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Analysis of ENSO’s response 
to unforced variability and 
anthropogenic forcing using CESM
Benjamin Vega-Westhoff & Ryan L. Sriver

Understanding how the El Niño-Southern Oscillation (ENSO) may change with climate is a major 
challenge, given the internal variability of the system and relatively short observational record. 
Here we analyze the effect of coupled internal variability on changes in ENSO under anthropogenic 
global warming using the Community Earth System Model (CESM). We present results from a ~5000 
year control run with constant pre-industrial conditions and a 50-member climate change ensemble 
experiment, consisting of historical hindcasts (1850–2005) and future projections to 2100 following 
representative concentration pathway 8.5 (RCP8.5). Given this large single-model ensemble, we are 
able to use simple statistical analyses to compare the effects of anthropogenic climate change with 
the effects of natural modulations in ENSO sea surface temperature (SST) metrics, as well as how 
internal variability may change with global warming. Changes in eastern Pacific ENSO SST metrics 
due to climate change are secondary to the model’s natural modulations; however, central Pacific 
ENSO amplitude significantly decreases, to an extent comparable with natural modulations. We also 
assess the sensitivity of internal variability estimates to ensemble size. The primary role of natural 
modulations in this ensemble highlights the importance of careful assessment of ocean-atmosphere 
internal variability in ENSO projections.

Natural (or internal) variations within Earth’s climate system are an important source of uncertainty in projec-
tions of future climate, particularly on inter-annual to decadal timescales1. This variability can influence historical 
and future projections of key climate change indicators, such as regional temperature and precipitation patterns2, 
and global temperature trends3. Earth system modeling approaches that capture the effect of natural variability, 
or more precisely the variability within the coupled system in the absence of time-varying external forcing, can 
be used to characterize the importance of internal variability when considering potential anthropogenic climate 
trends4. This type of approach is especially useful for ENSO, which undergoes decadal modulations that have 
hindered even qualitative projections of potential amplitude change in the coming decades.

ENSO is an important contributor to Earth’s inter-annual climate variability, with worldwide weather effects5–7. 
ENSO can be characterized with the Niño3.4 index, the climatological SST anomaly in the Niño3.4 region of the 
equatorial Pacific (outlined in Fig. 1). El Niño (La Niña) events correspond to a positive (negative) Niño3.4 index, 
with the strength of the event tied to the magnitude of the temperature anomaly (e.g., Fig. 1a). Several ENSO met-
rics can be derived from the Niño3.4 index time series: the spectrum reveals the frequency distribution of events, 
skewness roughly measures the relative strength of El Niño and La Niña events, and the standard deviation is tied 
to ENSO SST amplitude. In observations and simulations, ENSO events display considerable diversity, including 
variations in geographical location and seasonal evolution. Methods used to assess this diversity include, among 
others, SST indices that emphasize different location centers8,9. Analyses of ENSO-related feedbacks, for example 
the Bjerknes positive feedback between zonal winds and SST, are key to understanding ENSO mechanisms and 
evolution in the real world. These feedbacks also allow detailed assessment of model representations of ENSO and 
provide a useful framework to investigate possible ENSO changes in the future10–12.

In climate model simulations with constant pre-industrial conditions, ENSO frequency, event location diversity, 
and SST amplitude undergo strong decadal modulations. Several hundred years of data are required to sample these 
modulations at stable CO2

13–15. In the most recent multi-model ensemble, the Coupled Model Intercomparison 
Project (Phase 5) (CMIP5)16, there is no consensus change in ENSO SST metrics under global warming17,18, and if 
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there are robust changes, they may be time-dependent19. However, the ensemble does display robust changes in other 
key ENSO properties, such as the associated precipitation anomalies and event propagation characteristics18,20,21.

Here, rather than using a multi-model approach that samples structural model uncertainty in the pro-
cesses that govern ENSO, we analyze a large ensemble from a single model that performs reasonably well in 
simulating realistic ENSO-like behavior (Fig. 1). The ensemble samples the internal variability of the cou-
pled ocean-atmosphere-land-sea ice system, which we define as its year-to-year variations in the absence of 
time-varying greenhouse gas forcing. Our ensemble uses a low-resolution configuration of CESM (T31 × 3, 
described in the Methods section). Fifty individual ensemble members branch off at 100-year intervals from a 
fully-coupled, equilibrated, pre-industrial control simulation. Each member is then forced with historical values 
through 2005, then RCP8.5 until 2100. Because each ensemble member is identically forced after being initialized 
from its own unique starting point (corresponding to different times) in the equilibrated control, any differ-
ences between members are solely due to internal variability of the coupled climate system22,23. This single-model 
approach, including both control and forced data, allows for comparisons of ENSO’s internal variability and 
response to climate change. The ensemble size allows for straight-forward and robust statistical assessment 
including quantile analysis, unlike smaller single-model assessments that use statistical estimators requiring 
key assumptions about stationarity or representativeness of a relatively short dataset (given ENSO’s decadal 
modulations)17,24,25.

While this configuration of low-resolution CESM exhibits mean state biases in equatorial Pacific SST, anal-
ysis of a similar configuration of CCSM4 and our own investigation show that it captures realistic variability 
associated with ENSO26 (Fig. 1). In this regard it is comparable with members of the CMIP527. This configu-
ration of low-resolution CESM roughly reproduces tropical Pacific mean state seasonality, as well as ENSO’s 
seasonal phase locking (Supplementary Figs S1 and S2). The model also simulates the recharge-discharge mecha-
nism of the equatorial Pacific, in which changes in ocean heat content accumulate before ENSO events occur28,29 
(Supplementary Fig. S3).

We examine ENSO in three different forcing regimes: constant pre-industrial forcing, 1940–1990 historical 
forcing, and RCP8.5 2040–2090 projected forcing. Each forcing regime ensemble has 50 independent members 
sampling ENSO’s natural modulations. Figure 2 shows the ENSO maximum entropy spectra for each forcing 
regime. Each ensemble exhibits considerable variety of spectral shape, with some members peaking around four 
years and others at less than two years, while the normalized power in those peaks can vary by greater than a 

Figure 1.  Sample Niño3.4 time series and comparison of observed and modeled mean state and SST variability. 
(a) The Niño3.4 index added to the temperature trend for a sample ensemble member. (b,c) Contours of mean 
SST (lined) and standard deviation of SST climatological anomalies (colored). (b) Reconstructed observations 
from 1940–1990 (ERSST v3b52). (c) The mean of the 50 CESM ensemble members from 1940–1990. In (a), 
index values above the trend are filled red, while index values below are filled blue. In (b and c) the Niño3.4 
region is outlined in black. The map was generated using the NCAR Command Language (NCL), version 6.4.0 
(https://www.ncl.ucar.edu).

https://www.ncl.ucar.edu
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factor of four. At the ensemble peak frequency, the power for individual members ranges from ~1/3 the median 
power to a factor of 2.5 greater than the median. The medians of each forcing regime ensemble, however, are sim-
ilar in shape. While there are noticeable differences in the 95% confidence intervals of the ensemble means (e.g., 
a smaller peak in 2040–2090), the intervals overlap for much of the range (Supplementary Fig. S4). These basic 
results are consistent using a fast Fourier transform (Supplementary Figs S5 and S6).

Figure 3 compares the distributions of several statistical properties of the Niño3.4 index in the different forcing 
regime ensembles. Standard deviation, an indicator of ENSO SST amplitude, is somewhat underestimated in the 
model. The observed 1940–1990 value is above the 95th percentile of the 1940–1990 ensemble. The distributions 
for each forcing regime have similar widths and sizeable overlap. CMIP5 and CESM Large Ensemble (LENS; dis-
cussion of the CESM ensemble below specifically refers to our low-resolution ensemble unless otherwise noted)30 
distributions are also shown. CMIP5 distributions, sampling a mix of internal variability and model uncertainty, 
are wider than those of our CESM ensemble (Fig. 3a). LENS, run at a higher resolution than our ensemble and 
sampling only different atmospheric initial conditions, exhibits distributions that are similar in width to those 
from our ensemble, though there is a noticeable increase in standard deviation under projected forcings.

Skewness roughly indicates the relative strength of El Niño and La Niña events. The observed 1940–1990 
skewness is positive (El Niño events are generally stronger than La Niña), and closely matches the CESM ensem-
ble median over the same time period. Similar to standard deviation, there is sizeable overlap between the CESM 
forcing regime ensembles (Fig. 3b). The CESM ensemble distributions are again comparable for El Niño and La 
Niña event counts (as defined in the Methods section) (Fig. 3c,d).

Given approximate normality (see Q-Q plots in Supplementary Fig. S7), we perform two-sided t-tests com-
paring the pre-industrial ensemble mean with that of the 2040–2090 ensemble mean for each statistical property. 
None of the differences are significant at 95% confidence, even given adequate detection sensitivity allowed by 
this large dataset (e.g., we could have rejected the hypothesis of equal means for a change in standard deviation 
greater than ~4%) (Supplementary Table S1).

Extreme El Niño has different dynamics from moderate events and therefore may be differently affected 
by climate change18. In CMIP5, there is inter-model consensus for a projected increase in extreme event fre-
quency using precipitation-based metrics. However, there is no such consensus using temperature-based metrics. 
Continuing our temperature-based analysis, we adapt a published SST-based identification31 (described in the 
Methods section) to examine extreme ENSO in the CESM ensemble (Fig. 4). Comparing extreme El Niño counts 
in different forcing regimes, we note that these discrete counts are approximately normal (Supplementary Fig. S7) 
and perform two-sided t-tests. We find no significant difference in mean event counts (p-value = 0.84 comparing 
control and 2040–2090, see Supplementary Table S1). We also note a large range within each regime ensemble, 
with some members having only three extreme events in 50 years, while others have 11.

For an explicit analysis of ENSO evolution, we also examine the continuous record of 20-year running ENSO 
statistical properties. Individual simulations under both pre-industrial and climate change forcings exhibit ENSO 
SST amplitude (i.e., Niño3.4 index standard deviation) modulations comparable with those in the observations, 
and the spread due to these modulations is roughly constant through time. Modulations of ENSO skewness larger 
than those in the observations occur under both pre-industrial and climate change forcings. Over the combined 
historical and projection time period, any ensemble change in either statistical property is negligible compared 
with natural modulations (Fig. 5).

There can also be different types or ‘flavors’ of ENSO: the eastern Pacific type, in which SST anomalies are cen-
tered in the east, and the central Pacific type, in which SST anomalies occur near the International Date Line8,32. 

Figure 2.  Maximum entropy power spectra of the trend-removed Niño3.4 index under different forcing 
regimes. (a) Fifty 50-year sections of the unforced, control CESM simulation; (b) the 50 CESM ensemble 
members (1940–1990) and, in red, the 1940–1990 reconstructed observational data (ERSST v3b); (c) the 50 
CESM ensemble members (2040–2090). Individual members are shown in grey, dashed curves are the 5th and 
95th percentiles, and the solid black curve is the median.
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Because their underlying dynamics may be different33,34, these events may respond differently to climate change35. 
CMIP5 ensemble projections show either an increase or no significant change in central Pacific ENSO ampli-
tude, depending on methodology. Some assessments of CMIP5 subsets project increased central Pacific ENSO 
frequency or amplitude20,35, while others indicate no robust changes36,37. Analyses of the overall CMIP5 ensemble 
show no significant change in central Pacific ENSO indices20,36.

We repeat the CESM ensemble analysis of running statistical properties for two additional regions: Niño3 
(5°S-5°N, 150°W-90°W), which is more strongly affected by eastern Pacific events, and Niño4 (5°S-5°N, 
160°E-150°W), more strongly affected by central Pacific events34. Like Niño3.4, these regions exhibit natural 
modulations larger than any ensemble changes (Supplementary Figs S8 and S9). However, unlike Niño3.4 and 
Niño3, the ensemble Niño4 amplitude is significantly lower in 2040–2090 compared to pre-industrial (5% lower 
with two-sided t-test p-value = 0.002).

To investigate the possible change in central Pacific ENSO, we repeat analyses using the El Niño Modoki 
Index (EMI), an index for central Pacific ENSO that is less affected by eastern Pacific events than the Niño4 
index (defined in Methods)8. There is a more significant decrease in EMI standard deviation from pre-industrial 
to 2040–2090, with two-sided t-test p-value = 2.7*10−12 (Supplementary Table S1). There is a corresponding 
decrease in spectral power (Fig. 6, Supplementary Fig. S4). We therefore conclude that the ensemble’s central 

Figure 3.  Box-whisker plots of ENSO statistics under different forcing regimes. (a) Trend-removed Niño3.4 
index standard deviation; (b) skewness; (c) El Niño event counts. (d) La Niña event counts. The plots show 
5th, 25th, 50th, 75th, and 95th percentiles for fifty 50-year sections of the unforced, control CESM run (Control), 
the 50 CESM ensemble members from 1940–1990 (1940–1990), and the 50 CESM ensemble members from 
2040–2090 (2040–2090). In green are the distributions for the 35-member CMIP5 ensemble. In orange are the 
distributions for the 40-member LENS ensemble. The red x denotes the 1940–1990 reconstructed observational 
value (ERSST v3b). The notches indicate a rough 95% confidence interval for the difference between two 
medians.
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Pacific ENSO SST amplitude significantly decreases with increased anthropogenic forcing. This decrease con-
trasts with both the observed upward trend (Supplementary Fig. S9) and general CMIP5 projections, though cen-
tral Pacific ENSO amplitude does apparently decrease in a couple of the small single-model ensembles provided 
for CMIP536.

The different responses to global warming in east and central Pacific ENSO may be related to a different bal-
ance of compensating effects in the two regions. To explore the existence of compensation, two key ENSO-related 
feedbacks, the negative heat flux and positive Bjerknes feedbacks, are analyzed in historical and projection time 
periods. The two feedbacks can be quantified as the slope of a linear regression of surface temperature anomalies 
with heat flux anomalies38 and Niño4 zonal wind stress anomalies39, respectively. We find an enhancement of the 
heat flux feedback and negligible change in the Bjerknes feedback in future projections (Supplementary Fig. S10). 
Changes in other feedbacks likely compensate for the enhanced negative heat flux feedback, such as positive 
thermocline feedback due to future shoaling of the equatorial Pacific thermocline11,40. An expected weakening of 
the negative feedback due to east Pacific mean upwelling and subsurface advection in the future11,41, associated 
with preferential warming in the east equatorial Pacific (Supplementary Fig. S11), may also offset the enhanced 
negative heat flux feedback and help explain the lack of an apparent significant change in the Niño3.4 index.

The lack of an ensemble change in Niño3.4 index contrasts with results from related models: the Community 
Climate System Model v4 (CCSM4) projection from CMIP536,42,43 and LENS ensemble results (Fig. 3)44. The 
single run of CCSM4 in CMIP5 undergoes a decrease in amplitude that is much larger than our estimated 
internal variability, and the decrease occurs across the Niño3 and Niño4 regions36. Analysis of this decrease 
and changes in other CMIP5 models shows that ENSO’s response to global warming may be tied to the mean 
state response of eastern equatorial Pacific meridional flow42,45. Changes in mean state meridional flow affect 
ENSO meridional structure, with larger mean poleward motion associated with a wider ENSO structure and 
lower amplitude. Indeed, the CCSM4 meridional ENSO structure widens in projections, while high-resolution 
CESM becomes slightly narrower, and our CESM ensemble ENSO structure undergoes a relatively slight wid-
ening (Supplementary Fig. S12)45. The increased ENSO amplitude in LENS could be related to changes in the 
mean meridional flow, however, it may also be related to the ensemble set-up. Unlike our ensemble, which sam-
ples unique initial conditions of the fully-coupled climate system, each member of LENS is initialized with the 
same ocean state in 1920, differentiated only by atmospheric perturbations. Therefore, the ensemble does not 
fully sample ocean internal variability. The significant ENSO amplitude increases in the early decades of LENS 
may be related to this issue44, which may persist for 50 years or longer based on the adjustment time scale of the 
low-resolution CESM ocean23. Model resolution may also play a key role in ENSO’s response to global warming, 
and has been shown to affect ENSO-related feedbacks, such as the Bjerknes feedback46.

Figure 4.  Histograms of extreme El Niño counts in different forcing regime ensembles. Fifty 50-year sections 
of the unforced, control CESM simulation (blue), the 50 CESM ensemble members from 1940–1990 (black), the 
50 CESM ensemble members from 2040–2090 (red). Extreme El Niño events defined here as trend-removed 
Niño3.4 index greater than 1.75 standard deviations above mean. For reference, the count of extreme El Niño 
events in reconstructed observations (ERSST v3b) from 1940–1990 using this calculation is 6. The box-whisker 
plot above shows 5th, 25th, 50th, 75th, and 95th percentiles. Notches indicate a rough 95% confidence interval for 
the difference between two medians.
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A large single-model forced ensemble allows both high-sensitivity investigation of ENSO’s changes due to 
forcing, as well as robust estimates of ENSO internal variability. As earlier noted, analyses of long control sim-
ulations have shown that several hundred years are required to sufficiently sample ENSO modulations under a 
given forcing13,14. We pose a related question: how many ensemble members are necessary to provide adequate 
sampling of internal variability of ENSO 50-year metrics? Given approximate normality of the ensemble dis-
tribution of a 50-year metric (Supplementary Fig. S7), its internal variability can be described by the standard 
deviation of that distribution. Then, deciding the appropriate size of an ensemble to assess natural modulations 
is essentially deciding the appropriate number of samples from a normal distribution to assess its standard devi-
ation. Sampling without replacement from our 50 control ensemble members, we calculate the sample standard 
deviation of ENSO amplitude (i.e., Niño3.4 index standard deviation) as a function of ensemble size (Fig. 7). 
Ensembles with less than ~20 members will poorly assess internal variability of 50-year averaged metrics. Using 
the full ensemble, internal variability estimates for all three forcing regimes (0.061 °C, 0.067 °C, and 0.070 °C for 
control, 1940–1990, and 2040–2090, respectively) are much larger than the magnitude of the ensemble mean 
amplitude change (−0.003 °C from control to 2040–2090). The internal variability of 50-year EMI standard devi-
ation is roughly constant in all three forcing regimes (0.026 °C, 0.027 °C, and 0.026 °C for control, 1940–1990, and 
2040–2090, respectively) and comparable with, though less than, the ensemble mean decrease (0.041 °C from 
control to 2040–2090, Supplementary Table S1).

In summary, we use an ensemble framework that allows explicit estimation and comparison of ENSO’s cou-
pled internal variability and response to different forcing regimes. In this CESM ensemble, we find that the effect 
of climate change on model eastern Pacific ENSO SST is secondary to natural modulations, while central Pacific 
ENSO amplitude significantly decreases, to an extent comparable with natural modulations. The primary role of 
internal variability here highlights its importance to investigations of ENSO’s climate change response. Earth sys-
tem model ensembles such as this one, that adequately sample the coupled ocean-atmosphere internal variability, 
can be used to estimate the model ENSO’s internal variability and its potential non-stationarity. This approach 
enables a robust assessment of the modeled ENSO’s response to radiative forcing, as well as its detectability in the 
presence of internal variability.

Methods
CESM experiment.  The experiment uses the fully-coupled low-resolution configuration of the Community 
Earth System Model (CESM), T31 × 322,23. The CAM4 atmospheric model component is configured with a spec-
tral resolution of ~3.75° × 3.75° and 26 vertical levels. The ocean model component has a nominal horizontal 
resolution of 3° (changing to less than 1° near the equator) and 60 vertical levels. While this configuration of 
low-resolution CESM has several climate biases, analysis of a similar configuration of CCSM4 along with our 

Figure 5.  Running ENSO statistics in the CESM ensemble. (a,b) 20-year running standard deviation of the 
trend-removed Niño3.4 index; (c,d) skewness. (a,c) 50 sections of the unforced, control CESM run; (b,d), the 50 
CESM ensemble members. Individual members are shown in grey, dashed lines are the 5th and 95th percentiles, 
the solid black line is the median, and the solid red line is the reconstructed observational record (ERSST v3b).
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own analysis show that it captures tropical Pacific inter-annual temperature variability associated with ENSO and 
other properties related to ENSO26 (Fig. 1 and Supplementary Figs S1–S3).

We first completed a ~4000-year equilibration simulation with pre-industrial forcings, allowing the deep 
ocean to reach near-dynamic equilibrium. After equilibration, the control simulation continues for another 
5000 years. We initialize 50 different climate change simulations from the equilibrium pre-industrial control 
at 100-year intervals after the 4000-year spin-up. Each simulation is initiated from its own unique snapshot of 
the coupled atmosphere-ocean-land-sea ice system. These 50 simulations run from 1850–2100, using historical 
anthropogenic and natural forcings between 1850 and 2005 and RCP8.5 from 2006 to 210047. The 50-member 
ensemble, with identical forcings, only samples unique initialization times in the equilibrated control48. Thus, 
differences between members reflect uncertainty due to joint internal unforced variability of the fully-coupled 
system (ocean, atmosphere, land, and sea ice components).

We further break up the ensemble into three different analysis periods: 1940–1990 representing current climate con-
ditions, 2040–2090 representing future climate conditions (corresponding to RCP8.5), and 50 different 50-year time slices 
sampled from the pre-industrial control simulation. Thus, we have three ensembles that sample the internal variability in 
three different forcing regimes. Repeating the analysis with longer time sections did not change our results (not shown).

Figure 6.  Maximum entropy power spectra of the El Niño Modoki index under different forcing regimes. (a) 
Fifty 50-year sections of the unforced, control CESM simulation; (b) the 50 CESM ensemble members (1940–
1990) and, in red, the 1940–1990 reconstructed observational data (ERSST v3b); (c) the 50 CESM ensemble 
members (2040–2090). Individual members are shown in grey, dashed curves are the 5th and 95th percentiles, 
and the solid black curve is the median.

Figure 7.  Estimated internal variability of 50-year ENSO amplitude versus ensemble size. The internal 
variability estimate is calculated as the standard deviation of the ensemble distribution of 50-year Niño3.4 index 
standard deviations (ENSO amplitudes). Ensembles are created by sampling 50-year sections of the unforced, 
control CESM simulation, without replacement.
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Statistical Analysis.  We focus on SST in the Niño3.4 region, (5°S-5°N, 170°-120°W). We calculate a 
Niño3.4 index as the monthly average SST climatological anomaly in the region. To isolate ENSO variability 
from long-term warming, a 211-month triangle smoothing is subtracted from the index time series (as in Fig. 1 
of Wittenberg, 2009). The resulting trend-removed Niño3.4 index time series has no warming trend. There are 
differences in the trend time series between ensemble members, meaning that some amount of internal variability 
is lost with this method. However, the differences in the trends are about an order of magnitude smaller than the 
differences between trend-removed indices (Supplementary Fig. S13).

For the spectral analysis, we calculate the maximum entropy power spectrum49 for each trend-removed time 
series. In order to visually isolate the ENSO peak, the spectrum is normalized by frequency. With the maximum 
entropy technique, the shape of the spectrum is sensitive to the order of the autoregressive fit, as determined using 
the Akaike Information Criterion. For example, maximum entropy spectra for ERSST v3b and HadISST v1.150 
are notably different, even though they are produced from almost identical index time series (Supplementary 
Fig. S14). We repeat our spectral analysis using a fast Fourier transform, which involves no smoothing of the time 
series, and basic results are unaffected (Supplementary Figs S5 and S6).

For box-and-whisker plots, the notches extend to ±(1.58 * IQR) n/  where IQR is the interquartile range 
and n is the number of ensemble members (50 for our CESM ensemble, 35 for CMIP5, and 40 for LENS). The 
notches give a rough 95% confidence interval for the difference between two medians51. El Niño (La Niña) 
events are identified by at least 5 consecutive months in which the three-month average of the trend-removed 
index is greater (less) than 0.5 °C (−0.5 °C), similar to the method used by NOAA Climate Prediction Center. 
CMIP5 distributions are determined from a 35-member ensemble. The full list is provided in Supplementary 
Table S2.

Extreme El Niño events are identified by a trend-removed Niño3.4 index that is higher than 1.75 standard 
deviations above the mean and not following within five months of another extreme event. This definition is 
adapted from a published Niño3-based definition31.

The El Niño Modoki index (EMI) is calculated as follows:

= − . ∗ − . ∗EMI [SSTA] 0 5 [SSTA] 0 5 [SSTA] , (1)A B C

with brackets indicating area-averaged climatological SST anomalies over regions A (165°E-140°W, 10°S-10°N), 
B (110°W-70°W, 15°S-5°N), and C (125°E-145°E, 10°S-20°N), respectively8.

Data Availability.  The CESM ensemble raw ENSO regional time series are available in text format as sup-
plementary data. Other datasets and codes used during the current study are available from the corresponding 
author on reasonable request.

References
	 1.	 Hawkins, E. & Sutton, R. The potential to narrow uncertainty in regional climate predictions. Bull. Am. Meteorol. Soc. 90, 1095–1107 

(2009).
	 2.	 Hawkins, E. & Sutton, R. The potential to narrow uncertainty in projections of regional precipitation change. Clim. Dyn. 37, 407–418 

(2011).
	 3.	 Huber, M. & Knutti, R. Natural variability, radiative forcing and climate response in the recent hiatus reconciled. Nat. Geosci 7, 

651–656 (2014).
	 4.	 Deser, C., Phillips, A., Bourdette, V. & Teng, H. Uncertainty in climate change projections: The role of internal variability. Clim. Dyn. 

38, 527–546 (2012).
	 5.	 Dai, A. & Wigley, T. M. L. Global patterns of ENSO-induced precipitation. Geophys. Res. Lett. 27, 1283–1286 (2000).
	 6.	 Hoerling, M. P. et al. El Niño, La Niña, and the Nonlinearity of Their Teleconnections. J. Clim. 10, 1769–1786 (1997).
	 7.	 Whetton, P. & Rutherfurd, I. Historical ENSO teleconnections in the eastern hemisphere. Clim. Change 28, 221–253 (1994).
	 8.	 Ashok, K., Behera, S. K., Rao, S. A., Weng, H. & Yamagata, T. El Niño Modoki and its possible teleconnection. J. Geophys. Res. 112, 

C11007 (2007).
	 9.	 Capotondi, A. et al. Understanding enso diversity. Bull. Am. Meteorol. Soc. 96, 921–938 (2015).
	10.	 Guilyardi, E. et al. Understanding El Niño in ocean-atmosphere general circulation models: Progress and challenges. Bulletin of the 

American Meteorological Society 90, 325–340 (2009).
	11.	 Collins, M. et al. The impact of global warming on the tropical Pacific Ocean and El Nino. Nat. Geosci. 3, 391–397 (2010).
	12.	 Bellenger, H., Guilyardi, E., Leloup, J., Lengaigne, M. & Vialard, J. ENSO representation in climate models: From CMIP3 to CMIP5. 

Clim. Dyn. 42, 1999–2018 (2014).
	13.	 Wittenberg, A. T. Are historical records sufficient to constrain ENSO simulations? Geophys. Res. Lett. 36, 1–5 (2009).
	14.	 Stevenson, S., Fox-Kemper, B., Jochum, M., Rajagopalan, B. & Yeager, S. G. ENSO model validation using wavelet probability 

analysis. J. Clim. 23, 5540–5547 (2010).
	15.	 Yeh, S. W., Kirtman, B. P., Kug, J. S., Park, W. & Latif, M. Natural variability of the central Pacific El Niño event on multi-centennial 

timescales. Geophys. Res. Lett. 38 (2011).
	16.	 Taylor, K. E., Stouffer, R. J. & Meehl, G. A. An overview of CMIP5 and the experiment design. Bulletin of the American Meteorological 

Society 93, 485–498 (2012).
	17.	 Stevenson, S. L. Significant changes to ENSO strength and impacts in the twenty-first century: Results from CMIP5. Geophys. Res. 

Lett. 39, 1–5 (2013).
	18.	 Cai, W. et al. Increasing frequency of extreme El Niño events due to greenhouse warming. Nat. Clim. Chang. 5, 1–6 (2014).
	19.	 Kim, S. T. et al. Response of El Niño sea surface temperature variability to greenhouse warming. Nat. Clim. Chang. 4, 1–5 

(2014).
	20.	 Power, S., Delage, F., Chung, C., Kociuba, G. & Keay, K. Robust twenty-first-century projections of El Niño and related precipitation 

variability. Nature 502, 541–5 (2013).
	21.	 Santoso, A. et al. Late-twentieth-century emergence of the El Niño propagation asymmetry and future projections. Nature 504, 

126–130 (2014).
	22.	 Sriver, R. L., Forest, C. E. & Keller, K. Effects of initial conditions uncertainty on regional climate variability: An analysis using a 

low-resolution CESM ensemble. Geophys. Res. Lett. 42, 5468–5476 (2015).



www.nature.com/scientificreports/

9SCIentIfIC REpOrtS |  (2017) 7:18047  | DOI:10.1038/s41598-017-18459-8

	23.	 Hogan, E. & Sriver, R. Analyzing the Effect of Ocean Internal Variability on Depth-Integrated Steric Sea-Level Rise Trends Using a 
Low-Resolution CESM Ensemble. Water 9, 483 (2017).

	24.	 van Oldenborgh, G. J., Philip, S. Y. & Collins, M. El Niño in a changing climate: a multi-model study. Ocean Sci. 1, 81–95 (2005).
	25.	 Stevenson, S. et al. Will There Be a Significant Change to El Niño in the Twenty-First Century? J. Clim. 25, 2129–2145 (2012).
	26.	 Shields, C. A. et al. The low-resolution CCSM4. J. Clim. 25, 3993–4014 (2012).
	27.	 Jha, B., Hu, Z. Z. & Kumar, A. SST and ENSO variability and change simulated in historical experiments of CMIP5 models. Clim. 

Dyn. 42, 2113–2124 (2014).
	28.	 Jin, F.-F. An Equatorial Ocean Recharge Paradigm for ENSO. Part I: Conceptual Model Pacific from his analysis of the empirical 

relations of. J. Atmos. Sci. 54, 811–829 (1997).
	29.	 McPhaden, M. J., Zebiak, S. E. & Glantz, M. H. ENSO as an integrating concept in earth science. Science 314, 1740–1745 

(2006).
	30.	 Kay, J. E. et al. The Community Earth System Model (CESM) Large Ensemble Project: A Community Resource for Studying Climate 

Change in the Presence of Internal Climate Variability. Bull. Am. Meteorol. Soc. 96, 1333–1349 (2015).
	31.	 Cai, W. et al. ENSO and greenhouse warming. Nat. Clim. Chang. 5, 849–859 (2015).
	32.	 Yu, J. Y. & Kao, H. Y. Decadal changes of ENSO persistence barrier in SST and ocean heat content indices: 1958–2001. J. Geophys. 

Res. Atmos. 112 (2007).
	33.	 Kao, H. Y. & Yu, J. Y. Contrasting Eastern-Pacific and Central-Pacific types of ENSO. J. Clim. 22, 615–632 (2009).
	34.	 Kug, J.-S. et al. Two Types of El Niño Events: Cold Tongue El Niño and Warm Pool El Niño. J. Clim. 22, 1499–1515 (2009).
	35.	 Kim, S. T. & Yu, J. Y. The two types of ENSO in CMIP5 models. Geophys. Res. Lett. 39 (2012).
	36.	 Taschetto, A. S. et al. Cold Tongue and Warm Pool ENSO Events in CMIP5: Mean State and Future Projections. J. Clim. 27, 

2861–2885 (2014).
	37.	 Xu, K., Tam, C. Y., Zhu, C., Liu, B. & Wang, W. CMIP5 projections of two types of El Niño and their related tropical precipitation in 

the Twenty-First Century. J. Clim. 30, 849–864 (2017).
	38.	 Lin, J. L. The double-ITCZ problem in IPCC AR4 coupled GCMs: Ocean-atmosphere feedback analysis. J. Clim. 20, 4497–4525 

(2007).
	39.	 Guilyardi, E. El Niño-mean state - Seasonal cycle interactions in a multi-model ensemble. Clim. Dyn. 26, 329–348 (2006).
	40.	 Philip, S. & van Oldenborgh, G. J. Shifts in ENSO coupling processes under global warming. Geophys. Res. Lett. 33, L11704 

(2006).
	41.	 Vecchi, G. A., Soden, B. J., Vecchi, G. A. & Soden, B. J. Global Warming and the Weakening of the Tropical Circulation. J. Clim. 20, 

4316–4340 (2007).
	42.	 Chen, L., Li, T. & Yu, Y. Causes of strengthening and weakening of ENSO amplitude under global warming in four CMIP5 models. 

J. Clim. 28, 3250–3274 (2015).
	43.	 Cai, W. et al. ENSO and greenhouse warming. Nat. Publ. Gr. 5, 849–859 (2015).
	44.	 Zheng, X.-T., Hui, C. & Yeh, S.-W. Response of ENSO amplitude to global warming in CESM large ensemble: uncertainty due to 

internal variability. Clim. Dyn. https://doi.org/10.1007/s00382-017-3859-7 (2017).
	45.	 Chen, L., Li, T., Yu, Y. & Behera, S. K. A possible explanation for the divergent projection of ENSO amplitude change under global 

warming. Clim. Dyn. https://doi.org/10.1007/s00382-017-3544-x (2017).
	46.	 Marti, O. et al. Key features of the IPSL ocean atmosphere model and its sensitivity to atmospheric resolution. Clim. Dyn. 34, 1–26 

(2010).
	47.	 Moss, R. H. et al. The next generation of scenarios for climate change research and assessment. Nature 463, 747–56 (2010).
	48.	 Sriver, R. L., Urban, N. M., Olson, R. & Keller, K. Toward a physically plausible upper bound of sea-level rise projections. Clim. 

Change 115, 893–902 (2012).
	49.	 Burg, J. P. Maximum Entropy Spectral Analysis. In Proceedings of the 37th Annual International Society of Exploration Geophysicists 

Meeting (1967).
	50.	 Rayner, N. A. et al. Global analyses of sea surface temperature, sea ice, and night marine air temperature since the late nineteenth 

century. J. Geophys. Res. 108, 4407 (2003).
	51.	 Chambers, J. M., Cleveland, W. S., Kleiner, B. & Tukey, P. A. In Graphical Methods for Data Analysis (1983).
	52.	 Smith, T. M., Reynolds, R. W., Peterson, T. C. & Lawrimore, J. Improvements to NOAA’s historical merged land-ocean surface 

temperature analysis (1880–2006). J. Clim. 21, 2283–2296 (2008).

Acknowledgements
The CESM project is supported by the National Science Foundation and the Office of Science (BER) of the 
U.S. Department of Energy. LENS data were created by the CESM Large Ensemble Community Project with 
supercomputing resources provided by NSF/CISL/Yellowstone. ERSST v3b data is provided by NOAA and hosted 
by NCEI (https://www.ncdc.noaa.gov/data-access/). The World Climate Research Programme’s Working Group 
on Coupled Modeling is responsible for CMIP and the U.S. Department of Energy’s program for Climate Model 
Diagnosis and Intercomparison provides coordinating support and led development of software infrastructure 
in partnership with the Global Organization for Earth System Science Portals. CMIP5 data was obtained from 
the KNMI Climate Explorer (https://climexp.knmi.nl/). This study was partially supported by the Department 
of Energy sponsored Program on Integrated Assessment Model Development, Diagnostics and Inter-Model 
Comparisons (PIAMDDI), and the Program on Coupled Human Earth Systems (PCHES). Any opinions, findings 
and conclusions or recommendations expressed in this material are those of the authors and do not necessarily 
reflect the views of the funding entities.

Author Contributions
Both authors jointly designed the study and wrote the paper. R.L.S. performed the CESM simulations. B.V.W. 
performed the model and data analyses.

Additional Information
Supplementary information accompanies this paper at https://doi.org/10.1038/s41598-017-18459-8.
Competing Interests: The authors declare that they have no competing interests.
Publisher's note: Springer Nature remains neutral with regard to jurisdictional claims in published maps and 
institutional affiliations.

http://dx.doi.org/10.1007/s00382-017-3859-7
http://dx.doi.org/10.1007/s00382-017-3544-x
https://www.ncdc.noaa.gov/data-access/
https://climexp.knmi.nl/
http://dx.doi.org/10.1038/s41598-017-18459-8


www.nature.com/scientificreports/

1 0SCIentIfIC REpOrtS |  (2017) 7:18047  | DOI:10.1038/s41598-017-18459-8

Open Access This article is licensed under a Creative Commons Attribution 4.0 International 
License, which permits use, sharing, adaptation, distribution and reproduction in any medium or 

format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Cre-
ative Commons license, and indicate if changes were made. The images or other third party material in this 
article are included in the article’s Creative Commons license, unless indicated otherwise in a credit line to the 
material. If material is not included in the article’s Creative Commons license and your intended use is not per-
mitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the 
copyright holder. To view a copy of this license, visit http://creativecommons.org/licenses/by/4.0/.
 
© The Author(s) 2017

http://creativecommons.org/licenses/by/4.0/

	Analysis of ENSO’s response to unforced variability and anthropogenic forcing using CESM

	Methods

	CESM experiment. 
	Statistical Analysis. 
	Data Availability. 

	Acknowledgements

	Figure 1 Sample Niño3.
	Figure 2 Maximum entropy power spectra of the trend-removed Niño3.
	Figure 3 Box-whisker plots of ENSO statistics under different forcing regimes.
	Figure 4 Histograms of extreme El Niño counts in different forcing regime ensembles.
	Figure 5 Running ENSO statistics in the CESM ensemble.
	Figure 6 Maximum entropy power spectra of the El Niño Modoki index under different forcing regimes.
	Figure 7 Estimated internal variability of 50-year ENSO amplitude versus ensemble size.




