b) that an inductive coupling takes place at the second resonance and a capacitive coupling 
takes place at the third resonance. Hence, adding and air gap and the second layer brings and additional capacitive 
and inductive coupling which modifies the overall effective impedance of the structure and shifts the resonance 
frequencies.

Figure 2.  (a) The absorption ratio of TE and TM for normal incidence. (b) Absorption ratio of TE mode for 
oblique incidences.
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To further understand the absorption, we will in this section study the electric field (Fig. 4a) the magnetic 
field (Fig. 4b) distributions and the power loss density (Fig. 4c) on the two layers for normal incidence of line-
arly polarized EM waves. The three columns of Fig. 4a and c correspond to the three frequencies of maximum 
absorption peaks (5.17 GHz, 6.16 GHz and 10 GHz). Their two rows illustrate the first layer with the HMSR and 
the second layer with the RSR. The three rows of (Fig. 4b) depict the magnetic field distribution on the whole 
structure at the frequencies of maximum absorption peaks.

For the first absorption peak, the electric resonance is produced around regions A and B of the RSR and 
around regions E and F of the HMSR (first column of Fig. 4a. We can also observe in the first row of Fig. 4b, a 
strong magnetic resonance on the two layers and the air gap. Power loss will mainly occur where the current 
circulation (not shown) is strong. As shown in the first column of Fig. 4c, the surface losses are mainly caused 
around regions M, N, O, P and Q. For the first absorption peak, the electric resonance is produced around regions 
E and G of the HMSR as shown in the second column of Fig. 4a. We notice from the second row of Fig. 4b, that 
a strong magnetic resonance is created only between the HMSR and the ground plane. Surface losses are mainly 
caused around regions M, N, O, P and Q as shown in the second column of Fig. 4c. For the last absorption peak, 
the electric resonance is produced around regions C and D of the RSR and around region E of the HMSR (third 
column of Fig. 4a). In the third row of Fig. 4b, we can see a strong magnetic resonance between the HMSR and 
the RSR due to the circulation of strong anti parallel currents. The surface losses (third column of Fig. 4c) are 
produced by the whole RSR and regions O, P and Q of the the HMSR. In the three cases overlapping of electrical 
(Fig. 4a) and magnetic resonances (Fig. 4b) and surfaces losses (Fig. 4c) due to high intensity of current circula-
tion on the HMSR and RSR lead to strong absorption.

Experimental results.  An experimental prototype is fabricated with 16 × 16 unit cells of dimensions 
300 × 300 mm using printed circuit board technology. Both layers (Figure a–c) were fabricated with a mar-
gin error of ±10% for the thicknesses. The thicknesses of the metallic ground and resonating elements are of 

Figure 3.  (a) Absorption of each layer. Dotted green and black curves represent the TE and TM modes of layer 
1 respectively as oriented in case ‘a’. The continuous blue curve shows the TE mode of layer 1 as oriented in 
case ‘b’. For cases ‘b’ and ‘c’, TE and TM modes are equal. (b) Are shown: In the first row, the reflexions (S11) of 
different values of g. In the second row, the reactances of different values of g.
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0.018 mm. Washers of thickness 1.5 mm ±10% were used to create the 1.5 mm air gap between the two layers. 
Eight holes (four at each end and four in the middle of each edge) of 6 mm were made, and bolts/nuts/screws were 
used to fix the two layers together.

The simulated (blue curve) and the measured (red curve) are plotted in Fig. 5. We can clearly see a very good 
agreement between both results. Moreover, we can clearly see the three near unity absorption peaks at 5.17 GHz, 
6.16 GHz and 10 GHz for the measured absorption. The measured absorption is the same for both TE and TM 

Figure 4.  (a) Top view of electric field distribution on the first and second layers. (b) Perspective view of 
magnetic field distribution on the first whole structure. (c) Top view of power loss density on the first and 
second layers.

Figure 5.  In red, measured absorption. In blue, simulated absorption.
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modes. The thicknesses of the two substrates and the air gap in simulation were chosen such that the fabrication 
and measurements could be done easily. However, a parametric study is done in the next chapter to illustrate that 
total thickness of the structure can be reduced and the structure leads more than 90% of absorption band in the 
range of 4.97 GHz–11.2 GHz.

Discussion
As discussed earlier, the thicknesses of the two substrates and the air gap in simulation were chosen such that the 
fabrication and measurements could be done easily and rapidly. Different values of g, h1 and h2 are plotted in 
Fig. 6. When h1 = 2.7 mm, h2 = 0.5 mm, g = 1.5 mm (red curve), the absorption rate is at least of 90% in the whole 
band of 4.97 GHz–11.2 GHz. When h1 = 2.7 mm, h2 = 0.65 mm, g = 1.5 mm (blue curve), the absorption is at 
least of 93% in the whole band of 5 GHz–11 GHz. Finally, when h1 = 2.95 mm, h2 = 0.8 mm, g = 1.16 mm (green 
curve), the absorption is at least of 90% in the whole band of 4.9 GHz–10.8 GHz. Hence, the different thicknesses 
of g, h1 and h2 can be selected according the the frequency band and the least amount of absorption required.

The performance of an absorber is often judged upon its −10 dB reflection or 50% absorption rate (full width 
at half maximum). These two criteria do not take into consideration the thickness of the absorber which can be 
the most important factor in some applications. A better method to evaluate the performance of an absorber has 
been proposed by Chang Long27. The authors27 have used the ratio of −10 dB operational bandwidth to thickness 
to evaluate the performance of an absorber. It seems that the bigger the ratio is, the better (in terms of perfor-
mance) the absorber is. We consider this method better than the first two mentioned methods to evaluate the 
performance of an absorber. However, the problem with this approach is that that we can not compare the perfor-
mance of two absorbers having exactly the same −10 dB frequency band and having exactly the same thicknesses. 
Also, with these approaches two absorbers must be compared only if, firstly, they have the same operating fre-
quency range and different thicknesses or, secondly, same thicknesses and different operating frequencies. We 
often see comparison between absorbers which do not operate in the same frequency range and do not have the 
same thicknesses. We present a new approach to evaluate the performance of an absorber. According to 
Rozanov26, the minimum theoretical thickness of a non magnetic absorber can be calculated by 

∫ ρ λ λ π≥
∞d ln d( ) /2
0

2, where ρ is the module of the reflexion coefficient, λ is the wavelength in free space, and 
d is the theoretical minimum thickness required. This formula takes into account the exact reflexion, and the 
whole frequency range of the absorber (not the −10 dB frequency range). Our approach to evaluate the perfor-
mance of a radar absorber consists of doing the ratio of the minimum theoretical thickness that the absorber must 
have to the real thickness of the structure. The minimum value of this ratio is very close to zero (≈0% in terms of 
percentage), and its maximum value is one (100% in terms of percentage). The closer to 100% the value is, the 
closer will be the thickness of the structure to its theoretical thickness. This approach have been used in a few 
works in which the authors15 have used it to have an idea of the minimum thickness value of their absorbers, but, 
to our knowledge, it has very rarely (not to say never) been exploited to compare absorbers. The advantage of this 
approach is that we will be able to compare the performances of absorbers which does not operate in the same 
frequency band as the minimum theoretical thickness to real thickness ratio is a ratio in which the thickness of an 
absorber is compared to its minimum possible thickness in a first time and then we compare the percentages of 
other absorbers. The disadvantage of this approach is that the exact S parameters of the absorber must be known 
and can be time consuming to design and simulate absorbers that we want to compare. In Table 1 we compare the 
performance of our absorber to some broadband absorbers and we can see that our absorber has the best mini-
mum theoretical thickness to real thickness ratio. We have used the reflexion coefficient for the dimensions that 
measurements were carried out, that is h1 = 3.2 mm, h2 = 0.5 mm and g = 0.5 mm. In this case we obtain a ratio of 
80% which is the best among the compared ratios. As we have shown in the parametric results, h1, h2 and g can 

Figure 6.  Absorption rate for linearly polarized TE wave of different values of g, h1 and h2. All dimensions are 
in millimeters.
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be optimized for better absorption. For the case when h1 = 2.7 mm, h2 = 0.5 mm and g = 1.5 mm, the theoretical 
thickness must be of 4.13 mm in the band of 4 GHz–12 GHz. The theoretical thickness to real thickness ratio is as 
high as 87.87% in this case.

Methods
Simulation.  Numerical designs and simulations were performed using the commercial software CST Design 
Studio Suite. Periodic boundary conditions were applied in the numerical model in order to mimic a 2D infinite 
structure. Floquet ports were used for the excitation of the periodic structure. Simulation results were plotted 
using a free mathematical programming language tool. The calculation of the theoretical thickness using 

∫ ρ λ λ π≥
∞t ln d( ) /2T 0

2 was done by mapping the simulated reflexion coefficients in the wavelength domain. 
The rectangle technique was used to calculate the integral in the formula.

Broadband 
Absorbers

Frequency range 
(GHz)

tT = Theoretical 
thickness (mm)

tR = Real 
thickness (mm) (tT/tR) ∗ 100

Reference28 4–15 1.206 1.54 78.31%

Reference29 4–8 1.237 1.6 77.31%

Reference30 40–134 0.294 1 29.4%

Reference27 6–19 3.43 4.36 78.57%

Reference31 5–25 2.55 3.65 69.86%

Reference32 6–18 1.64 2.22 73.78%

This work 4–12 4.16 5.2 80%

Table 1.  Comparison of our absorber to other absorbers. It is important to note that column two contains the 
frequency range in which the reflexion coefficients were integrated and not the −10 dB frequency range.

Figure 7.  (a) HMSR layer. (b) RSR layer. (c) Fixing layers 1 and 2 with the 1.5 mm gap. (d) Measurement 
arrangements in anechoic chamber.
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Measurements.  Measurements have been carried out in an anechoic chamber (Fig. 7d) using a vector net-
work analyzer. A pair of broadband FLANNR horn antennas working in 2 GHz–18 GHz band was used as an 
emitter and receiver in reflection configuration. The reflection coefficient is normalized using the backed metallic 
plate of the structure acting as an ideal reflector. The sample is placed at a distance of 1 m in front of the antennas 
to satisfy far-field requirements. Experimental results were plotted using a free mathematical programming lan-
guage tool.

Data availability.  The datasets generated and/or analyzed during the current study are not publicly available 
due to ongoing further studies and due to the industrial application of the project which is tested in an industrial 
setting. The corresponding information could be available upon reasonable request.

Conclusion
An ultra-broadband thin FSS based radar absorber has been proposed achieving at least 89.7% of absorption 
in the whole band of 4.8 GHz–11.1 GHz. The absorption remains very interesting for oblique incidences. The 
absorption mechanism of our structure was first described by studying the contribution of each layer and sec-
ondly by observing the power loss density, the induced electrical and magnetic fields. Next, a parametric study 
complimented our work to show the coupling between the two layers and the effects that the air gap thickness has 
on the absorption. Another parametric study was done to give some optimized thicknesses of the two substrates 
and the air gap. The study also includes the presentation of a new approach to evaluate the performance of an 
absorber which consists of doing a ratio of the structure’s real thickness (calculated by its reflexion coefficient 
and frequency band) to its real thickness. After implementing measurements and calculations, our structure was 
found to have the best ratio when compared to some recent works on broadband absorbers. Eventually after fab-
ricating the structure and analyzing it, the practical results proved to be in alignment with the numerical results. 
The experimental results are very promising and our design can be used to tackle EMI for civil and military 
applications.
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