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Winner-take-all in a phase oscillator 
system with adaptation
Oleksandr Burylko1, Yakov Kazanovich2 & Roman Borisyuk2,3

We consider a system of generalized phase oscillators with a central element and radial connections. In 
contrast to conventional phase oscillators of the Kuramoto type, the dynamic variables in our system 
include not only the phase of each oscillator but also the natural frequency of the central oscillator, 
and the connection strengths from the peripheral oscillators to the central oscillator. With appropriate 
parameter values the system demonstrates winner-take-all behavior in terms of the competition 
between peripheral oscillators for the synchronization with the central oscillator. Conditions for 
the winner-take-all regime are derived for stationary and non-stationary types of system dynamics. 
Bifurcation analysis of the transition from stationary to non-stationary winner-take-all dynamics is 
presented. A new bifurcation type called a Saddle Node on Invariant Torus (SNIT) bifurcation was 
observed and is described in detail. Computer simulations of the system allow an optimal choice of 
parameters for winner-take-all implementation.

Winner-take-all (WTA) is a computational principle used in artificial neural networks to implement such func-
tions as competitive learning, decision making, and action selection1,2. According to this principle the neurons 
in the system compete with each other for activation. Typically, only the neuron or neural population with the 
highest activity elicited by the strongest input wins the competition, inhibiting the other neurons to quiescence.

WTA models can be subdivided into several categories depending on the type of the units used in their con-
struction. Early versions of WTA models used nonspiking units which operated with analog input and output 
signals3–6. Later the functional principles of these models were improved and analytical and computational 
results were obtained on their dynamics and stability7–13. Such systems can be conveniently implemented in VLSI 
circuits14–24. To make WTA systems compatible with brain-like devices, WTA networks of spiking units were 
developed and studied25–30 together with their VLSI counterparts31–33. WTA systems were applied for building a 
silicon retina34,35, hierarchical models of vision36, and for modeling cognitive functions37–45. It has been proven 
that the winner-take-all operation is computationally powerful compared to other nonlinear operations, such as 
thresholding46,47.

The temporal correlation hypothesis48 stimulated the development of WTA systems based on synchronization 
of oscillatory activity. A system of Van der Pol oscillators with global inhibitory neurons has been developed for 
consecutive selection of objects in an image49, with the WTA regime as a special case. A similar WTA implemen-
tation was realized in a system of FitzHugh-Nagumo oscillators with a global inhibitory neuron50. In the paper51 
a system is built from adaptively coupled WTA circuits, where each circuit is an oscillator driven by the interac-
tion between multiple excitatory units and a common inhibitory unit. The competition between excitatory units 
results in one population of excitatory neurons being active at a time. Switching between the states is controlled 
by external stimulation.

Traditionally in WTA systems outputs compete for activation via lateral inhibition or recurrent inhibition. In 
this paper we suggest an alternative approach to the WTA problem based on synchronization in an oscillatory 
network with a central unit. Consider a system built from oscillators with a radial connection architecture. This 
means that there is a central oscillator (CO) in the system that is connected with a set of so-called peripheral 
oscillators (POs) by feedforward and feedback connections. We will show that competition between POs for the 
synchronization with the CO can be organized in such a way that only one PO can win the competition. This PO 
will work coherently with the CO while other POs will be out of phase with the CO. This results in a resonant 
increase of the activity of the winning PO while the activity of the other POs will be reduced to a low level.
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We use generalized phase oscillators as the elements of the WTA system. Phase oscillators of the Kuramoto 
type52 have been widely used for describing dynamics of Josephson-junction arrays, neutrino flavor oscillations, 
semiconductor laser arrays, coupled magnetic systems, and neural networks. Reviews of the mathematical theory 
of phase oscillator systems and their applications can be found in the publications53–56. Systems with phase oscil-
lators and radial connection architectures have been studied in the papers57–63. Conventionally, a phase oscillator 
is described by a single variable, its phase. The natural frequencies of the oscillators and coupling strengths are 
the parameters of the system.

Generalized phase oscillators differ from original Kuramoto oscillators by the transformation of some param-
eters of the system into dynamical variables. In the case of the system considered here the variables include the 
natural frequency of the CO and the strengths of connections from POs to the CO. The natural frequency of the 
CO is adapted in the direction of its current value. The connection strength of a PO is adapted as a function of the 
similarity between its phase and the phase of the CO. To obtain the WTA regime the connection strengths from 
POs to the CO should be positive and the connection strengths from the CO to POs should be negative.

The advantage of our WTA phase oscillator system is the possibility of implementing it in hardware as a laser 
optical device or as a Josephson junction array. Note that there are no connections between POs, so the whole 
number of connections in the system is 2n.

WTA systems of generalized phase oscillators with a central element have previously been applied to atten-
tion modeling and visual search64,65. Here we present for the first time a rigorous mathematical analysis of their 
dynamics.

We develop a new mathematical theory of WTA oscillatory networks. In the case of POs with identical natural 
frequencies we derive conditions when only one PO wins the competition. This winner is synchronized with the 
CO, while all other POs are in antiphase to the CO. These WTA dynamics correspond to the existence of a stable 
equilibrium in the phase space of the system.

Using perturbation theory and bifurcation analysis, we demonstrate that in the case of non-identical nat-
ural frequencies of POs the system can demonstrate both stable and oscillatory versions of the WTA regime 
depending on the relations between the parameters of the system. In the stable case, the winning PO works nearly 
inphase with the CO, while the absolute values of the difference between the phases of other POs and the CO 
exceed π/2. In the oscillatory version of WTA there is a single winner which works nearly inphase with the CO, 
while the phases of other POs oscillate far from the phase of the CO or run indefinitely in the positive or nega-
tive direction. We show that the appearance of the oscillatory WTA regime is due to a Saddle Node on Invariant 
Torus (SNIT) bifurcation which is a generalization of the well-known Saddle Node on Invariant Circle (SNIC) 
bifurcation (see66,67). Note that the SNIT bifurcation of two cycles on a 2–dimensional torus was studied among 
others by C. Baesens et al.68,69. The same type of bifurcations has been addressed in considerable detail for the 
3-dimensional case, though without the reinjection, by A. Chenciner70–72 and C. Baesens and R. S. MacKay73.

Finally, using massive simulations of the model we clarify how the parameters of the system affect the results 
of WTA.

Model Formulation
The system that we consider contains a central oscillator (CO) and a set of n peripheral oscillators (POs). The 
CO interacts with POs through feedforward and feedback connections. There are no lateral connections between 
POs. The dynamics of the system are described by the following equations
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1  are the variables, ωi, i = 1, …, n, α, β, γ, b, c are the param-

eters, In (1)–(4) θi are the current phases of the oscillators, ωi are the natural frequencies of the oscillators, ai and 
b are the connection strengths between the oscillators. We will also associate ai with the amplitudes of oscillations 
of POs. Positive values of connection strengths correspond to synchronizing interaction and negative values cor-
respond to desynchronizing interaction. We always suppose that α, β, γ, c > 0.

The meaning of equations (1)–(4) will be explained a bit below. Right now let us introduce the restrictions on 
the functions used in these equations. The functions f, g, h are assumed to be 2π–periodic and satisfy the follow-
ing conditions

π= − − ′ > ′ =f x f x f f( ) ( ), (0) 0, ( ) 0, (5)

π= − − ′ > ′ <g x g x g g( ) ( ), (0) 0, ( ) 0, (6)
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π π= − = = ′ = ′ = .h x h x h h h h( ) ( ), (0) 1, ( ) 0, (0) ( ) 0 (7)

Thus the functions f and g are odd and the function h is even. Periodicity and oddness of the functions f and g 
imply the conditions f(0) = f(π) = g(0) = g(π) = 0. We assume that the functions f(x), g(x) do not have other zeros 
in the interval (0,π). We also require that h(x) is monotonic on [0, π] (and [−π, 0]).

Equations (1)–(4) can be considered as a generalization of standard Kuramoto equations for phase oscilla-
tors52 by introducing in addition to two phase equations an equation for the adaptation of the natural frequency 
of the CO ω0 and the equations for the adaptation of the amplitudes ai. The meaning of equation (3) becomes clear 
if it is rewritten as64
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According to this equation the natural frequency of the CO is adapted in the direction of the current frequency. 
The parameter α controls the speed of adaptation.

The meaning of equation (4) is that there is resonant increase of the amplitude of oscillations of the i-th PO 
to the level c + γ if this PO works inphase with the CO, otherwise this amplitude decreases to a low level c. The 
parameter β controls the speed of amplitude adaptation.

System (1)–(4) is similar to the systems invented in65 with the aim to organize a competition between POs for 
the synchronization with the CO in such a way that in a typical case only one PO can win the competition. We 
will show that this is possible if b < 0. Other types of dynamics including multistable and chaotic regimes are also 
possible depending on the values of the parameters.

Two types of dynamics can be associated with the WTA regime in system (1)–(4). In the stationary case we 
say that the i-th PO wins the competition if it is the only PO that asymptotically has the amplitude of oscillations 
equal to c + γ, while the amplitudes of other POs are equal to c. In the non-stationary case the amplitudes of POs 
are not constants anymore. We say that the i-th PO wins the competition if its amplitude is asymptotically con-
centrated in a region above the value c + γ − δ, while the amplitudes of other POs vary in a region below the value 
c + δ, where δ is a small number. Our aim is to find conditions when stationary and non-stationary WTA regimes 
take place. For this reason we investigate the dynamics of system (1)–(4) in two cases, corresponding to identical 
and non-identical POs.

Some results about the dynamics of (1)–(4) can be obtained for the general form of the functions (5)–(7). 
More advanced and complicated results demand a specification of the functions f, g, h. In this case the following 
types of the functions will be used:
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with the parameters ν > 1, σ 1, μ π∈ (0, ) (see Fig. 1).
The function f(x) has a single maximum in the interval (0, π) and a symmetric minimum in (−π, 0) such that

x x f x f x(1 2 ), ( ) ( ) 1max min
1/

max minπ= − = − = − =ν−

and

= .
ν→∞

xlim 0max

Thus, increasing the value of the parameter ν we can continuously move the location of the maximum (and min-
imum) point from π/2 (and −π/2) to zero (Fig. 1(a)). The parameter ν also specifies the slope of the function f at 
the zero point:

ν′ = .f (0)

One can check that f′(π) = 0 for ν > 1, that is the last condition of (5) is satisfied.
The parameter σ controls the “width” of the function h. Increased values of σ make sharper the peak at h(0) 

(Fig. 1(b)). Below we will show how the values of the parameters ν and σ influence WTA results.
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Results
Using phase differences
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we reduce system (1)–(4) to the equations
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Identical peripheral oscillators.  Consider a symmetric case of equal natural frequencies of POs
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Then system (12)–(14) obtains the form
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System (16) has permutation symmetry Sn: the permutation of any two pairs (ϕi, ai) and (ϕj, aj) does not 
change the system. We denote
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Using this notation we can formulate the following statement.

Proposition 1. System (16) has fixed points

Figure 1.  Coupling functions: (a) interaction function f(x) for different ν, (b) resonance controlling function 
h(x) for different μ, σ.
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P a k n( , , ) ( , , ), 0, , (17)k k k0ω ω= Φ = Φ Ψ = … .

Since the functions f, g do not intersect the abscissa in (0, π), system (16) has 2n fixed points Pk corresponding 
to different values of k.

For fixed k there are Cn
k symmetric points Pk whose multiplication is conditioned by permutation symmetry. 

The point P1 corresponds to inphase synchronization of the CO with exactly one PO, while other POs are in 
antiphase to the CO. This case can be considered as a WTA procedure when one PO wins the competition for the 
synchronization with the CO. This PO is called the winner, while other POs are called losers.

The following statement describes stability of fixed points presented in Proposition 1.

Proposition 2. System (12)–(14) with identical POs can have either the stable equilibrium Pn (full synchronization) 
for b > 0 or n stable fixed points P1 (WTA procedure) together with one stable point P0  for b < 0. Other 2n − n − 2 
fixed points Pk, k = 2, …, n − 1, are unstable points (saddles) for any values of the parameters. The point Pnis stable 
if n ≥ 2 and

b c f bg c f0, ( ) (0) (0) 0, ( ) (0) 0 (18)γ α γ> + ′ + ′ > + ′ > .

The point P1is stable if

b c f nbg c f0, ( ) (0) (0) 0, ( ) (0) 0 (19)γ α γ< + ′ + ′ > + ′ > .

Proposition 2 is proved in Appendix. For functions (8)–(10) with f′(0) = ν and g′(0) = 1 the conditions of sta-
bility for the point P1 (19) become simpler

γ ν
−

+
< < .

c
n

b( ) 0

If b < 0 and the number of POs n is large enough

γ ν
≥ −

+n c
b

( ) ,

then the system does not have any stable point P1.
The system has the Andronov-Hopf (AH) bifurcation at the point Pk when k(c + γ)f′(0) + nb = 0 and it has 

the pitchfork (PF) bifurcation at the point Pk when α(c + γ)f′(0) = 0. The AH bifurcation implies the existence of 
stable limit cycles around the former fixed points P0, P1, and Pn, in other cases the limit cycles are of the saddle 
type. The PF bifurcation changes the dimension of the stable and unstable invariant manifolds for P1, …, Pn−1, but 
it can not make these points stable.

System (16) of identical oscillators has the invariant manifold

a a i n, , 1, , ,i iϕ ϕ= = = …

for arbitrary values of other parameters. This manifold corresponds to full synchronization. The dynamics on 
this manifold are described by 3D system (16) for n = 1. This system has two fixed points (0, ω, c + γ) and (π, ω, 
c) that correspond to inphase and antiphase synchronization of the CO with the PO. The first point is stable if 
(c + γ)f′(0) > −bg′(0), α(c + γ)f′(0) > 0. These conditions can be satisfied for both positive and negative values of 
b. The second point is stable in two directions when b < 0 and neutral in the third direction (one eigenvalue of 
the point is zero).

According to the permutation symmetry Sn system (16) has also the invariant manifolds

ϕ ϕ= = ≠a a i j, , ,i j i j

that correspond to the regime when two oscillators (i-th and j-th POs) form a synchronous cluster. In a similar 
way the system can have a cluster with k synchronous POs for any k = 2, …, n.

Remark 1. The results presented in Proposition 2 correlate with our previous results60 about a star-like phase 
oscillator model with constant amplitudes of oscillations ai(t) = a = const. It has been shown that in this model 
different stable regimes Φk coexist for different k = 1, … n. The additional condition f′(π) = 0 insures that only 
three types of stable regimes are possible: global synchronization Φn, WTA regime Φ1, and no-winner regime Φ0 
(all other points Φk are saddles).

Non–identical peripheral oscillators. Stationary solution.  Equations for connection strengths (14) 
are linear non-homogeneous differential equations that have the solutions
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The following proposition presents the boundaries for amplitude variables.
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Proposition 3. For any ε > 0 there is a large enough moment of time t1such that for any t > t1

ε γ ε− ≤ ≤ + + = …c a t c i n( ) , 1, , , (20)i

This inequality is valid for any initial conditions and parameter values.
Let us start from the symmetric case when all natural frequencies are equal, ωi = ω. In this case the system has 

n different symmetric fixed points P1 (see the previous subsection) which are stable for some parameter values 
(Proposition 2). To distinguish between these points, the following notation is helpful:
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The perturbation of natural frequencies leads to the displacement of the points P1,l. It also breaks the Sn sym-
metry of these points (the coordinates of the points are non-symmetric in the general case), but it cannot change 
the stability of the points because they are hyperbolic. Denote Ql a perturbed location of the point P1,l when 
ωl = ω + Δl, l = 1, …, n, Δl are relatively small: |Δl| ≤ |b|. The point Ql describes the WTA case when the l-th PO 
is the winner.

The following statement describes the stability of different WTA points Ql in the case when the functions f, g, 
h are specified as (8)–(10) with large ν and μ < π/2.

Proposition 4. System (12)–(14) with functions (8)–(10), a large enough value of the parameter ν of the function 
f and small perturbation of the natural frequencies ωi = ω + Δi, |Δi| < |b|, has n fixed points Qlthat correspond to 
the synchronization of the l-th PO with the CO. In this case ω0 ≈ ωl, that is the CO obtains the frequency near the 
frequency of the “winning” PO. Moreover, these oscillators work nearly inphase, while loser POs are radically inco-
herent with the CO.

The coordinates of Qlcan be approximately represented as

ϕ ϕ ϕ ϕ ω γ

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γ ν α γ ν< + + > + > .b c nb n c0, ( ) 0, ( ) 0 (22)

Non–identical peripheral oscillators. Non-stationary solution.  If the natural frequencies of POs are 
distributed in a large range, the CO has not enough strength to phase-lock all the POs. A stationary solution that 
describes WTA type of dynamics becomes impossible. Nevertheless, the main feature of the WTA regime when 
one PO works nearly inphase with the CO, while other POs are out of phase can survive even in this case. We 
consider here the solutions for which the variables ϕl, ω0, a1, …, an are close to constants: the variable ϕl is near 
zero, the variable ω0 is near ωl, the variable al varies slightly below the level c + γ, and the variables ai, i ≠ l, vary 
slightly above the level c. These assumptions together with (8, 10) lead to the following approximate equations for 
the phases ϕi:

d
dt

bg i l( ), , (23)
i

i i
ϕ

ϕ= Ω − ≠

where Ωi = ωi − ωl. For a given l system (23) is a system on the torus −l
n 1. Note that the torus −l

n 1 is not an invar-
iant set of system (12)–(14), but it is located very close to the true (n − 1)–dimensional invariant manifold  −

l
n 1 

(which has a more intricate structure). The manifold −l
n 1 is stable in the transversal n + 2 dimensions and local 

dynamics inside this manifold are equivalent to the dynamics of system (23) on l
n 1 − . Though each manifold 

−
l
n 1  is located approximately in the neighborhood of the hyperplane ϕl = 0, ω0 = ωl, al = c + γ, ai = c (for i ≠ l), 

its geometry is nontrivial in the whole phase space × ×n nT R R  even in the case of identical oscillators. It 
becomes more and more complex with the complication of the natural frequencies distribution. This is why a 
strict mathematical proof of the existence of such manifold is not an easy task. We presume that such proof could 
be obtained using the normal hyperbolicity theory. Here we only note that the assumption about the existence of 
such manifolds l

n 1−  with dynamics (23) is helpful for explaining all bifurcation transitions when the natural 
frequencies of oscillators are changed. The conclusions obtained by this reasoning are fully confirmed by numer-
ical computations.

Without loss of generality let us order all natural frequencies of POs as

ω ω ω≥ ≥ ≥ . (24)n1 2
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We have shown (see Methods) that besides stable points Ql there exist other saddle fixed points Sl,j, j ≠ l, with 
only one different coordinate ϕi. The local saddle-node bifurcation of these two points is also a global saddle-node 
on invariant cycle (SNIC) bifurcation along the mentioned coordinate ϕi (which belongs to the manifold −l

n 1). 
Figure 2(a–c) shows disappearance of the stationary WTA regime Ql and appearance of the non-stationary WTA 
regime LCl. Figure 3(a–c) illustrates the following proposition:

Proposition 5. SNIC bifurcations occur as a result of merging between the stable point Qland the saddle point Slwhen

b but b,l n l1ω ω ω ω− = | | − < | |

or when

ω ω ω ω− = | | − < | |.b but b,l l n1

A stable limit cycle LClappears along the 1–dimensional manifold of the saddle Slwith the unbounded coordinate 
ϕn (or ϕ1in the second case) and bounded phase coordinates ϕi, i = 1, …, n − 1 (or ϕi, i = 2, …, n, respectively). If 
ω1 − ωn = |b|, two SNIC bifurcations occur simultaneously with the points Q1and Qngiving birth to two stable limit 
cycles LC1and LCn.

The periodic trajectory LC1 rotates in the positive direction along ϕn with the average frequency 
b b( , )n n n1 1ω ω ω ω ω∈ − − | | − + | |ˆ . Similarly, the average frequency for the cycle LCn is ω̂ ω ω∈ − −(n n 1

ω ω| | − + | |b b, )n 1 and the rotation goes in the negative direction along ϕn. The amplitudes of POs whose phases 
run on LC1 are also bounded (according to Proposition 3), a1 ≈ c + γ, an oscillates in a small neighborhood above 
the value c and all other amplitudes are approximately equal to ai = c. Another SNIC bifurcation at the point Ql 
occurs when the distance ωl − ωn (or the distance ω1 − ωl) is equal to |b| while the distance ω1 − ωl (respectively, 
ωl − ωn) is smaller than |b|. SNIC bifurcations happen with all the points Qs, s < l, (or with Qs, s > l, for 
ω1 − ωl = |b|) before it happens with Ql because ωs − ωn ≥ ωl − ωn = |b|.

Besides limit cycles, the non-stationary WTA regime can be associated with more complex solutions if the 
number of POs n ≥ 3 and there are several (more then one) POs for which the variables ϕi (i ≠ l) are not bounded 
but constantly run in the positive or negative direction in phase space. The dynamics on the high-dimensional 
toroidal manifold l

n 1 − , n ≥ 3, is adequately described by system (23). More complex WTA regimes (with some 
number of PO phases running relative to the phase of the CO) appear as a generalization of the SNIC bifurcation. 

Figure 2.  Bifurcation scheme. Schematic phase portraits on the 2–dimensional invariant toroidal manifold. 
Bifurcations occur inside the manifold which is stable in all transversal directions. Transitions of two 
simultaneous bifurcations are shown in (a–c). Stable and saddle cycles LCl and SCl appear after the 
corresponding bifurcations (c). Local saddle–node (fold) bifurcation of two cycles is a global bifurcation on the 
invariant toroidal manifold (SNIT bifurcation). It leads to the appearance of the 2–dimensional limit torus LTl

2. 
The bifurcation transition inside the invariant toroidal manifold is shown in (c–e). SNC1 denotes a saddle node 
cycle. Stable (unstable) points and cycles are shown by blue (red) color, saddles are shown by green color.
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We call this bifurcation the Saddle-Node (fold) bifurcation on Invariant Torus (SNIT). Similarly to the SNIC bifur-
cation of two points on the 1D torus (circle) 1 , the SNIT bifurcation is a saddle-node (fold) bifurcation of the 
stable and saddle 1D cycles on the 2D torus 2  (which leads to full transitivity of the torus), or the bifurcation of 
stable and saddle 2D tori in 3D phase space 3, or (in the general case) the bifurcation of the stable and saddle 
(m − 1)-dimensional tori on m-dimensional torus  .m  These bifurcations are described by the following preposi-
tion (see Methods for more details):

Figure 3.  Scheme of SNIT bifurcation. The chain of bifurcations on the 3–dimensional torus T � ϕ ϕ ϕ( , , )i j m
3  is 

presented as a schematic phase diagrams. (a) Eight fixed points with 1D invariant manifolds (lines) and 2D 
invariant manifolds (planes). (b) Four simultaneous SNIC bifurcations (SN bifurcation of two 2D invariant 
manifolds on 3). (c) Appearance of four (stable, unstable and two saddle) limit cycles as a result of SNIC 
bifurcations. (d) Two simultaneous fold bifurcations of periodic orbits (SN bifurcation of two 2D invariant 
manifolds on 3). (e) Appearance of stable and unstable 2D limit surfaces (planes) as a result of disappearance 
of limit cycles. (f) SN bifurcation of stable and unstable limit surfaces on 3D torus (SNIT). Disappearance of the 
resolution surface leads to the permeability of the whole 3 for the trajectories.
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Proposition 6. As a result of the SNIT bifurcation, a pair of the stable LTl
m 1−  and saddle STl

m 1−  m–dimensional tori 
appears on a stable m–dimensional torus LTl

m. This SNIT bifurcation can occur for any number m = 2, …, n − 1, 
when different m − 1 values of |(ωl − ωi)/b| − 1, i ≠ l, are positive, one value is zero, and n − m − 1 values are 
negative.

The dynamics on the invariant torus LTl
m can be very complex starting from the dimension m = 2. A lot of 

useful information on this subject can be found in the classical works68,69,74 (especially for the case 2). SNIT 
transitions of LCl and SLl on 2  are schematically presented in Figs 2(c–e) and 3(c–e) (two simultaneous SNIT 
bifurcations on two parallel 2D tori), The SNIT bifurcation of 2D tori LTl

2 and STl
2 on 3 is presented in Fig. 3(e,f). 

In the two dimensional case the SNIT bifurcation occurs in the literature under alternative names, like a boundary 
of partial mode-locking (if one takes a Poincaré map, then it is the boundary of an Arnold tongue) or a saddle-node 
periodic orbit with the global reinjection. The principal parts of the structure of a similar bifurcation but without 
reinjection for m = 3 were described in detail in71,73. As far as we know, there is no mentioning of SNIT bifurca-
tions in the literature for the cases m ≥ 4 and for m = 3 with the global reinjection. It is presented here for the firs 
time.

A diagram of POs distribution on the plane (ai,ϕi) is schematically shown in Fig. 4. All amplitudes are located 
inside the area ai ∈ [c, c + γ], the winning PO moves somewhere near the point (c + γ, 0) (the area is shown in blue 
color). Loser POs are distributed in the red area. Some of them form a cluster near the point (c,π), while others 
run around in the red ring area close to the circle ai = c.

Remark 2. The results obtained in this subsection can be generalized for the functions f, g, h more general or 
slightly different from those defined in (8)–(10). For example, similar results can be obtained for an arbitrary 
periodic function g(x) (not necessary odd) that satisfies the second and third conditions in (6), g(x) > 0 for 
x (0, )π∈ , g(x) < 0 for x ∈ (−π, 0), maxg(x) = −min g(x) = 1. In this case bifurcation conditions depend on the 
values of xmax and xmin of the function g(x) in addition to the values of ωi and b. The results similar to those above 
can also be obtained without assuming oddness of the function f(x). The only critical assumptions are high values 
for the slope f′(0) and zero slope f′(π). Evenness of the function h(x) is also not necessary, but other conditions (7) 
must be fulfilled.

No-winner solutions.  According to Proposition 2, system (12)–(14) with identical POs has not only WTA 
fixed points P1 but also the fixed point P0 = (ϕ1, …, ϕn, ω0, a1, …, an) = (π, …, π, ω, c, … c) that corresponds to a 
regime, where all POs are in antiphase to the CO (that is there are no winners). In contrast to the points P1 (which 
can be asymptotically stable when b < 0) the point P0 is stable in 2n directions and it is neutral along the last direc-
tion (see Lemma 1 in Methods). The neutral direction of P0 is along the straight line that can be described as one 
parametric set of initial conditions for the natural frequency of the CO 


ω ω= (0)0 0  as

T R Rω ϕ ϕ ω ϕ ϕ ω ω= … … ∈ × × = = = = …~ ~ ~L a a a c i n( ) {( , , , , , , ) : , , , 1, },n n
n n

i i0 1 0 1 0 0

where



g
b

g g, is the inverse function to1 0 1ϕ π
ω ω

= +




− 

 .− −

Figure 4.  Distribution of phases and amplitudes. Schematic diagram of distribution of oscillators with 
amplitudes ai and phase differences ϕi. Blue colour indicates the location of the winner, red color indicates the 
location of the losers. Darker colour corresponds to higher probability of location of oscillators in the marked 
area. Small open circles with white boarders correspond to separate POs.
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According to Proposition 1, the fixed point P0 is isolated, there are no other fixed points in a small neighbor-
hood of this point. However, considering specific functions (8)–(10) for the system we have: dϕi/dt ≈ 0, 
dω0/dt ≈ 0, dh/dt = 0, i = 1, … n, when the phase point belongs to 


ωL( )0  in a small neighborhood of P0. As a result, 

computer simulations of the system “perceive” the points of ω


L( )0  in the neighborhood of P0 as fixed points that 
are neutral along L and stable in other directions.

Consider the system with functions (8)–(10) and perturbed frequencies ωi = ω + Δi, i = 1, …, n. The per-
turbed point P0(ω1, …, ωn) moves smoothly in phase space from the location P0(ω, …, ω) = P0 with the perturba-
tion of natural frequencies of POs. The perturbation of the frequencies does not change amplitude coordinates 
ai = c for a wide region of natural frequencies. Our computer simulations show that the perturbed point P0(ω1, …, 
ωn) remains stable in 2n directions and neutral in a single direction. The neutral line L of the point P0(ω1, …, ωn) 
moves with this point and rotates in phase space depending on the frequency distribution. The coordinate ω0 of 
the perturbed point is approximately equal to (ωmax + ωmin)/2, i.e. only the fastest and slowest POs determine the 
average frequency of the CO in the no–winner situation. There are a few scenarios of disappearance of the point 
P0(ω1, …, ωn) which are based on a saddle–node bifurcation of this point with another saddle point (or points) 
depending on the system dimension and frequency distribution. In any case, the region where the mentioned 
fixed point exists belongs to the region which is bounded by the condition ωmax − ωmin < 2|b|. According to (26), 
the point P0 has n eigenvalues P P b( ) ( )n2 0 1 0λ λ= = =+ . A perturbation of ωi leads to the (nonuniform) 
decrease of the corresponding eigenvalues |λi(P0(ω1, …, ωn))|, i = 2, …, n + 1, which also indicates a restriction 
put on the attraction basin of P0(ω1, …, ωn).

Examples of dynamics.  In this subsection we give some examples of different types of dynamics of system 
(12)–(14), pointing out the bifurcations that split these examples. The following examples will be considered:

	 1)	 Identical natural frequencies of POs: ωi = ω, i = 1, …, n. According to Proposition 1, system (12)–(14) has 
n SN–symmetrical stable fixed points P1,i with coordinates (17).

	 2)	 Non-identical natural frequencies of POs that satisfy the inequalities

ω ω
ω ω

−
< = … − < | |.

∈ … ∈ …
⟺

b
i j n b1, , 1, , max mini j

i n
i

i n
i

{1, } {1, }

In this case system (12)–(14) has n non-symmetrical stable fixed points Ql, l = 1, …, n, with coordinates

ϕ γ ω ω ϕ π π
≈ ≈ + ≈ − < ≈ ≠ .a c a c i l0, , ,

2
, ,l l l i i0

	 3)	 The natural frequencies of POs satisfy the equality

ω ω− = | |.
∈ … ∈ …

bmax min
i n

i
i n

i
{1, } {1, }

In this case two simultaneous saddle-node bifurcations occur with two stable points Qimax
, Qimin

 with 
corresponding coordinates ωmax = maxiωi, ωmin = miniωi and saddles S ,imax

 Simin
. In this case the saddle–

nodes also have the coordinates /2imax
ϕ π= , ϕ π= /2imin

, respectively. It is possible that more than two 
simultaneous saddle–node bifurcations take place if more than one natural frequency reaches the same 
maximal (minimal) value maxiωi (miniωi) (this bifurcation transition is schematically represented in 
Figs 2(a–c) and 3(a–c)).

	 4)	 At least one pair of the natural frequencies satisfies the inequality

ω ω
ω ω

−
> − > | |.

∈ … ∈ …
⟺

b
b1 max mini j

i n
i

i n
i

{1, } {1, }

This implies that the point Qimax
 Q(or )imin

 disappears after the saddle–node bifurcation and a new stable limit 
cycle appears. The local saddle–node bifurcation is a global SNIC bifurcation by which a limit cycle appears from 
the 1–dimensional unstable invariant manifold of the saddle Simax

 S(or )imin
. The appearance of the limit cycle is 

possible because the mentioned 1–dimensional invariant manifold of Simax
 reaches the appropriate stable point 

Qimax
 along the coordinate imax

ϕ  that is closed on the torus. Stable fixed points Q2, …, Qn−1 and two stable limit 
cycles LC1, LCn co-exist after the first SNIC bifurcation. The system can have up to n − 1 limit cycles LCi.

	 5)	 The first SNIT bifurcation and the appearance of the first 2–dimensional limit torus LT1
2 (or LTn

2) occur 
when |(ω1 − ωn−1)/b| = 1 (or when |(ω2 − ωn)/b| = 1). In this case a stable limit torus LT1

2 and stable limit 
cycle LCn−1 appear simultaneously and exist for |(ω1 − ωn−1)/b| > 1 (or the limit torus LTn

2 and stable limit 
cycle LC2 appear simultaneously).

	 6)	 Further increase of frequency differences leads to the appearance of new pairs of SNIC and SNIT bifurca-
tions according to Proposition 6 and for increasing dimensions of new attractors by one ( Q LCi i, 
LC LTi i

2
 , LC LTi

m
i
m1− , i = 3, … n − 1). The sequences of SNIC and SNIT bifurcations that lead to 

the mentioned transitions ( −
Q LTi i

n 1) are schematically represented on the 2-dimensional torus in 
Fig. 2 and on the 3-dimensional torus in Fig. 3.

	 7)	 In the most general case the system has limit tori LTi
m, m = 0, …, n − 1, where =LT LCi i

1  is a limit cycle and 
LTi

0 is a fixed point. There is multi-stability of n attractors of different types that correspond to the solutions 
of the WTA type. In each case the frequency of the CO adapts to the frequency of the winning PO.
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According to Proposition 3 the amplitude of each PO ai(t) belongs to the interval [c, c + γ]. The amplitude of 
the winning PO al is close to the value c + γ or it can also oscillate below but very close to this value. If 
|(ωl − ωi)/b| > 1 the amplitude ai of a loser PO oscillates above the value c so that a tmax ( )t t i1>  is significantly lower 
than c + γ. The value of maxiai depends on the parameters β and |ωi − ωl/b|. Our numerical experiments show 
that maxiai grows approximately as β β ω ω ω+ | − | +b/( / )i l il , where ωil  is a constant.

Example 1. Consider system (12)–(14) with 3 POs. All possible types of oscillator dynamics depending on the 
distribution of the natural frequencies of POs on the bifurcation plane ((ω1 − ω2)/|b|, (ω1 − ω3)/|b|) are shown in 
Fig. 5. Bifurcation lines on this diagram correspond to the SNIC and SNIT bifurcations on the invariant manifold 

l
2  (see expression (23) and Propositions 5, 6). These bifurcations are schematically shown in Fig. 2. The graphs 

of phase differences ϕi, i = 1, 2, 3, as functions of time are shown in Fig. 6. The parameters used in creation of this 
figure are α = 1, β = 0.05, γ = 10, μ = 1, ν = 20, σ = 100, c = 2, b = −1. Initial values are ϕi(0) = 0, i = 1, 2, 3, 
ω0(0) = 5, a1(0) = 13, a2(0) = 9, a3(0) = 1. The values of the natural frequencies of POs are given in the legend of 
Fig. 6. The figure shows that in the WTA regime the CO can phase lock 1, 2, or 3 POs. In the first case the phase 
differences of non-synchronized POs can move in the same direction (positive or negative) or they can move in 
opposite directions. In the second case the phase difference of one non-synchronized PO is nearly stable while the 
phase difference of the other non-synchronized PO moves in positive or negative direction. In the third case all 
phase differences are stable. In any case, in this example the amplitude of the winning PO tends to 12 and the 
amplitudes of loser POs are near 2.

Example 2. Figure 7 shows different types of WTA dynamics that can appear in the system with 4 POs. The cor-
responding types of attractors for system (12)–(14) with the natural frequencies (24) are also indicated: (a) P1,l for 

1 4ω ω= = ; (b) Ql for ω1 − ω4 < |b|; (c) LCl for ω1 − ω4 > |b|, ω1 − ω3 < |b|, ω2 − ω4 < |b|; (d) LTl
2 for 

ω1 − ω3 > |b|, ω3 − ω4 < |b| or ω1 − ω2 < |b|, ω2 − ω4 > |b|; (e) LTl
3 for ωi − ωi+1 > |b|, i = 1, 2, 3.

Massive simulations.  In this section we present different types of dynamics in terms of the frequencies 
with which they may appear in system (1)–(4) with functions (8)–(10). To check whether the WTA regime can 
be implemented by the system, we assign to a1 an initial value that is greater than initial values of the amplitudes 
of other POs. It is expected that in this case the first PO will have a greater chance to win the competition for 
synchronization with the CO. In simulations we set 4 ≤ a1(0) ≤ 12, while the initial values of other amplitudes are 
ai(0) = 2, i ≠ 1. During a simulation, the connection strengths are adapted according to equation (4). The values of 
the parameters in (4) are c = 2, γ = 10. This means that in the stationary case the amplitude of the winner will tend 
to the value c + γ = 12, while the other amplitudes will tend to c = 2. In the non-stationary case the amplitude of 
the winner varies in a narrow range around 12 and the amplitudes of the other POs vary around 2.

The difference in asymptotic dynamics of POs can be determined by checking whether the trajectory of a 
PO’s amplitude approaches the lower or higher boundary. Before checking this, some time should pass for the 

Figure 5.  Bifurcations for 3 POs. Bifurcation diagram in the case n = 3 on bifurcation plane ((ω1 − ω2)/|b|, 
(ω2 − ω3)/|b|). Dark red line is the boundary for a SNIC bifurcation, dark blue and dark green lines show 
the boundaries for SNIT bifurcations. All WTA regimes in different bifurcation areas are represented as 
distributions on the circle of the phases of the CO (green), of the winning PO (blue), and of loser POs (red).
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Figure 6.  Time series of phase differences ϕi, i = 1, 2, 3. The graphs show WTA solutions (the first PO is the 
winner) for four qualitatively different types of dynamics (illustrated in Fig. 5): (a) Q2, all POs are phase-locked 
by the CO, (b) LC3, two POs are phase-locked by the CO, the phase difference for the third PO runs in negative 
direction, (c) LT3

2, one PO is the winner, the phase differences of the other two POs run in negative direction, 
(d), LT2

2, one PO is the winner, the phase differences of the other two POs run in opposite directions. Initial 
values in (a–d) are ϕi(0) = 0, i = 1, 2, 3, ω0(0) = 5, a1(0) = 13, a2(0) = 9, a3(0) = 1. The natural frequencies of POs 
are ω1 = 5 in (a–d), ω2 = 5.5, ω3 = 4.2 in (a), ω2 = 5.5, ω3 = 3.5 in (b), ω2 = 3.5, ω3 = 3 in (c), and ω2 = 6.4, ω3 = 3.5 
in (d).

Figure 7.  Distributions diagram for 4 POs. Distribution of the phases of the CO and four POs on the phase 
circle showing different WTA regimes. One PO synchronizes with the CO, while loser PO works close to the 
antiphase regime relative to the CO or rotates around the phase circle being incoherent with the CO. The colors 
are as in Fig. 5.
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transient dynamics of the system to disappear. This time is set to be T1 = 80. The following 20 time units are used 
to determine the type of dynamics which are demonstrated by the system. Thus the whole run of the simulation 
takes T2 = 100 time units.

Two thresholds are introduced, Hhigh and Hlow., such that c < Hlow < Hhigh < c + γ. In computations we set 
Hhigh = 10 and Hlow = 3. If during the time interval (T1, T2) the trajectory of ai(t) lies above Hhigh, then the i-th PO 
is identified as the winner.

All parameter values for different simulation examples are summarized in Table 1.
Stochasticity is included in the simulations through initial values. First, the natural frequencies of POs are 

randomly distributed in the interval (4.9, 5.1) in Examples 3, 4, 6, 7 and in the interval (4.25, 5.75) in Example 
4. Second, initial phases of POs are randomly distributed in one of the ranges (−π/8, π/8), (−π/4, π/4), (−π/2, 
π/2), (−π, π) in Example 6. In other examples all initial phases of the POs are 0. The initial value of the natural 
frequency of the CO is equal to 5 in all examples, which is the mean of the distribution of the natural frequencies 
of POs. The initial value of the phase of the CO is always 0.

Massive computational experiments show that the following three types of dynamics can be observed:

	 A.	 a1(t) > Hhigh for T1 < t < T2 and the first PO is the only oscillator for which this inequality is valid. This 
means that the first PO is the winner of the competition for the synchronization with the CO.

	 B.	 ai(t) > Hhigh for T1 < t < T2 and a single value of the index i ≠ 1. This means that the first PO lost the compe-
tition despite its initial advantage in influencing on the CO.

	 C.	 ai(t) < Hlow for T1 < t < T2 and all i = 1, …, n. This is the case when there is no winner of the competition.

Note that due to Proposition 2 there cannot be more than one winner of the competition in the stationary case. 
Simulations show that the same situation is valid for a non-stationary case too. Another important fact is that no 
chaotic behavior has been observed in the system for the parameter values presented in Table 1.

It is reasonable to think that a WTA system demonstrates better performance if in most cases its dynamics 
correspond to situation (A), while the other cases occur only rarely (if at all). In particular, the probability of the 
(C)-type dynamics should be minimized, since in this case the result of the competition is indefinite.

In each of the following examples we ran 1000 simulations and determined the number of cases when one of 
the types of dynamics (A)-(C) took place. The results for different parameter values are presented in the form of 
histograms in Figs 8, 9, 10, 11 and 12.

Example 3. In this example we vary the initial value of the amplitude of the first PO a1(0) consecutively assigning 
to it the values 4, 6, 8, 10, 12. It is expected that the higher the value of a1(0), the greater the chance that the first 
PO will win the competition. This expectation is confirmed by Fig. 8. The probability that the first PO wins the 
competition increases from 34.1% for a1(0) = 4 to 91.8% for a1(0) = 12. Respectively, the probability that another 

Parameters

Values

Ex. 3 Ex. 4 Ex. 5 Ex. 6 Ex. 7

The number of POs n 10 10 10 10 10

Initial phase of the CO θ0(0) 0 0 0 0 0

Initial phases of POs θi(0) 0 0 0 0 0

(−π/8, π/8)

(−π/4, π/4)

(−π/2, π/2)

(−π, π)

Initial natural frequency of the CO ω0(0) 5 5 5 5 5

Natural frequencies of POs ωi (4.9, 5.1) (4.9, 5.1) (4.25, 5.75) (4.9, 5.1) (4.9, 5.1)

Parameter ν of function f 20 5, 10, 15 20 5, 10, 15 20 20 20

Parameter μ of function h 1 1 1 1 1

Parameter σ of function h 100 100 100 100 100

Initial amplitude a1(0) 4, 6, 8, 10, 12 8 8 8 8

Initial amplitudes ai(0), i ≠ 1 2 2 2 2 2

Parameter b of equation (2) −1 −1 −1 −1 −1

Parameter α of equation (3) 1 1 1 1 1

Parameter c of equation (4) 2 2 2 2 2

Parameter γ of equation (4) 10 10 10 10 10

Parameter β of equation (4) 0.05 0.05 0.05 0.05 0.05, 0.1, 0.15, 
0.02

Time interval (T1, T2) (80, 100) (80, 100) (80, 100) (80, 100) (80, 100)

Upper threshold Hhigh 10 10 10 10 10

Lower threshold Hlow 3 3 3 3 3

Table 1.  Parameter values.
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PO wins the competition decreases from 60.3% to 7.7%. The probability that case (C) will be the outcome of the 
competition is always low and decreases when a1(0) increases.

In the following examples we set a1(0) = 8 (to give the first PO a good chance to win the competition) and 
study how the variation of other parameters influences this probability.

Example 4. In this example we vary the parameter ν of the function f. This parameter controls the steepness of 
the function f at 0. The results presented in Fig. 9 show that greater values of ν slightly increase the probability 
that the first PO will be the winner. More importantly, greater values of ν significantly decrease the probability 
that case (C) occurs.

Example 5. This example is similar to Example 4 with the only difference that the range of the distribution of 
the natural frequencies of POs is 1.5, which prevents the possibility of stationary dynamics if the first PO is the 
winner. However, the system preserves the capability of WTA behavior with approximately the same efficiency as 
in Example 4. This is illustrated by Fig. 10. The probabilities of case (A) in both examples are similar. A significant 
decrease is only observed for ν = 20 from 76.3 in Example 4 to 69.3 in Example 6.

Example 6. This example shows that the width of the range of the distribution of initial phases of POs plays a 
crucial role for determining the WTA regime. Figure 11 shows that the best results for WTA can be obtained if 
this range is small. The probability that the first PO wins the competition decreases rapidly if the width of the dis-
tribution increases. Also the probability of case (C) rapidly increases if the range of this distribution. exceeds 0.5π.

Example 7. This example shows that the speed of adaptation of the amplitudes of POs β is important for success-
ful implementation of the WTA regime. The best results are obtained when β is small (Fig. 12). This represents 
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Figure 8.  Histogram for Example 3. The probability that the first PO wins the competition increases when a1(0) 
increases.

100

200

300

400

500

600

700

800

900

1000
Dynamics type histograms

A                          B                          C

N
um

be
r 

of
 C

as
es

ν = 5
ν = 10
ν = 15
ν = 20

Figure 9.  Histogram for Example 4. Greater steepness ν of the function f at 0 results in increasing probability of 
case (A) and decreasing probability of case (C).



www.nature.com/scientificreports/

1 5Scientific REPOrTS |  (2018) 8:416  | DOI:10.1038/s41598-017-18666-3

the fact that for proper functioning of the system the process of phase synchronization should be much faster than 
that of amplitude adaptation.
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Figure 10.  Histogram for Example 5. The WTA regime in the non-stationary case.
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Discussion
The objective of this paper was to suggest a WTA system whose functioning is based on oscillatory principles. 
As we have shown, the WTA can be realized in a system built from generalized phase oscillators with a central 
oscillator (CO). The WTA appears as a result of the competition between peripheral oscillators (POs) for synchro-
nization with the CO. The amplification or inhibition of the activity of oscillators is a function of the phase rela-
tions between the CO and POs. In this respect our implementation of WTA differs from the traditional approach, 
where excitation or inhibition is directly conditioned by excitatory and inhibitory connections between the ele-
ments of the system. Our approach is consistent with the putative role of oscillatory processes in brain functions 
such as decision making and selective attention. It also opens the possibility of new hardware implementations 
of WTA.

Our results show that there are two different types of dynamics that can be associated with the WTA regime 
for the system in phase differences:

	 1.	 Stationary states, when there are constant relations between the phases of the CO and POs. In this case one 
of the POs (the winner) works inphase with the CO, while the difference between the phases of the CO and 
other POs is greater than π/2. A special case is represented by the system with identical natural frequencies 
of oscillators. In this case the “losers” work in anti-phase relative to the CO.

	 2.	 Non-stationary states. In this case one of the POs (the winner) works nearly coherently with the CO, while 
the set of POs is divided into two subsets. One subset contains the POs whose phases indefinitely move in 
the positive or negative direction relative to the phase of the CO. In the other subset the difference between 
the phase of a PO and the CO oscillates in a small range around a value greater than π/2.

According to Propositions 2 and 4, in the stationary case there cannot be more than one winning PO. This has 
been proved under two types of conditions. If the POs are identical, the statement is true for rather arbitrary func-
tions of system (1)–(4). If POs have different natural frequencies, the statement is true at least for the functions 
specified by formulas (8)–(10).

Analytical analysis and numerical simulations show that the latter statement is also valid in the non-stationary 
case. The conditions for the existence of the stationary WTA regime are described by Lemmas 1–4 in the Methods 
section, Remark 3, and inequalities (35). The bifurcations that lead to the transformation of the WTA behavior 
from the stationary to non-stationary form are described by Propositions 5 and 6. The propositions describe 
a new type of bifurcation (saddle-node on invariant torus (SNIT) bifurcation) which has not been previously 
described in the literature.

Computer simulations under conditions (8)–(10) demonstrate that our WTA implementation is sensitive to 
the parameters of the system. The following conditions can increase the probability that the PO with the highest 
initial amplitude is the winner:

	 1.	 The highest initial amplitude is significantly greater than the initial amplitudes of the other POs.
	 2.	 Initial phases of POs are distributed in a small range around the point 0.
	 3.	 The interaction function f is steep at 0.
	 4.	 Slow adaptation of the amplitudes of POs relative to the process of phase-locking.

The second condition in this list is in line with the neurobiological role of phase reset in information process-
ing in the brain75. The probability of an indefinite result of the competition can be reduced by the proper choice 
of parameter values.

Methods
Proofs of the main results.  In this section we present the ideas of the proofs of the main results.

Stability of equilibria (Proof of Proposition 2).  For the functions f(x), g(x), h(x) satisfying conditions (5)–(7) 
(2n + 1)–dimensional system (16) has the Jacobian matrix
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Using these eigenvalues we can formulate stability conditions for fixed points of different types.

Lemma 1. The fixed point P0of system (16) is stable along 2n directions and neutral along one direction if b < 0.
The fixed point P0 corresponds to the antiphase regime of all POs relative to the CO (no-winner state). Linear 

neutrality of this point along one direction corresponds to the bifurcation line in the two–parametric bifurcation 
plane. The eigenvalues corresponding to P0 can also describe the dynamics when a continuous set of periodic 
orbits exists close to this point.
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For the fixed point P1 we have
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It is stable when bg′(π) > 0 and Re(λ1,2(Φ1)) < 0:
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Using the assumption g′(π) < 0 we obtain.
Lemma 2. The fixed point P1of system (16) is stable if
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since as we assumed g′(0) > 0 and g′(π) < 0. Thus we have the following statement.
Lemma 3. The points P2, …, Pn−1are saddles for any values of the parameters.
Remark 3. If the condition g′(0)g′(π) < 0 is not fulfilled (for example, g(x) = sin(2x)) the points P2, …, Pn−1 can be 
stable under the additional conditions Re(λk,k+1(Φk,ω,Ψk)) < 0. However, in this case the function g(x) has addi-
tional intersections with the abscissa line x = 0, which leads to the appearance of additional fixed points (besides 
those mentioned in Proposition 1).

For the full synchronization associated with the fixed point Pn we have
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Lemma 4. The point Pnis stable if n ≥ 2 and
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In the case n = 1 the point Pn = P1 can be stable for both positive and negative values of the parameter b (in 
contrast to the case n ≥ 2). The condition for stability is b > −(c + γ)f′(0).

Summing up the obtained results we can formulate Proposition 2.

Non-identical natural frequencies, stationary solutions (the idea of the proof of Proposition 4).  In this subsection 
we obtain estimates of the coordinates of the point Ql and derive conditions for its stability in the case when 
the functions f, g, h are specified as (8)–(10). We assume that the parameter μ of the function h(x) satisfies the 
inequality μ < π/2, so h(x) is not equal to zero in a relatively small interval (−μ, μ). The coordinates of Ql are 
determined by the algebraic system
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This implies that

⁎ ⁎ϕ π ϕ ϕ≤ − = ∈ .ν− −f n x x(( 1)sin(2 )) , ( , ) (32)l
df1

min max

In (32) the equality is only possible if ϕi = ±π/2, i ≠ l, that is if ωi = ωl ± b, i ≠ l. If the values of σ and ν are large, ϕl 
is very small. For example, if the parameter values are n = 100, ν = 20, then |ϕl| < 10−5. In regular cases when the 
variables ϕi are distributed more or less uniformly around π, the variable ϕl is even much closer to zero.

Using inequality (32) we obtain a rough estimation for ω0 as
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Let us derive conditions for the stability of the fixed point Ql in the case when ν is large enough. In this case 
ϕl ≈ 0, therefore f(ϕl) ≈ 0, f′(ϕl) ≈ ν. The values of f(ϕi) and f′(ϕi), i ≠ l, are both very close to zero in some range 
around the point π. For example, both ϕ π| | =f fmax ( ) ( /2)D i2

 and f fmax ( ) ( /2)D i2
ϕ π| ′ | = − ′  are less than 10−5 in 

the case ν = 20, therefore for l = 1 the Jacobian at the point Q1 is approximately

β≈ −+ +J Q J Q I( ) diag{ ( ), }, (34)n n n2 1 1 1 1

where Jn+1(Q1) has the form
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J Q
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n
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n

b

c
n
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( )

0 0 1

cos 0 1

0 cos 1

( ) 0 0 0

n

n

1 1

2

The Jacobian has a similar structure for an arbitrary l with the only difference that the l-th column is filled like 
the first one in the presented matrix. Now we can calculate the eigenvalues of the fixed point with a high precision:

( )n
c nb c nb n c1

2
( ) (( ) ) 4 ( ) ,l n, 1

2λ γ ν γ ν α γ= − + + ± + + − ++

λ ϕ= − = … ≠b i n i lcos( ), 1, , , ,i i

i n n, 2, , 2 1iλ β= − = + … + .

Thus Ql is stable when

c nb n c b i l( ) 0, ( ) 0, cos( ) 0, (35)iγ ν α γ ν ϕ+ + > + > > ≠ .

Since it is assumed that b < 0, the latter inequality is valid when iϕ  is inside the interval 2.
Thus, we have shown that the phase coordinate ϕl (the difference between the winning PO and the CO) of the 

fixed point Ql is very close to zero while phase differences of loser POs ϕi, i ≠ l, are located around π. At the same 
time, the amplitude of the winning PO is approximately c + γ while the amplitudes of other POs are close to c. We 
have also shown that the current frequency ω0(t) of the CO tends to the natural frequency ωl of the winner. Using 
these consideration we can formulate Proposition 4.

Non-identical natural frequencies, non-stationary solutions (the idea of the proof of Propositions 5, 6).  As has been 
shown above, there are n different equilibria Ql, l = 1, …, n, with coordinates that are approximately represented 
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by formula (21). Each coordinate ϕi, i ≠ l, in this formula is one of the two solutions of the equation 
bsinφi = ωi − ωl, namely the one that is closer to π. The necessary condition for the existence of such fixed points 
is maxi≠l|(ωl − ωi)/b| ≤ 1. One can check (in a similar way that has been used for the stable fixed point Ql) that 
there exist n − 1 other fixed points Sl,j, j ≠ l, which have the same coordinates as Ql except one coordinate 


ϕ ϕ π ϕ ω ω= = − ≈ − barcsin(( )/ )j j j j l . The point Sl,j has the same Jacobian (34) as Ql but with 


ϕj instead of ϕj. 

In the conditions of stability each fixed point Sl,j has one positive eigenvalue λ ϕ= −b cos( )j j . This means that Sl,j 
is a saddle point that belongs to a 1–dimensional unstable invariant manifold Wu(Sl,j). The eigenvector corre-
sponding to the eigenvalue λj belongs to the coordinate line of the variable ϕj. This means that both branches of 
Wu(Sl,j) have the same coordinate as Sl,j (and Ql) except ϕj and these branches spread along the variable ϕj (at least 
locally) (Fig. 2(a)). The divergence in the transversal direction to Wu(Sl,j) along ϕj is negative (the Jacobian shows 
that Wu(Sl,j) is stable in the transversal direction), which implies that both branches of Wu(Sl,j) reach the stable 
point Ql from two opposite sides along ϕj, forming a locked circle. The local saddle–node bifurcation of Ql and Sl,j 
(Fig. 2(b)) is simultaneously a global (SN) bifurcation on the invariant circle, (SNIC bifurcation), and it leads to 
the appearance of a stable limit cycle LCl (Fig. 2(c)). This bifurcation can happen if only |(ωl − ωj)/b| = 1 at the 
point ϕj = ±π/2. Due to (24) SNIC bifurcations and disappearance of Ql can only happen if j = 1 or j = n. It is 
obvious that the first (in the sense of the continuous movement of ωi away from ωl) such bifurcation occurs when 
ω1 − ωn = |b| and l = 1 or l = n. This bifurcation simultaneously happens with both of the two POs, the first and the 
last in numeration (24).

Thus, we have two simultaneous SNIC bifurcations with the points Q1, S1,n and Qn, Sn,1, where Q1 is the win-
ning PO with the largest frequency ω1 and =S S: n1 1,  is the corresponding saddle with the unstable manifold 
Wu(S1) along the phase variable ϕn, (the same for Qn and Wu(Sn), where =S S:n n,1). As a result of the bifurcations, 
we have stable limit cycles LC1, LCn, where each of the cycles has one unbounded phase variable ϕn and ϕ1, 
respectively. Summing up the above considerations we can formulate Proposition 5.

The cycle LC1 is non-homologous to the zero periodic orbit on the torus n in phase space, the variable ϕn of 
the cycle is unbounded while all other phase variables are bounded (the same is true for LCn and ϕ1). SNIC bifur-
cations with the fixed points Q1, Qn are not only possible ones. Other SNIC bifurcations at the point Ql occur 
when the distance ωl − ωn (or the distance ω1 − ωl) is equal to |b|, while the distance ω1 − ωl (respectively, ωl − ωn) 
is smaller than |b|. Such bifurcations lead to the appearance of new cycles LCl, l = 2, …, n − 1, and they usually 
happen simultaneously with more complex bifurcation of the existing cycles LC1, LCn which we will describe later.

Besides limit cycles with one running variable ϕi (i ≠ l), the non-stationary WTA regime can be associated 
with more complex solutions when n ≥ 3 and there are several POs (more then one) whose variables ϕi are 
boundlessly running in the positive or negative direction. Let us describe how such regimes may appear.

Consider a 2–dimensional hyperplane with free variables ϕj, ϕm and all other variables being the constant 
coordinates of the fixed point Ql (Fig. 2(a)). In this hyperplane the point Ql has the coordinates ( , )j mϕ ϕ  and the 
saddle Sl,j has the coordinates π ϕ ϕ−( , )j m . The SNIC bifurcation of Ql and Sl,j leads to the emergence of a 
saddle-node point SNl,j (Fig. 2(b)) and then to a stable limit cycle LCl (Fig. 2(c)). According to the m–th equation 
(23), the system has also two additional fixed points Sl,m belonging to the 1–dimensional manifold Wu(Sl,m) and 
the saddle Sl,j,m belonging to the 2–dimensional unstable manifold Wuu(Sl,j,m) (Sl,j,m is an unstable node on the 
2-dimensional plane ϕ ϕ ∈ ( , )j m l

2). The points Sl,m and Sl,j,m have a common 1–dimensional invariant manifold 
which is stable for the first point and unstable for the second one. In other worlds, these points lie on the circle 
formed by two branches of the manifold. The SNIC bifurcation of Sl,m and Sl,j,m leads to the appearance of a 
saddle-node point SNl,j,m (Fig. 2(b)) and then to a saddle limit cycle SCl (Fig. 2(c)) with one unstable invariant 
manifold, spreading along the variable ϕm. Two SNIC bifurcations and the appearance of LCl and SCl happen 
almost simultaneously (Fig. 2(a–c)). In this case we have stable and unstable limit cycles on the torus .l

2  In the 
case of the non–simultaneous SNIC bifurcations we have two variants of Cherry flows68,69,74,76 on the torus l

2: 1) 
a stable cycle LCl and two fixed points Sl,m, Sl,j,m or 2) a saddle (unstable on l

2) limit cycle SCl and two fixed points 
Ql, Sl,m. Note that the manifold l

2  of system (12)–(14) (that is represented here by the torus l
2 ) is a 2–dimen-

sional unstable invariant manifold of the saddle cycle SCl which is stable in the transversal 2n − 1 directions in 
global (2n + 1)–dimensional phase space × ×T R Rn n (when SCl exists).

The saddle–node bifurcation of LCland SClon the invariant torus l
2 (SNIT) is similar to the SNIC bifurcations 

considered above (one can also call this bifurcation a saddle–node of periodic orbits with global reinjection). 
Locally, it is a saddle–node (fold) bifurcation of the stable cycle LCl and the saddle cycle SCl (which happens along 
the variable ϕm) that leads to the transitivity of trajectories through the torus. As a result of the SNIT bifurcation, 
we obtain first saddle-node limit cycle SNCl (Fig. 2(d)) and then a stable (in transversal direction) limit torus that 
is denoted as LTl

2 (Fig. 2(e)). The described SNIT bifurcation is a global bifurcation on the torus l
2  (as SNIC is a 

global bifurcation on a circle) and it leads to transitivity of the trajectories on the whole 2D torus. We note that the 
transitivity on the whole two-torus is true only for the fat Cantor set of parameter values with irrational winding 
ratio. The bifurcation occurs when the phase difference |ωl − ωm| reaches the value |b| but |ωl − ωj| ≥ |b| and 
|ωl − ωi| < |b| for i ≠ l, i ≠ j, i ≠ m. We already mentioned that if the range of the natural frequencies of POs 
increases the first two SNIC bifurcations occur simultaneously when the 1-st or the n-th PO becomes the winner. 
This leads to the appearance of the limit cycles LC1and LCn. One can check that enlarging further the frequency 
distribution we obtain a SNIT bifurcation simultaneously with a SNIC bifurcation. As a result of such simultane-
ous bifurcations, the pair of LT1

2 and LCn−1 or the pair of LTn
2 and LC2 appears. The emergence of other limit tori 

is associated with more complex bifurcations of a similar type.
In the same way it is possible to show that there exists a saddle torus STl

2 that appears as a result of a SNIT 
bifurcation of two saddle limit cycles with 1-dimensional and 2-dimensional unstable manifolds. Two simultane-
ous bifurcations of the appearance of stable and saddle 2D invariant tori LTl

2 and STl
2 are shown in Fig. 3(c–e). 
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The tori LTl
2 and STl

2 belong to the 3-dimensional torus l
3 which is an invariant manifold of the .STl

2  As in the 
case of lower dimensions, the fold bifurcation of two invariant tori LTl

2 and STl
2 leads to the emergence of the 

saddle-node torus SNTl
2 (Fig. 3(f)), then to its disappearance and possibly to the transition of all trajectories 

through the whole 3-dimensional manifold. Thus, globally we have a new SNIT bifurcation of the next level which 
leads to the emergence of a new stable torus LTl

3 in the global phase space which is passable for trajectories of the 
system. This torus appears when two frequency differences |ωl − ωi| are greater than |b|, one such difference is 
equal to |b| and the other n − 3 differences are lower than |b|. This torus exists when for 3 values of the index i the 
inequality |ωl − ωi| > |b| takes place, while for other values of the index i the inequality |ωl − ωi| < |b| is valid.

Using similar arguments, one can describe the SNIT bifurcation of LTl
m 1−  and −STl

m 1 that leads to the appear-
ance of the stable tori LTl

m for any m = 1, …, n − 1. According to our notation LT LCl l
1 = , ST SCl l

1 = , LT Ql
0 = , 

=ST Sl l
0 . The torus LTl

m exists when |(ωl − ωi)/b| > 1 for m different values of the index i ≠ l and |(ωl − ωi)/b| < 1 
for the rest n − m − 1 values of the index i. Proposition 6 sums up these considerations.
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