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Bayesian inference of 
epidemiological parameters from 
transmission experiments
Ben Hu1,2, Jose L. Gonzales   3 & Simon Gubbins   1

Epidemiological parameters for livestock diseases are often inferred from transmission experiments. 
However, there are several limitations inherent to the design of such experiments that limits the 
precision of parameter estimates. In particular, infection times and latent periods cannot be directly 
observed and infectious periods may also be censored. We present a Bayesian framework accounting 
for these features directly and employ Markov chain Monte Carlo techniques to provide robust 
inferences and quantify the uncertainty in our estimates. We describe the transmission dynamics using 
a susceptible-exposed-infectious-removed compartmental model, with gamma-distributed transition 
times. We then fit the model to published data from transmission experiments for foot-and-mouth 
disease virus (FMDV) and African swine fever virus (ASFV). Where the previous analyses of these data 
made various assumptions on the unobserved processes in order to draw inferences, our Bayesian 
approach includes the unobserved infection times and latent periods and quantifies them along with 
all other model parameters. Drawing inferences about infection times helps identify who infected 
whom and can also provide insights into transmission mechanisms. Furthermore, we are able to use 
our models to measure the difference between the latent periods of inoculated and contact-challenged 
animals and to quantify the effect vaccination has on transmission.

Transmission experiments offer a wealth of data from which we can estimate important epidemiological parame-
ters for livestock diseases. The basic reproduction number (R0), defined as the average number of secondary cases 
caused by an infected individual in a totally susceptible population1, transmission rates and latent and infectious 
period durations can all be inferred from such experiments. This is particularly important for high consequence 
animal diseases, such as avian influenza, foot-and-mouth disease, African swine fever or classical swine fever. 
For these diseases, collecting data during outbreaks is often hampered by a lack of capacity in parts of the world 
where they are endemic and by a conflict between the requirements for expeditious disease control versus infor-
mation gathering when epidemics occur in disease-free countries. Consequently, transmission experiments are 
often the primary source of data from which to infer transmission, latent period or infectious period parameters. 
Estimating these parameters directly from the data, rather than making simplifying assumptions or relying on 
expert opinion2, lends good strength to any conclusions drawn.

Many transmission experiments follow a similar design in which the pathogen of interest is introduced to a 
group of animals, usually by some inoculated seed animals, and the subsequent spread through the rest of the 
population is recorded3. Generally, all individuals are monitored for clinical signs and biological samples are 
collected at regular intervals to detect the pathogen (i.e. to determine whether or not transmission has occurred). 
However, this design means that the latent periods for the inoculated animals are only known in the range 
between the last negative and first positive samples. More importantly, the infection times and latent periods 
of the in-contact animals are unobserved. Finally, the infectious periods are similarly unobserved and may also 
be right-censored due to the pre-determined experiment duration4 or welfare grounds, in the case of severe 
disease5. In addition, the test used to detect the pathogen is assumed to be perfect, so that the test results provide 
an accurate picture of if and when an animal is infected. The numbers of animals that can be used in this type 
of experiment are also limited on logistical (numbers of animals that can be housed), cost (experiments in high 
containment are expensive) and ethical (with the aim of reducing the number of animals used in experiments) 
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grounds. Even though the number of animals used are limited, the results obtained via transmission experiments 
are nonetheless a reasonable approximation to field observations6. Furthermore, scaling experimental results 
to the herd level is facilitated by the assumption of frequency-dependent transmission used when analysing the 
experimental data, which has been shown to be appropriate for farm animals7.

Many existing methods for analysing such data do not account for these issues directly, instead making 
assumptions to overcome them. The final size (FS) method3 has been used to estimate R0 for many diseases, such 
as Aujeszky’s disease8, avian influenza9 and foot-and-mouth-disease10,11, but offers no inferences on other epide-
miological parameters. This uses a compartmental model and, as the name implies, only considers the numbers 
of animals in each compartment at the end of the experiment, discarding any information that can be gained 
from the progress of the epidemic. This method assumes that the final size has been reached by the end of the 
experiment, but this is not always applicable4. Furthermore, if all animals become infected, this method returns 
R0 = ∞ (see, for example, refs9,11). In this case, it can still be useful for qualitative comparisons between different 
treatment groups.

Another widely used method, first described in a study on classical swine fever virus12, makes more use of 
the data by considering the state of the transmission chain in discrete time steps, where numbers of susceptible 
and infectious animals are known. Transmission rates can be inferred using a generalised linear model (GLM). 
Infectious periods can also be inferred using survival analysis if they are not all right-censored, but latent periods, 
if included, must be assumed to be fixed and known.

Bayesian methods13–15 provide an ideal framework in which to overcome the problems in this experimental 
design, without needing to make the assumptions required to implement the FS or GLM methods. Incorporating 
the unobserved infection times and latent periods as nuisance parameters in the model allows us to draw infer-
ences about them. This is potentially useful in terms of identifying who infected whom during an experiment. It 
can also help understand transmission mechanisms, for example, by comparing viral shedding patterns with times 
of infection. The use of informative priors allows us to estimate infectious periods even for censored data and also 
helps restrict the transmission rate to biologically reasonable parameter space. Here we apply a Bayesian frame-
work to analyse transmission experiments using a stochastic susceptible-exposed-infectious-recovered (SEIR) 
type model, inferring latent and infectious period distributions and the transmission parameter simultaneously.

We first present a simple generic form of the model and the inference methodology. We then fit the models to 
experiments on the transmission of foot-and-mouth disease virus (FMDV)4,11 and of African swine fever virus 
(ASFV)5,16, two contagious pathogens of high socio-economic importance. Foot-and-mouth disease has caused 
major disruptive epidemics in 2001 in the UK17 and in 2010 in the Republic of Korea18 and Japan19. African swine 
fever is another major threat, currently circulating in eastern Europe with a high risk of becoming endemic and 
of onward transmission into unaffected areas20. We discuss the differences in the experimental designs, show how 
the model can be adapted to account for these features and compare the inferences against those obtained by the 
original analyses using the FS and GLM methods. We also use simulated data to explore the framework and to 
assess the robustness of the inferences about the unobserved processes. We use the models to see if the route of 
infection, whether by inoculation or contact, has an effect on the latent period of the animal. By fitting the models 
to data on FMDV in both vaccinated and unvaccinated pigs, we can also quantify the impact that vaccination has 
on transmission.

Materials and Methods
Generic data and model.  In general, a transmission experiment begins with some number of animals being 
inoculated with the pathogen of interest. These will then be allowed to mix with uninfected animals in a con-
trolled environment. All animals are monitored for clinical signs of the disease as well as having samples, for 
example, blood or oropharyngeal fluid (OPF), taken at regular intervals and tested for presence of the pathogen. 
These samples give either a positive or negative indicator for infection at each time point. We use the times of last 
negative, tln, first positive, tfp, last positive, tlp, and, if it exists, the first negative after recovery, tfn and whether the 
animal was culled or not before the end of the experiment, tend, as inputs for the model (Fig. 1).

We use an SEIR model21, classifying animals as either (S)usceptible, (E)xposed (i.e. infected, but not yet infec-
tious), (I)nfectious or (R)ecovered (or removed) (Fig. 1). The transition times from the exposed to infectious and 
infectious to recovered compartments correspond to the latent and infectious periods of the virus, respectively. 
These are often, though not always, assumed to be exponentially-distributed for mathematical convenience. To 

Figure 1.  Schematic of the data and model. Animals are classified according to whether they are susceptible (S), 
exposed (i.e. infected but not yet infectious) (E), infectious (I) or recovered (R). The data provide the times of 
last negative, tln, and first positive, tfp, samples, which provide constraints on the inferred infection time, tI, and 
latent period, E. Similarly, the times of last positive, tlp, and first negative, tfn, constrain the infectious period, I.
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allow the transition probabilities to more realistically depend on the length of time already spent in the compart-
ment we assume they follow gamma distributions21,22. This also has the added bonus of computationally cheap 
simulation. The probability density function is given by:
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where k > 0 is the shape parameter, µ > 0 is the mean and Γ(k) is a gamma function. We consider two models to 
test if the route of infection (i.e. inoculation or contact) has an effect on the latent period. The first assumes that 
the route of infection has no effect, so inoculated and contact animals have their latent periods drawn from a 
common distribution, and the other has separate distributions for the two routes.

We assume that the presence of the pathogen in a sample taken from an animal means it is infectious and that 
the infectiousness of an animal is constant until it recovers or is removed. The force of infection exerted on each 
susceptible animal is given by:

λ β=t I t
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where β is the transmission parameter, I(t) is the number of infectious animals and N(t) is the total number of 
animals at time t. This formulation assumes frequency-dependent transmission and homogeneous mixing7. The 
basic reproduction number is simply given by the product of the transmission parameter and the mean infectious 
period (μI):

β μ= .R (3)I0

Parameter inference.  The generic model has five parameters to be inferred; the shape and mean for the 
gamma-distributed latent and infectious periods and the transmission parameter. As the infection times for con-
tact animals are not directly observed, we include them in a data augmentation step. This also allows the unob-
served latent periods to be inferred as nuisance parameters.

The likelihood is given by:
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where θ = {kE, µE, kI, µI, β} is the vector of model parameters, tI is the vector of unobserved infection times and E 
is the vector of unobserved latent period durations. The first term is the probability that the surviving uninfected 
animals were not infected and the second term is the corresponding probability that each infected animal j 
became infected at time .tI

j( )  The third term gives the contribution of the latent period Ej of animal j, with 
gamma-distributed probability density function fE(E) (see equation (1). The final two terms account for the 
gamma-distributed infectious periods of the censored animals, whether due to culling or experiment duration, 
and recovered animals, respectively, with probability distribution function fI(I) (see equation (1)).

Taking t = 0 to be the time at which inoculated animals are infected, the times of last negative and first positive 
samples provide constraints on each animal’s infection time and latent period:
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Informative priors for all parameters can be constructed from separate experiments (see Case Studies below). 
If no suitable data are available, however, less-informative priors over biologically reasonable space can be used. 
The joint posteriors are sampled using an adaptive Metropolis algorithm23,24, with the scaling factor being adap-
tively adjusted to ensure an acceptance rate between 20% and 40%25. Four chains are run with mixing and conver-
gence assessed visually and using Gelman-Rubin statistics, courtesy of the coda package26 in R27. Autocorrelation 
plots and effective sample sizes (the latter computed using the mcmcse package28 in R27) are used to choose 
appropriate length and thinning of the chains. For example, in the FMDV in pigs case study chains of 10,000,000 
samples were run, with the preceding 10,000,000 samples discarded to allow for burn-in of the chain. Chains were 
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subsequently thinned by taking every 1000th sample, with an effective sample size of around 2000. This took of 
the order of a few hours to run on a high-performance computing cluster.

All model code is written in C++ using the GNU Scientific Libraries29 for random number generation and 
the Eigen template library30 and is available online at github31. Equivalent Matlab code (version R2014b; The 
Mathworks, Inc.) for two case studies (FMDV in lambs and ASFV in pigs) is provided in the supplementary 
information, Appendix S1.

We compare the two models for the latent periods (i.e. independent of route of infection and dependent on 
route of infection) using the deviance information criterion (DIC)32 defined as:

θ θ= − +D L Lt E t E4 log ( , , ) 2 log ( , , ),I I

where L is the likelihood defined above (equation (4) and the bar denotes the (posterior) mean. Alternative defi-
nitions of the DIC are possible and these have been reviewed elsewhere33.

Model checking.  We first aim to demonstrate the validity of our methods and provide support for the infer-
ences made. For this purpose, we used our SEIR model to simulate two transmission experiments, following 
the generic design described above with daily sampling. The first synthetic dataset used a 2 vs 2 design and the 
following parameters: kE = 15.0, μE = 4.0, kI = 5.0, μI = 8.0 and β = 0.15 (cf. FMDV in lambs). This yields R0 = 1.2, 
so that only a proportion of the contact animals would be expected to become infected. The second synthetic 
dataset used a 5 vs 5 design and the following parameters: kE = 15.0, μE = 3.0 (inoculated), kE = 10.0, μE = 6.0 
(contact-challenged), kI = 15.0, μI = 6.0 and β = 3.0 (cf. ASFV in pigs). This yields R0 = 18.0, so that almost all the 
contact animals would be expected to become infected. We extract the inputs our framework requires from the 
simulations and re-infer the model parameters, infection times for the contact animals and the latent periods for 
all infected animals (considering models with both common and separate latent periods). Wide, non-informative 
(i.e. uniform with range from 0 to 100) prior distributions were used for these analyses.

Case studies.  Here we review three published transmission experiments and describe the features that 
require specific adaptations to the generic framework. We fit our models to transmission experiments of FMDV 
between lambs4 and between pigs11 and of ASFV between pigs5,16.

FMDV in lambs.  This is the simplest of the three examples presented here, following the generic design detailed 
above. A total of 24 lambs were used, housed in six separate rooms of four lambs each4. Two in each room were 
inoculated with the FMDV field isolate O/NET/2001, and after 24 hours, the remaining two naïve lambs were 
brought in to be challenged. This leads to a very small modification to equation (5), such that:

< <t t1 , (7)I
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OPF swabs were taken daily up to day 14 post inoculation (dpi) and the presence of FMDV was determined by 
virus isolation. Three of the twelve contact-challenged lambs became infected, but their infection times and latent 
periods are unobserved. In addition, the latent periods for the inoculated lambs are only partially observed (i.e. 
known to a one-day window). Finally, six inoculated and two contact-challenged lambs were still positive at when 
the last OPF swab was taken (at 14 dpi), so their infectious periods are right-censored (see supplementary infor-
mation, Data S1). The status of the nine contact-challenged lambs which were categorised as uninfected at the end 
of the experiment was confirmed by both a negative ELISA test (indicating no antibodies to viral non-structural 
proteins and, hence, no evidence of viral infection and replication) and negative probang samples taken at 28 to 
30 dpi (indicating no persistent infection).

Informative priors were constructed for the model parameters using data from a similar but smaller 
transmission experiment in lambs34 (Supplementary Table S1). A second analysis was performed in which 
non-informative priors were used for all the model parameters (uniform with range 0 to 100).

FMDV in pigs.  Two experiments11 were carried out together using the FMDV field isolate O/NET/2001, both 
of which were used to estimate parameters. In the first, six separate rooms each housed one inoculated pig with 
a naïve pig introduced one day post-inoculation (dpi). The second experiment linked two sets of challenges 
sequentially together. The infection started with four pigs being inoculated. After one day, these were moved in 
to a clean room housing five susceptible pigs, labelled C1. These C1 pigs were tested for presence of FMDV on a 
daily basis and, on the first positive result, all C1s were immediately moved to a new clean room housing five more 
susceptible pigs to be challenged, labelled C2. The whole procedure was carried out twice. All pigs involved devel-
oped clinical disease and six were culled on welfare grounds, though only after all transmissions had occurred.

As the first challenge occurred at one day post-inoculation, we use the same constraint on C1 infection times 
as in equation (7). We also have the infection times for the C2 pigs being constrained by the day the C1 pigs are 
moved:
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OPF swabs were taken daily for all pigs in the first experiment and the C1 and C2 pigs from the second and 
virus isolations were performed to test for presence of FMDV. As the time-series data for the inoculated pigs in 
the second experiment was not available, we simply treat these as the infectious source for the C1 pigs for the 
entire duration of contact and make no inferences on the inoculated pigs’ latent or infectious periods. In one 
of the one-to-one transmission experiments, the inoculated pig did not become infectious, nor did the contact 
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pig become infected; this experiment was excluded from the analysis. The remaining 25 contact challenged pigs 
became infected and all were included in the analysis.

To quantify the effectiveness of vaccination, both of these experiments were repeated with all 
contact-challenged pigs being vaccinated at −14 dpi11. As the infection chain was started by inoculating unvac-
cinated pigs, we fit our models to data from the second experiment and only infer parameters for the vaccinated 
pigs.

In all experiments, the latent periods for the inoculated pigs are only partially observed, the infection times 
and latent periods for the contact-challenge pigs are unobserved and four of the unvaccinated contact-challenged 
pigs were euthanized on welfare grounds and, hence, observations for their infectious periods are right-censored 
(see supplementary information, Data S2).

Informative priors for the model parameters were constructed using another transmission experiment in 
pigs35 (Supplementary Table S1). A second analysis was performed in which non-informative priors were used 
for all the model parameters (uniform with range 0 to 100).

ASFV in pigs.  Here a set of four transmission experiments were carried out to quantify transmission of the 
highly virulent Georgia 2007/1 strain of ASFV5,16, currently circulating in Eastern Europe. Groups of five, four, 
four or three inoculated pigs (for rooms A–D, respectively) were in direct contact with an equal number of sus-
ceptible pigs. For rooms B and C, a further group of four susceptible pigs was housed in a separate pen within the 
same room, allowing indirect contact only. A total of 40 pigs were used in these experiments; 16 were inoculated, 
16 in direct contact and 8 in indirect contact. All pigs developed clinical disease and were culled on welfare 
grounds.

To account for the second pen, we introduce a between-pen transmission term and infer parameters for both 
within- and between-pen transmission. The force of infection exerted on susceptible animals in each pen is given 
by:
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where βW and βB are the within- and between-pen transmission parameters, Ii(t) and Ni(t) are the number of 
infectious and total number of pigs in pen i at time t. The likelihood in equation (4) is modified to account for the 
pen in which each animal is housed.

Blood samples were taken from all pigs, starting at three days post inoculation (dpi) of the seed pigs and every 
two days thereafter, and were tested for presence of ASFV by virus isolation (see supplementary information, Data 
S3). In this experiment, the latent periods of the inoculated pigs are only partially observed (the first samples for 
some inoculated pigs were positive), the infection times and latent periods for the contact-challenged pigs are 
unobserved and, finally, all infected animals were euthanized on welfare grounds while still positive, so all infec-
tious periods are right-censored.

Informative priors for each of the parameters were constructed based on previous transmission experiments36 
and outbreaks of the Georgia 2007/1 strain in the Russian Federation37 (Supplementary Table S1). A second anal-
ysis was performed in which non-informative priors (uniform with range 0 to 100) were used for all the model 
parameters, except the infectious period parameters. For these two parameters informative priors had to be used 
because all infectious periods were right-censored.

Data availability.  All data analysed as part of this study are available from the original publications4,11,16. 
They are provided in the supporting information (Data S1–S3) in the format they were used in the analysis.

Results
Model checking.  In the synthetic 2 vs 2 experiment, 21/50 contact animals became infected. The inferences 
on infection times and latent periods are shown in Supplementary Fig. S1, where we see the 95% highest-pos-
terior density interval (HPDI) for each infection time contains the known value. The model parameters all lie 
within the 95% HPDI with posterior medians close to the known values, while the deviations of the inferred 
infection times are centred on zero (Supplementary Fig. S2).

The synthetic 5 vs 5 experiment was generated assuming separate latent periods for inoculated and 
contact-infected animals and with a much higher R0. In this case, all 50 contacts became infected and all actual 
infection times are within the 95% HPDI of our inferences (Supplementary Fig. S3). As with the 2 vs 2 synthetic 
dataset, the 95% HPDI contain the parameter values used to generate the data and the deviations of the infection 
times show no obvious signs of bias (Supplementary Fig. S4). Furthermore, the model with separate latent periods 
was strongly preferred to the model with common latent periods (DIC = 836.4 for the model with separate latent 
periods compared with DIC = 900.5 for the model with a common latent period).

FMDV in lambs.  Based on the DIC we found no significant evidence for a difference in latent periods 
between intranasally inoculated and contact-infected lambs (DIC = 94.5 for the model with separate latent peri-
ods compared with DIC = 95.6 for the model with a common latent period). In the model with separate latent 
periods, inoculation with the virus resulted in shorter latent periods than contact infection, with a difference in 
mean duration of 0.37 days. The marginal posteriors for the model with common latent period are summarised in 
Table 1 and the posterior distributions for both models are plotted in Fig. 2. We see that lambs are infectious for 
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a long time, but at a low rate of transmission. The resulting estimate (posterior mean) for R0 is 1.43, with the 95% 
HPDI including the threshold value of R0 = 1.

The inferred infection times for the three (out of 12) contact lambs which became infected are shown in Fig. 3. 
The two lambs (9893 and 9769) are from the same group (group D) and the infection times suggest that one con-
tact lamb (9769) could have acted as the source of infection for the other (9893).

Latent period†

Infectious period Transmission parameter R0Contact Inoculated

Shape Mean Shape Mean Shape Mean Within-pen
Between-
pen Within-pen

Between-
pen

FMDV in lambs
mean 3.31 1.12 — — 5.22 15.4 0.09 — 1.43 —

95% HPDI (0.53, 7.74) (0.70, 1.61) — — (1.56, 10.6) (11.2, 21.7) (0.03, 0.19) — (0.33, 3.04) —

FMDV in pigs 
(unvaccinated)

mean 1.35 0.14 1.39 0.97 14.14 5.70 1.51 — 8.54 —

95% HPDI (0.22, 3.65) (0.01, 0.33) (0.18, 3.39) (0.40, 1.67) (6.86, 22.1) (5.12, 6.33) (0.75, 2.55) — (4.28, 14.9) —

FMDV in pigs 
(vaccinated)

mean 1.44 0.27 — — 5.55 4.74 0.36 — 1.70 —

95% HPDI (0.24, 3.79) (0.03, 0.65) — — (2.38, 9.66) (3.82, 5.85) (0.16, 0.59) — (0.73, 2.91) —

ASFV in pigs
mean 19.2 6.08 12.0 2.80 22.7 9.15 2.62 0.99 24.1 9.17

95% HPDI (6.77, 36.7) (4.94, 7.19) (2.69, 27.6) (2.28, 3.31) (4.77, 53.4) (6.67, 12.3) (0.96, 5.61) (0.31, 1.98) (7.34, 54.2) (2.67, 19.2)

Table 1.  Posterior median and 95% highest-posterior density intervals (HPDI) for gamma-distributed 
latent and infectious period parameters, transmission parameter and basic reproduction number for three 
transmission experiments. †For FMDV in lambs there was no significant difference in latent period between 
inoculated and contact-infected animals.

Figure 2.  Epidemiological parameters for foot-and-mouth disease virus (FMDV) in lambs. Marginal posterior 
distributions for each parameter inferred from the FMDV transmission experiments between lambs. The latent 
period shape and mean posteriors are plotted in blue for in-contact lambs and in orange for inoculated. The 
model with a combined latent period distribution is plotted in grey. The shaded areas indicate the 95% highest 
posterior density intervals and priors are plotted as grey dashed lines.
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Using non-informative priors did not greatly affect the posterior estimates for any of the model parameters, 
except for the shape parameter for the infectious period (kI) which was much higher (posterior mean: 22.9; 95% 
HPDI: 4.8–56.1) (cf. Table 1).

FMDV in pigs.  Here the DIC strongly favoured the model with separate latent period distributions for the 
inoculated and contact-transmitted pigs (DIC = 78.0 compared with DIC = 100.2 for the model with a common 
latent periods). We found the latent period for contact-infection to be very short with a mean of 0.14 days, which 
is in agreement with previous observations35,38. The pigs inoculated in the bulb of the heel, however, have a longer 
latent period with a mean of 0.97 days.

As expected, given that all the unvaccinated pigs in these experiments became infected, our estimate of 
R0 = 8.54 (4.41, 14.9) is large and excludes the threshold value of R0 = 1. The marginal posterior distributions for 
the model parameters are plotted in Fig. 4 and summarised in Table 1. The inferred infection times are shown in 
Fig. 5. The short latent periods and rapid transmission make conclusions about who infected whom difficult to 
draw. However, it is clear that some of the C1 pigs in both experiments were infected by other C1 pigs rather than 
the inoculated pigs to which they were initially exposed (Fig. 5). Similarly, some of the C2 pigs could have been 
infected by other C2 pigs rather than the C1 pigs.

When non-informative priors were used, the posterior estimates for the mean latent period (for both inoc-
ulated and contact challenged pigs), the mean infectious period and the transmission parameter did not differ 
greatly from those obtained using informative priors. However, the shape parameters for the distributions were 
much higher (posterior means (95% HPDI) of 48.6 (2.2–97.3), 5.5 (0.6–16.8) and 48.5 (9.4–95.9) for the latent 
period for contact challenged pigs, for the latent period for inoculated pigs and for the infectious period, respec-
tively) (cf. Table 1).

For vaccinated pigs, we estimated R0 to be 1.7 (0.74, 2.92). The effect of vaccination on R0 is clearly shown in 
Fig. 4, with a difference in posterior medians of 6.84 and non-overlapping HPDIs. The model parameters for the 
vaccinated pigs are plotted in Supplementary Fig. S5 and summarised in Table 1. The inferred infection times are 
plotted in Supplementary Fig. S6. A similar pattern of who infected whom is seen as that in the unvaccinated pigs 
(cf. Figure 5), but the reduced rate of spread provides greater evidence for transmission within groups of pigs (i.e. 
C1 to C1 or C2 to C2).

Figure 3.  Inferred infection times for the FMDV in lambs transmission experiment. Orange violin plots 
showing the densities of the inferred infection times for the contact lambs assuming a common latent period 
(top panel) or separate latent periods (bottom panel) for inoculated and contact-infected lambs. The black 
circles and bars denote the posterior median and the 95% highest posterior density interval. The inferred 
cumulative probability of animals being infectious at each time point are shown in blue.
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ASFV in pigs.  The model with separate latent periods for the inoculated and contact-infected pigs was again 
preferred (DIC = 215.6 compared with DIC = 248.9 for the model with a common latent period distributions). 
The difference in latent periods of 4.9 days is clearly substantial, as can be seen in Fig. 6. Transmission parameters 
for direct and indirect contact were estimated, showing that transmission within pens occurs at a much higher 
rate than between pens. Our estimates of R0 for both routes of transmission are well above the critical threshold of 
R0 = 1, suggesting that limiting direct contact would not be enough to prevent an outbreak (Table 1).

The infection times for each in-contact pig are shown in Fig. 7. For the two experiments in which there were 
only within-pen contacts the in-contact pigs were infected by the inoculated pigs. For the two experiments in 
which there were both within- and between-pen contacts (rooms B and C), the within-pen contacts were typi-
cally infected by the inoculated pigs. In room B the between-pen contacts were also most likely infected by the 

Figure 4.  Epidemiological parameters for foot-and-mouth disease virus (FMDV) in pigs. Marginal posterior 
distributions for each parameters inferred from the FMDV transmission experiments between unvaccinated 
pigs (top panel). The latent period shape and mean posteriors are plotted in blue for in-contact pigs and in 
orange for inoculated. The shaded areas indicate the 95% highest posterior density intervals and priors are 
plotted as grey dashed lines. Posterior density plots of R0 for vaccinated pigs in red and unvaccinated pigs in 
blue (bottom panel), with the shaded areas representing the 95% highest-posterior density interval. The dashed 
black line indicates the threshold value of R0 = 1.
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inoculated pigs, though it is possible one was infected by the within-pen contacts. By contrast, in room C the 
infection times suggest that two of the between-pen contacts were infected by inoculated pigs, while the remain-
ing two were infected by the within-pen contacts.

Using non-informative priors for the model parameters did not greatly affect the posterior estimates for the 
mean latent periods (in both inoculated and contact animals). However, the shape parameter for the latent peri-
ods were much higher (contact challenged pigs: 36.3 (14.7–64.7); inoculated pigs: 59.7 (12.2–98.1)) (cf. Table 1). 
In addition, the estimates for the transmission parameters were also higher, markedly so for within-pen transmis-
sion (within-pen: 33.2 (4.0–77.1); between-pen: 1.4 (0.5–2.9)) (cf. Table 1).

Discussion
In this study we have used a Bayesian framework to infer key epidemiological parameters from transmission 
experiment data. We detailed a generic form of the model that explicitly accounts for many of the issues inherent 
to such data, namely that the infection times and latent and infectious periods are not directly observed and that 
the infectious periods may also be censored. We also showed the flexibility of this approach by adapting the model 
to three different experimental designs.

To check the inferences made using our Bayesian framework, especially regarding the unobserved infection 
times and latent periods, we fit the model to synthetic data. This has the advantage that we have complete infor-
mation when generating the synthetic data set, allowing us to compare the inferred infection times with those 
known from the simulations. For two scenarios we demonstrated that our methods do indeed infer infection 
times correctly (i.e. the actual infection times lie in the 95% HPDI) (Supplementary Figs S1 and S3) and without 
any obvious biases (Supplementary Figs S2 and S4), giving us some confidence that the infection times we infer 
from the experimental data are realistic. In addition, our methods also allow objective identification of a differ-
ence in latent periods between inoculated and contact-infected animals when one is present.

In the studies on FMDV transmission between lambs, six of the inoculated lambs’ OPF tested positive for 
virus at the end of the experiment, meaning transmission could still occur, although with very low probability39. 
This would potentially violate the assumption that the final size of the epidemic had been reached. As a result 
R0 would be underestimated by the FS method (R0 = 1.14) and overestimated by the GLM method (R0 = 2.22)4. 
Indeed, our estimate is somewhere between these values: posterior median R0 = 1.43. As all animals in the experi-
ments using FMDV or ASFV in pigs became infected, the FS method does not provide usable estimates of R0, with 
R0 = ∞ being published in the previous analysis of the data for FMDV in pigs11. In addition, the FS method was 

Figure 5.  Inferred infection times for the FMDV in pigs transmission experiments. Orange violin plots 
showing the densities of the inferred infection times for the unvaccinated contact pigs. The black circles and 
bars denote the posterior median and the 95% highest posterior density interval. The inferred cumulative 
probability of animals being infectious at each time point are shown in blue.
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unable to identify a significant impact of vaccination on FMDV in pigs11, whereas we showed a significant reduc-
tion in R0 for vaccinated compared with unvaccinated pigs (Table 1; Fig. 4). This helps demonstrate a strength of 
the Bayesian approach in that we can combine data from independent sources and construct informative priors, 
restricting inferences to biologically reasonable space. Furthermore, these results can be readily updated with data 
from any future experiments as they become available.

The importance of accounting for censored infectious periods is made particularly clear with the study on 
ASFV, where all pigs had to be euthanized on welfare grounds. This means it is not possible to infer infectious 
periods from the experimental results alone. In the previous analysis they were assumed to be normally distrib-
uted (mean ± standard deviation) for either 4.50 ± 0.75 days or 8.50 ± 2.75 days16. By contrast, our models were 
able to directly infer the parameters for gamma distributed infectious periods, finding the mean duration (poste-
rior median and 95% HPDI) to be 9.15 (6.68, 12.3) days.

The GLM method assumes latent periods to be fixed and known12. In the ASFV transmission experiments, 
three model variants with latent periods of 3, 4 and 5 days were fit16. The model assuming a latent period of 5 days 
was favoured by Akaike’s information criterion, whereas our equivalent model estimated the mean latent period 
to be 3.3 days. However, we found strong evidence suggesting that the infection route has a large effect, specifi-
cally that the mean latent period (posterior median and 95% HPDI) for intramuscular inoculation was 2.80 (2.30, 
3.33) days and for contact-infection was 6.08 (4.95, 7.21) days. A difference in latent periods for inoculated and 
contact-infected animals was also observed in both FMDV experiments, highlighting the need to account for the 
transmission route and to infer latent periods directly. The size of the effect may depend upon the site of inocu-
lation. The most marked difference we observed came in the FMDV in pigs experiments, where the inoculation 
was to the bulb of the heel. By contrast, the intranasal inoculation used in the FMDV in lambs experiments had a 
much reduced, and statistically non-significant, effect. Any differences are, of course, likely to be virus, dose and 
species specific, but should certainly be considered when analysing future experiments.

Although previous analyses of transmission experiments have included the unobserved infection times14,15, 
they have typically been treated simply as nuisance parameters. Yet the inferred infection times, when combined 
with information on which animals were infectious at which times, can provide insights into who infected whom 
(Figs 3, 5 and 7). This is particularly evident in the FMDV in lambs and in the ASFV in pigs experiment. In the 
latter, for example, we can identify two phases of infection in the rooms (B and C) including both within- and 

Figure 6.  Epidemiological parameters for African swine fever virus (ASFV) in pigs. Marginal posterior 
distributions for each parameter inferred from the ASFV transmission experiments. The latent period shape 
and mean posteriors are plotted in blue for in-contact lambs and in orange for inoculated. The transmission 
parameter and R0 posteriors are plotted in purple for within-pen transmission and in green for between-pen 
transmission. The shaded areas indicate the 95% highest posterior density intervals and priors are plotted as 
grey dashed lines.
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between-pen contacts, though this is clearest for room C (Fig. 7). In the first wave, the inoculated pigs infect the 
within-pen contact animals and, in the second wave, the within-pen contact animals infect the between-pen 
contacts. Linking the inferences about infection times with inferences from viral sequencing of samples from the 
infected animals40,41 has the potential to help resolve transmission pathways or, alternatively, to provide a separate 
confirmation of who infected whom.

In addition to providing insights into who infected whom, the inferred infection times can also help inform 
transmission mechanisms. For example, in the FMDV in lambs experiment the times at which the contact ani-
mals were inferred to become infected (Fig. 3) correlate with the peak viral titre in OPF for the lambs that were 
the probable source of infection (see Table 2 in ref.4). For example, the contact lamb (9769) which may have 
transmitted to its room-mate (9893) (Fig. 3) had a higher viral titre than either of the inoculated lambs in the 
room, providing evidence that this was the more likely route of infection. Finally, the infection times indicate that 
transmission occurred before the onset of clinical signs in the donor lambs, which is consistent with observations 
from the field during the 2001 epidemic in the United Kingdom42. This contrast with cattle, where a majority 
of infectiousness occurs after clinical onset43. Although the patterns of who infected whom are less clear in the 
FMDV in pigs experiments, there is still some evidence that transmission is correlated with peak viral titre in OPF 
(see Table 3 in ref.11; cf. Figure 5 and S6).

The issue with being unable to observe infection times stems directly from the experimental design, where 
the emphasis has been on estimating total transmission rates in groups of animals over extended periods of 
time. An alternative approach, used in transmission experiments of FMDV in cattle43, is to focus on individual 
transmission events in a series of short challenges at specific time-points post infection. With a range of samples 
being taken regularly, it is possible to quantify the relationship between the within-host dynamics and the actual 
transmission potential44. In the specific case of FMDV in cattle, the use of virus detection in nasal fluid, blood 
or OPF as proxies for infectiousness, instead of the direct occurrence of transmission itself, led to very different 
estimates of latent and infectious periods43. The benefits of this more complicated design must be weighed against 
the increased labour and logistical issues involved with using and moving many more animals. The methodology 
we present in this paper goes some way to reduce the gap in information that comes with the cheaper and easier 
experimental designs.

Our models have only used data on whether the samples tested positive or negative for virus presence, assum-
ing that the animals all have constant and equal infectiousness throughout their infectious period. As there are 
often data available quantifying the viral load in each animal4,11, it would be possible to design models to relax 

Figure 7.  Inferred infection times for the ASFV in pigs transmission experiment. Orange violin plots showing 
the densities of the inferred infection times for the contact pigs (WP: within-pen contacts; BP: between-pen 
contacts). The black circles and bars denote the posterior median and 95% highest posterior density interval. 
The inferred cumulative probability of animals being infectious at each time point are shown in blue.
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this assumption. One approach kept each animal’s infectiousness constant but with a power-law dependency 
upon the peak level of viraemia13. A time-dependence could also be introduced, for example by assuming some 
functional form with parameter(s) to be estimated45. We have opted against this additional complexity in order 
to limit the computational expense of within-farm outbreak simulations, which can be particularly important for 
larger scale models46.

The proper quantification of the uncertainty in epidemiological parameters is crucial for further modelling 
work, particularly when scaling upwards for larger-scale stochastic simulations of disease outbreaks. Our work 
has shown that some of the assumptions on latent periods made in existing models of national-scale epidemics, 
for example, fixed at 4 or 5 days for FMDV in sheep and cattle47–49, can be improved upon. Explicit modelling of 
the within-farm dynamics, although more computationally-intensive, can replace such assumptions and provide 
more biologically robust conclusions.

One of the main goals of epidemic modelling is to inform policy on optimum control strategies47 and an 
important consideration with any such strategy would be vaccination48. It is extremely important to know how 
vaccinated animals respond to challenge, i.e. the level of protection provided by the vaccine, the duration of any 
protection, and any effects on onward transmission should a vaccinated animal become infected. Vaccination 
trials often follow the same procedures as we have described4,8,9,11, and so our model framework can be eas-
ily adapted to explore such data and provide inferences on the same epidemiological parameters required for 
modelling.
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