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Exploration and recency as 
the main proximate causes 
of probability matching: a 
reinforcement learning analysis
Carolina Feher da Silva  1, Camila Gomes Victorino2, Nestor Caticha3 & Marcus Vinícius 
Chrysóstomo Baldo  4

Research has not yet reached a consensus on why humans match probabilities instead of maximise 
in a probability learning task. The most influential explanation is that they search for patterns in the 
random sequence of outcomes. Other explanations, such as expectation matching, are plausible, but 
do not consider how reinforcement learning shapes people’s choices. We aimed to quantify how human 
performance in a probability learning task is affected by pattern search and reinforcement learning. 
We collected behavioural data from 84 young adult participants who performed a probability learning 
task wherein the majority outcome was rewarded with 0.7 probability, and analysed the data using 
a reinforcement learning model that searches for patterns. Model simulations indicated that pattern 
search, exploration, recency (discounting early experiences), and forgetting may impair performance. 
Our analysis estimated that 85% (95% HDI [76, 94]) of participants searched for patterns and believed 
that each trial outcome depended on one or two previous ones. The estimated impact of pattern search 
on performance was, however, only 6%, while those of exploration and recency were 19% and 13% 
respectively. This suggests that probability matching is caused by uncertainty about how outcomes are 
generated, which leads to pattern search, exploration, and recency.

In our lives, we frequently make decisions, some of which have lifelong consequences for our well-being. It is 
thus essential to identify the environmental and neurobiological factors that promote suboptimal decisions. 
Accomplishing this goal, however, can be hard. Sometimes decades of research are not enough to produce a 
consensus on why people often make poor decisions in certain contexts. One example is the binary probability 
learning task. In this task, participants are asked to choose repeatedly between two options— for instance, in each 
trial they are asked to predict if a ball will appear on the left or on the right of a computer screen— and if their pre-
diction is correct, they receive a reward. In each trial, the rewarded option is determined independently and with 
fixed probabilities; for instance, the ball may appear on the left with 0.7 probability or on the right with 0.3 proba-
bility. Usually one option, called the majority option, has a higher probability of being rewarded than the other. A 
typical probability learning task consists of hundreds or thousands of trials, and as this scenario repeats itself, all 
participants must learn is that one option is more frequently rewarded than the other. Indeed, the optimal strat-
egy, called maximising, is simply choosing the majority option every time. Human participants, however, rarely 
maximise; their behaviour is usually described as probability matching, which consists of choosing each option 
with approximately the same probability it is rewarded1–3. We would thus expect a participant performing our 
example task to choose left in about 70% of the trials and right in about 30% of trials, instead of optimally choos-
ing left in all trials. Probability matching is suboptimal in this example because it leads to an expected accuracy of 
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30% × 30% + 70% × 70% = 58%, while maximising leads to an expected accuracy of 70%. (More generally, if the 
majority option is rewarded with probability p, maximising leads to an expected accuracy of p, while probability 
matching leads to an expected accuracy of p2 + (1 − p)2, which is strictly less than p, because L ≥ 0 implies L ≥ 
0.) Since the 1950s, a huge number of studies have attempted to explain why people make suboptimal decisions in 
such a simple context, and many plausible causes have been proposed, but no consensus has yet been reached on 
how much each cause contributes to probability matching1–3.

Perhaps the most influential proposal is that probability matching reflects the well-known human tendency 
to see patterns in noise:4 people may not realise that each outcome is randomly and independently drawn, but 
may believe instead that the outcome sequence follows a pattern, which they will then try to figure out2,5–11. This 
pattern-search hypothesis is supported by much experimental evidence5–9. For instance, when researchers altered 
the outcome sequence in a probability learning task to make it look more random (by, oddly, making it less ran-
dom), participants chose the majority option more frequently and performed better6. Moreover, participants who 
matched probabilities more closely in the absence of a pattern tended to achieve greater accuracy in the presence 
of one9.

It is not clear, however, how pattern search leads to probability matching. Wolford et al.6 claimed that “if there 
were a real pattern in the data, then any successful hypothesis about that pattern would result in frequency match-
ing.” This assumes participants search for patterns by making predictions in accordance with plausible patterns. 
Koehler and James2, however, wondered why participants would employ such a strategy if they could, to advan-
tage, maximise until a pattern was actually found. Maximising while searching for patterns, besides guaranteeing 
that a majority of rewards would be obtained, is also an effortless strategy12 that allows participants to dedicate 
most of their cognitive resources to pattern search2.

Patterns and Markov chains. Plonsky et al.13 proposed an alternative explanation as to why searching for 
complex patterns leads to probability matching: it creates a tendency to base decisions on small samples of previ-
ous outcomes. This assumes a general model of pattern search that we will now explain in detail, since it was also 
adopted in our study. Let us first define a temporal pattern as a connection between past events and a future one, 
so that the latter can be predicted with greater accuracy whenever the former are known. Suppose, for instance, 
that in each trial of a task, participants are asked to predict if a target will appear on the left or on the right of a 
computer screen. If the target appears alternately on the left and on the right, participants who have learned this 
pattern can correctly predict the next location of the target whenever they know its previous location.

An event may be more or less predictable from previous events depending on the probability that links their 
occurrences. For instance, if the probability is 1 that the target will appear on one side in the next trial given that 
it was on the other side in the previous trial, the target will always alternate between sides. If this probability is 
greater than 0.5 but less than 1, the target will generally alternate between sides but may also appear more than 
once on the same side sequentially.

In general, the probability that each event will occur may be conditional on the occurrence of the L ≥ 0 
previous events. Formally, this sequence of events constitutes a Markov chain of order L. In a typical probability 
learning task, for instance, the outcome probabilities do not depend on any previous outcomes (L = 0). In an 
alternating sequence, each outcome depends on the previous one (L = 1). As outcomes depend on an increasing 
number of past ones, more complex patterns are generated. It has been shown that participants can implicitly 
learn to exploit outcome dependencies at least as remote as three trials14,15.

In explicit pattern learning tasks, it is believed that relevant information about past events is stored in working 
memory to allow prediction of the next event, while previously learned relationships between events are stored 
in long-term memory. To understand how predictive events are selected to enter working memory, a number 
of highly complex “Gating” models (e.g.16–18) were proposed. They assume that working memory elements are 
maintained or updated according to reinforcement learning rules. We will, however, simply assume that working 
memory stores the previous k outcomes, where k ≥ 0 depends on the perceived pattern complexity, and that 
participants try to learn the optimal action after each possible history of k outcomes. For instance, if working 
memory stores just the previous outcome (k = 1) and the outcome sequence generally alternates between left and 
right (L = 1), participants will eventually learn that left is the optimal prediction after right and right is the opti-
mal prediction after left. In general, participants must store at least the L previous outcomes in working memory 
to learn the pattern in a Markov chain of order L, i.e., it is necessary that k ≥ L.

Complex pattern search relies on small samples. Based on this general model of pattern search, 
Plonsky et al.13 proposed two specific models, the CAB-k and CAT models. The CAB-k model is the simplest one: 
In each trial, a simulated CAB-k agent considers the previous k outcomes and selects the action with the highest 
average payoff in the past, taking into account only those trials that followed the same k outcomes. In the example 
of the alternating pattern, a CAB-k agent with k = 1 will eventually learn to predict left after right (and vice versa), 
because predicting left had the highest average payoff in past trials that followed right (and vice versa).

In probability learning tasks, the CAB-k model with large k predicts probability matching13. This is because 
a large k generates long histories, which tend to occur more rarely than short ones (e.g., in a sequence of binary 
digits, 111 is more rare than 11). Thus, a CAB-k agent will base each decision only on the small number of trials 
that followed the rare past occurrences of the current history. More generally, making decisions based on only a 
small number of trials generates a bias toward probability matching. If, for example, participants were to always 
choose the most frequent outcome of the previous three trials and choosing left is rewarded with 0.7 probability, 
participants would choose left with 0.784 probability13. Indeed, perfect probability matching is achieved when 
an agent adopts a strategy known as “win-stay, lose-shift,” which consists of repeating a choice in the next trial if 
it resulted in a win or switching to the other option if it resulted in a loss. “Win-stay, lose-shift” may be used by 
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participants with low working memory capacity9. It results in probability matching because in each trial the agent 
bases its decisions only on the previous outcome and simply predicts that trial’s outcome; thus, its choices and 
trial outcomes have the same probability distribution.

Plonsky et al.13 proposed that human participants search for complex patterns and make decisions based on 
a small number of trials. To support this proposal, they demonstrated that the CAT model, a variation of the 
CAB-k model, can reproduce a novel effect they detected in experimental data from a repeated binary choice task, 
“the wavy recency effect;” in particular, they demonstrated that pattern search can generate a “nonmonotonic 
recency effect” that is part of the wavy recency effect. They designed a task wherein selecting one of the options, 
the “action option,” resulted in a gain with 0.9 probability and in a loss with 0.1 probability, and selecting the other 
option always resulted in a zero payoff. They observed that following a loss, the frequency with which participants 
chose the action option actually increased above the mean for several trials, then decreased below the mean. They 
reproduced this effect using the CAT model with k = 14. With this large k, the negative effect of a rare loss on a 
CAT agent’s choice only occurs after the history of 14 outcomes that preceded the loss recurs.

However, the large k values proposed by Plonsky et al.13 to explain probability matching and the wavy recency 
effect in their behavioural data are inconsistent with the estimated storage capacity of the human working mem-
ory, which is of about four elements19. Plonsky et al.13 argued that their estimates are plausible because humans 
can learn long patterns. For instance, humans can learn the pattern 001010001100 of length 129. Such a feat, 
however, does not imply that k ≥ 12; as will be demonstrated in Section “Pattern learning by MPL agents,” an 
agent can perfectly predict this pattern’s next digit given the previous five, which merely implies k ≥ 5. Similarly, 
in another study, researchers found evidence that in an implicit sequence learning task the participants’ actions 
were influenced by events at least five trials back20, but this does not imply that in an explicit pattern learning task 
participants can store more than five previous results in working memory. In general, studies of implicit pattern 
learning measure only the reaction time to the target’s appearance rather than the prediction accuracy, and it is 
usually not possible to determine if participants learned the complete pattern or extracted a simpler pattern that 
could still predict sequence elements with above-chance accuracy. Moreover, even if participants can store more 
results than the estimated capacity of working memory— by storing short sequences of results as “chunks,” for 
instance— the resulting learning problem may be intractable. The number of histories an agent must learn about 
increases exponentially with k, and this creates a critical computational problem known as the “curse of dimen-
sionality”17. The value k = 14 generates 214 = 16384 distinct histories of past outcomes for participants to learn 
about. If each history is equally likely to occur, learning the pattern would only be feasible if participants had tens 
of thousands of trials to learn from. In the cited study13, they only had a hundred.

Expectation matching. Subsequently, Plonsky and Erev21 proposed the CATIE model, which introduces 
additional decision making mechanisms such as inertia and explains the same findings with a lower working 
memory usage. Moreover, both probability matching and the wavy recency effect can be explained by another 
proposed mechanism, known as expectation matching2. According to this proposal, probability matching arises 
when participants use intuitive expectations about outcome frequencies to guide their choices2,22,23. Participants 
intuitively understand that if, for example, outcome A occurs with 0.7 probability and outcome B with 0.3 proba-
bility, in a sequence of 10 trials outcome A will occur in about 7 trials and outcome B in about 3. Instead of using 
this understanding to devise a good choice strategy, participants use it directly as a choice heuristics to avoid 
expending any more mental energy on the problem; that is, they predict A in about 7 of 10 trials and B in about 3. 
There is compelling evidence that expectation matching arises intuitively to most participants, while maximising 
requires deliberation to be recognised as superior; e.g., when undergraduate students were asked which strategy, 
among a number of provided alternatives, they would choose in a probability learning task, most of them chose 
probability matching22,24.

Expectation matching can also explain the wavy recency effect. In the task devised by Plonsky et al.13, losses 
occurred with 0.1 probability. If losses were to occur at regular intervals, the next loss would be expected to occur 
10 trials after the previous loss, and indeed participants were most likely to select the action option a few trials 
after a loss and least likely about 10 or more trials after a loss. It is also well known that people have misconcep-
tions about sequences of random independent events, and many believe that when one event occurs successively 
in a binary sequence, it will increase the probability that the other event will occur–the gambler’s fallacy25,26. It is 
thus possible that, soon after a loss occurred, participants did not expect another to occur so soon and thought 
it safe to choose the action option, which caused the initial positive effect on choice frequency; as time went on, 
though, they might have believed a loss was about to recur and become more and more afraid of choosing the 
action option, which caused the delayed negative effect on choice frequency.

Most evidence for expectation matching, however, comes from experiments that employed tasks without 
trial-by-trial reinforcement and whose instructions described the process of outcome generation2. Participants 
would, for instance, be asked to guess all at once a colour sequence generated by rolling ten times a ten-sided die 
with seven green faces and three red faces27. In a probability learning task, however, participants do not know 
how outcomes are generated; they have to figure that out. More importantly, the probability learning task is a 
reinforcement learning task. Again and again, participants select an action and receive immediate feedback about 
their choices. When they make a correct choice, they are rewarded with money; otherwise, they fail to win money 
or, depending on the task, they lose money. Indeed, prediction accuracy improves with longer training and larger 
monetary rewards28 or when participants are both rewarded for their correct choices and punished by their incor-
rect ones, instead of only one or the other29. In reinforcement learning tasks, as responses are reinforced, they tend 
to become more habitual30 and thus less affected by conscious choice heuristics such as expectation matching.
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Reinforcement learning. A better explanation for probability matching in probability learning tasks may 
thus be one that takes into account how reinforcement learning shapes people’s choices. Already in the 1950s, 
probability learning was tentatively explained by a number of stochastic learning models, with updating rules 
based on reinforcement, which under some conditions predicted asymptotic probability matching (e.g.31,32).

More recently, reinforcement learning models based on modern reinforcement learning theory33, such as 
Q-Learning34, SARSA35, EVL36, PVL37, and PVL238, have been used to describe how humans learn in similar 
tasks, such as the Iowa, Soochow, and Bechara Gambling Tasks36–39 and others (e.g.30,40). Reinforcement learning 
models that incorporate representations of opponent behaviour have successfully explained probability matching 
in competitive choice tasks41. These models do not only describe many behavioural findings accurately but are 
also biologically realistic in that the signals they predict correspond closely to the responses emitted by the dopa-
mine neurons of the midbrain (see42–45 for reviews).

Reinforcement learning models36–38 assume that agents compute the expected utility of each option, not their 
probabilities. They are thus incapable of explicitly matching probabilities and cannot explain why participants 
would consciously or unconsciously try to do so. The term “probability matching,” however, does not imply that 
participants are trying to match probabilities as a strategy, only that their average behaviour matches them approx-
imately. As previously discussed, probability matching is achieved when an agent with no knowledge of the out-
come probabilities adopts the “win-stay, lose-shift” strategy or searches for very complex patterns. In this work, 
therefore, we will focus not on why people match probabilities in a probability learning task, but more broadly on 
why they fail to perform optimally.

Exploration, fictive learning, recency, and forgetting. Reinforcement learning models suggest many 
mechanisms that may contribute to a suboptimal performance in probability learning tasks, such as exploration. 
For a reinforcement learning agent to maximise its expected reward, it must choose the actions that produce the 
most reward. But to do so, it must first discover what actions produce the most reward. If the agent can only learn 
from what it has experienced, it can only discover the best actions by exploring the entire array of actions and 
trying those it has not tried before. It follows, then, that to find the optimal actions, the agent must not choose 
the actions that have so far produced the most reward. A dilemma is thus created: on one hand, if the agent only 
exploits the actions that have so far produced the most reward, it may never learn the optimal actions; on the 
other hand, if it keeps exploring actions, it may never maximise its expected reward. To find the optimal strategy, 
then, an agent must explore actions at first but progressively favour those that have produced the most reward33. 
In artificial intelligence planning, exploration is usually achieved by giving agents a propensity for acting at ran-
dom. This is also how exploration is commonly implemented by cognitive models of decision making, even 
though it is recognised that people may not always explore at random.

Moreover, animals are not limited to learning from what they have experienced; they can also learn from 
what they might have experienced46. Reinforcement learning models that only learn from what they have experi-
enced are of limited utility in research, and it is often desirable to add to such models “fictive” or “counterfactual” 
learning signals— the ability to learn from observed, but not experienced situations. Fictive learning can speed 
up learning and make models more accurate at describing biological learning. Fictive learning signals predict 
changes in human behaviour and correlate with neuroimaging signals in brain regions involved in valuation and 
choice and with dopamine concentration in the striatum47–55. In particular, in a probability learning task, when 
participants make their choices, they learn both the payoff they got and the payoff they would have gotten if they 
had chosen the other option. Through fictive learning, they can eliminate the need to explore: they can discover 
the optimal action while exploiting the action that has been so far the most rewarding.

Human learning, however, may include both fictive learning and exploration. Even though fictive learning 
supersedes exploration in a probability learning task, exploration is a core feature of cognition at various lev-
els since cognition’s evolutionary origins56. Exploratory behaviour may be triggered, perhaps unconsciously, by 
uncertainty about the environment, even in situations it cannot uncover more rewarding actions. In a probability 
learning task, even after participants have detected the majority option, they may still believe they can learn more 
about how outcomes are generated and thus engage in exploration, choosing the minority option and decreasing 
their performance. This might happen if, for instance, participants believe that there exists a strategy that will 
allow them to perfectly predict the outcome sequence. As long as they have not achieved perfect prediction, they 
might keep trying to learn more and explore instead of exploit. And indeed, when participants were frequently 
told they would not be able to predict all the outcomes, their performance improved28. The same was observed 
when the instructions emphasised simply predicting a single trial over predicting an entire sequence of trials57. 
Exploration may thus be a reason why participants do not maximise.

The belief that perfect prediction is possible may also lead to the belief that the environment is non-stationary, 
i.e., that the Markov transition matrix that generates the outcome sequence is not constant3. In reinforcement 
learning, agents adapt to a non-stationary environment by implementing recency, a strategy in which behaviour is 
more influenced by recent experiences than by early ones. Recency is beneficial in a non-stationary environment 
because early information may no longer be relevant for late decisions33. In a probability learning task, payoff 
probabilities are constant, and early information is relevant for all later decisions, but participants may come to 
suspect otherwise as they try to predict outcomes and often fail.

Another mechanism that impairs performance is forgetting, or learning decay. An agent’s knowledge regard-
ing each action’s expected utility may decay with time, which in a stationary environment worsens performance. 
This is distinct from recency, because recency gives more weight to new information relatively to old information, 
but forgetting just destroys old information. Forgetting can interact with pattern search to slow down learning in 
the short term and impair performance in the long term. An agent that does not search for patterns needs to learn 
only the utility of each option. In every trial, it may forget some past knowledge, but it also acquire new knowl-
edge from observing which option has just been rewarded. An agent that searches for patterns, however, must 
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store information about each possible history of past outcomes. In a trial, it will only acquire new information 
about one of those histories, the one that has just occurred; meanwhile, knowledge about all the other histories 
will decay. In particular, if the agent believes that each outcome depends on many past ones, it must learn the 
optimal prediction after many long histories. As long histories occur more rarely than short ones on average, 
knowledge about them will decay more often than increase, and the agent will have to constantly relearn what it 
has forgotten. It may thus never learn to maximise.

Objectives. There are thus many plausible mechanisms for probability matching, and it is possible that 
human performance is affected by more than one. It is still unknown to what extent each contributes to behaviour. 
In this study, our primary aim was to quantify the effects of pattern search, forgetting, exploration, and recency on 
human performance in a probability learning task.

Our secondary aim was to estimate k, a measure of working memory usage in pattern search, which deter-
mines how complex are the patterns people search for. This is important because, as discussed above, searching 
for complex patterns impairs performance by creating a tendency to make decisions based on few past obser-
vations13 and by interacting with forgetting. To our knowledge, only Plonsky et al.13 have attempted to estimate 
working memory usage in a reinforcement learning task, but when they used models in which pattern search was 
the main cause of suboptimal choices, they predicted large k values that lie beyond working memory capacity and 
generate extremely hard learning problems.

We collected behavioural data from 84 young adult participants who performed a probability learning task 
wherein the majority option was rewarded with 0.7 probability. We then analysed the data using a reinforcement 
learning model that searches for patterns in Markov chains, the Markov pattern search (MPL) model. We first 
compared the MPL model to the PVL model, a reinforcement learning model previously shown to perform better 
than many other models at describing the behaviour of healthy and clinical participants in the Iowa and Soochow 
Gambling Tasks37,38, and to the learning WSLS model58, based on the “win-stay, lose-shift” strategy. The MPL 
model generalises the PVL model by adding recency and pattern search to it (the PVL model already includes 
recency and exploration). It allowed us to estimate how many participants searched for patterns, how many pre-
vious outcomes they stored in working memory, and what was the impact of pattern search, exploration, recency, 
and forgetting on their performance. We also analysed our experimental data set for the presence of the non-
monotonic recency effect13, as it has been considered an evidence of complex pattern search, and tested whether 
the MPL could reproduce the observed results.

Methods
Eighty-four young adult human participants performed 300 trials of a probability learning task wherein the 
majority option’s probability was 0.7. Three learning models were then fitted to the data: the PVL model, which 
was previously proposed and validated37,38, the WSLS model39,58, and the MPL model, which is proposed here and 
generalises the PVL model by adding forgetting and pattern search. The three models were compared for their 
predictive accuracy using cross-validation. The MPL model was selected and simulated both to check if it can 
reproduce several aspects of the participants’ behaviour and to estimate how pattern search, exploration, forget-
ting, and recency influence a participant’s decisions in a probability learning task.

Participants. Seventy-two undergraduate dental students at the School of Dentistry of the University of São 
Paulo performed the task described below for course credit. They were told the amount of credit they would 
receive would be proportional to their score in the task, but scores were transformed so that all students received 
nearly the same amount of credit. Twelve additional participants aged 22–26 were recruited at the University of 
São Paulo via poster advertisement and performed the same task described below, except there was no break 
between blocks and participants were rewarded with money. Overall, our sample consisted of 84 young adult 
participants.

All participants were healthy and showed no signs of neurological or psychiatric disease. All reported normal 
or corrected-to-normal colour vision. Exclusion criteria were: (1) use of psychoactive drugs, (2) neurological or 
psychiatric disorders, (3) incomplete primary school, and (4) not finishing the experiment. No participants who 
finished the experiment were excluded.

All experimental protocols were approved by the Ethics Committee of the Institute of Biomedical Sciences 
at the University of São Paulo. The experiment was conducted in accordance with the Commitee’s directives for 
conducting research with human participants. Written informed consent was obtained from each participant.

Behavioural task. Participants performed 300 trials of a probability learning task. In each trial, two identical 
grey squares were presented on a white background and participants were asked to predict if a black ball would 
appear inside the left or right square (Fig. 1). They pressed A to predict that the ball would appear on the left and 
L to predict that it would appear on the right. Immediately afterwards, the ball would appear inside one of the 
squares along with a feedback message, which was “You won 1 point/5 cents” if the prediction was correct and 
“You won nothing” otherwise. The message remained on the screen for 500 ms, ending the trial.

Trials were divided into 5 blocks of 60 trials with a break between them. The probabilities that the ball would 
appear on the right or on the left were fixed and independent of previous trials; they were 0.7 and 0.3 respectively 
for half of the participants and 0.3 and 0.7 for the other half. Before the task started, the experimenter explained 
the instructions and the participants practised them in a three-trial block. The participants did not receive any 
information about the structure of outcome sequences in advance.
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Notation. The following notation will be used below: N is the number of participants (84) or simulated agents; 
for each trial t, 1 ≤ t ≤ 300, the ith participant’s prediction is yi(t) and the trial outcome is xi(t), where 0 and 1 are 
the possible outcomes; xi and yi are binary vectors containing all outcomes and predictions respectively for the ith 
participant. The majority outcome is 1, i.e., Pr[x(t) = 1] = 0.7 and Pr[xi(t) = 0] = 0.3, thus 1 corresponded to the 
left square for half of the participants and to the right square for the other half.

Analysis. To measure how likely participants were to choose the majority option and thus determine if they 
adopted a probability matching or maximising strategy, we calculated their mean response, which is equal to the 
frequency of choice of the majority option, since the majority option is 1 and the minority option is 0.

It has been claimed that in probability learning tasks many participants use a “win-stay, lose-shift” strategy9,39. 
Strict “win-stay, lose-shift” implies that in each trial t > 1 the agent’s prediction y(t) is equal to the outcome of 
the previous trial x(t − 1). To check if our participants employed this strategy, we measured the proportion of 
responses made in accordance with “win-stay, lose-shift” by calculating the cross-correlation c(x,y) between the 
sequences y and x in the last 100 trials of the task, given by:

∑= − − − .
=

c x y x t y t( , ) 1
100

[2 ( 1) 1][2 ( ) 1]
(1)t 201

300

The cross-correlation is the average of [2x(t − 1) − 1][2y(t) − 1], which is equal to 1 if x(t − 1) = y(t) and to 
−1 if x(t − 1) ≠ y(t). If c(x,y) = 1, all predictions are the same as the previous outcome, which identifies strict 
“win-stay, lose-shift,” and if c(x,y) = −1, all predictions are the opposite of the previous outcome, which identifies 
strict “win-shift, lose-stay”.

We also investigated the “nonmonotonic recency effect” observed by Plonsky et al.13. The task originally 
employed to investigate it had an option that resulted in a rare loss, and the task employed here did not, but it had 
option 1, which resulted in a gain with 0.7 probability and in a relative loss, corresponding to the missed oppor-
tunity of obtaining a gain, with 0.3 probability. It was thus possible we would also observe the nonmonotonic 
recency effect in our data set, and we tested for this possibility.

We adapted to our study the analysis method proposed by Plonsky et al.13: for every participant, trials were 
grouped according to the number of trials since the most recent x = 0 (rare) outcome; that is, for trial t, if trial 
t − n, n > 0, was the most recent trial with a 0 outcome, the number of trials since the most recent 0 outcome was 
n. For each participant i and each number of trials n, ci

n was the number of trials in the respective trial group and 
si

n the sum of all predictions y in those trials, or how many times participants chose 1. The distribution of si
n was 

Binomial(ci
n, πi

n), where πi
n was the probability of y = 1. For each n, the parameters πi

n were given a beta distribu-
tion with parameters an and bn, which were in turn given weak Half-Cauchy(0, 102) prior distributions. This sta-
tistical model was coded in the Stan modelling language59,60 and fitted to the data using the PyStan interface61 to 
obtain samples from the posterior distribution of model parameters from 4 chains of 30,000 iterations (warmup 
15,000). Convergence was indicated by ≤ .R̂ 1 1 for all parameters, and at least 100 independent samples per 
sequence were obtained62. For each n, the participants’ mean response an/(an + bn) was obtained, as well as its 95% 
high posterior density interval (HDI).

Pattern search involving the k previous outcomes generates a nonmonotonic recency effect in the data, such 
that the mean response after a 0 outcome in trial t should increase in trials t + 1 to t + k, decrease in trial t + k 
+ 1, then slowly increase13. Alternatively, a similar effect may be caused by expectation matching. If participants 
believed that 0 outcomes occurred regularly in the outcome sequence, they would have expected a 0 to occur 

Figure 1. Events in a trial.
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every 3 to 4 trials (with 1/3 ≈ 0.33 to 1/4 = 0.25 probability), because the probability of 0 was 0.3. According to 
this hypothesis, the mean response should decrease three or four trials after the last 0 outcome.

We ran this analysis both in the first 100 trials of the task and in the last 100, because the nonmonotonic 
recency effect was first detected in a 100-trial task13 and, if it was caused by expectation matching, it might exist 
only in the beginning of the task, since over time reinforced responses are expected to become more habitual and 
less affected by cognitive biases such as expectation matching.

Statistical models. Three learning models were fitted to the behavioural data: the PVL model37,38, the WSLS 
model39,58,63, and the MPL model. The MPL model generalises the PVL model by the addition of recency and 
pattern search.

PVL model. The PVL and PVL2 reinforcement learning models have been previously evaluated for their ability 
to describe the behaviour of healthy and clinical participants in the Iowa and Soochow Gambling Tasks37,38. They 
were compared to and found to perform better than many other reinforcement learning models and a baseline 
Bernoulli model, which assumed that participants made independent choices with constant probabilities. In this 
work, we adapted the PVL model to the probability learning task and used it as a baseline for comparison with the 
MPL model, which generalises the PVL model and is described next. The difference between the PVL and PVL2 
models is not relevant for our study, since it concerns how participants attribute utility to different amounts of 
gain and loss. Thus we will refer only to the PVL model. The adapted PVL model combines a simple utility func-
tion with the decay-reinforcement rule37,38,64 and a softmax action selection rule33.

In every trial t of a probability learning task, a simulated PVL agent predicts the next element of a binary 
sequence x(t). The agent’s prediction y(t) is a function of E0(t) and E1(t), the expected utilities of options 0 and 1. 
Initially, Ej(1) = 0 for all outcomes j ∈ {0, 1}. The probability p1(t) that the agent will choose option 1 in trial t is 
given by the Boltzmann distribution:

=
∑
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+
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θ θ− −
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e e
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where θ ≥ 0 is an exploration-exploitation parameter that models the agent’s propensity to choose the option 
with the highest expected utility. When θ = 0, the agent is equally likely to choose either option (it explores). 
Conversely, as θ → ∞ the agent is more and more likely to choose the option with the highest expected utility (it 
exploits). The probability of a PVL agent predicting 1 in trial t is, as Equation 2 indicates, a logistic function of 
E1(t) − E0(t) with steepness θ. If the difference E1(t) − E0(t) is 0, i.e., both options have the same expected utility, 
the agent is equally likely to choose 1 or 0 (p1(t) = 0.5); if it is positive, the agent is more likely to choose 1 than 0, 
and if it is negative, the agent is more likely to choose 0 than 1.

After the agent makes its prediction and observes the trial outcome x(t), it attributes a utility uj(t) to each 
option j, given by:

=





=
≠ .
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x t j
x t j
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All expected utilities are then updated as follows:

+ = +E t AE t u t( 1) ( ) ( ), (4)j j j

where 0 ≤ A ≤ 1 is a learning decay parameter, which combines both forgetting and recency.
In comparison with previous PVL and PVL2 model definitions37,38, we have made two changes to adapt this 

model to our task. The PVL and PVL2 models were previously used to study the Iowa and Soochow Gambling 
Tasks, in which participants may experience different gains and losses for their choices and only learn the out-
come of the choice they actually made. In our task, conversely, participants gained a fixed reward for all their cor-
rect predictions and never lost rewards; moreover, since outcomes were mutually exclusive, participants learned 
both the outcome of the choice they made and the outcome of the choice they could have made. To account for 
these differences between the tasks, we omitted the PVL features that deal with different gains and losses from the 
utility function and, following Schulze et al.41, added fictive learning to the decay-reinforcement rule.

MPL model. The Markov pattern learning (MPL) model uses reinforcement learning mechanisms to learn pat-
terns in Markov chains. For a demonstration of how this model works, see Section “Pattern learning by MPL 
agents” below.

The MPL model includes the same two parameters per participant as the PVL model, A and θ, which measure 
forgetting and exploration respectively, and adds two more parameters, k and ρ, which measure working memory 
usage in pattern search and recency respectively. Indeed, the MPL model with k = 0 (no pattern search) and ρ = 1 
(no recency) is identical to the PVL model. It is also equivalent to the CAB-k model13 with A = 1 (no forgetting), 
ρ = 1 (no recency), and θ → ∞ (no exploration).

In a probability learning task, each trial outcome x(t) is independently generated with fixed probabilities for 
every t and thus the outcome sequence constitutes a Bernoulli process. The MPL model, however, assumes that 
each outcome depends on the k previous outcomes, i.e., the outcome sequence is a Markov chain of order k. For 
every possible history (subsequence) η of k previous outcomes, the MPL agent estimates the utilities of predicting 
0 or 1 in the next trial. For k = 2, for instance, the agent estimates the utilities of predicting 0 or 1 depending on 
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whether the previous two outcomes were η = 00, η = 01, η = 10, or η = 11. In other words, it learns by reinforce-
ment the Markov transition matrix of order k assumed to have generated the outcome sequence.

The MPL model’s utility function is identical to that of the PVL model (see above). Then, for every trial t and 
history η of k outcomes, the MPL agent computes option j’s expected utility ηE t( )j . The expected utility of each 
option depends on the history of k outcomes that preceded it, and for every trial the MPL agent computes 2k 
expected utilities for each option, since there are 2k distinct histories of k outcomes. For instance, if k = 1, in each 
trial and for each option the agent computes two expected utilities, one if the previous outcome was 1 and another 
if it was 0. Initially, ηE (1)j  = 0 for all options j and histories η.

The agent’s next choice y(t) is a function of ηE t( )1  − ηE t( )0 . where η is the observed history, i.e., the k previous 
outcomes that actually occurred: {x(t − k), x(t − k + 1),…, x(t − 1)}. The probability p1(t) that the agent will 
choose option 1 in trial t is given by the Boltzmann distribution:

=
∑
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where θ ≥ 0 is the exploration-exploitation parameter.
After the agent makes its choice, all expected utilities referring to all histories and outcomes are updated as 

follows:

ρ η
+ =








+η
η

ηE t
A E t u t
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( 1)
( ) ( ) after history ,

( ) otherwise, (6)
j

j j

j

where 0 ≤ A ≤ 1 is a decay (forgetting) parameter and 0 ≤ ρ ≤ 1 is a recency parameter.
The A parameter is thus applied to all expected utilities associated with all possible histories, while the ρ 

parameter is only applied to the expected utilities associated with the history that actually occurred and the agent 
received new information about. Thus, the agent’s knowledge spontaneously decays at rate A, while early experi-
ences are overridden by the most recent information at rate ρ. A low ρ value is adaptive when the environment is 
non-stationary and early experiences become irrelevant to future decisions. Both A and ρ cause learning decay, 
but if k > 0, they have a distinct effect on performance, as demonstrated in Section “Predicted effect of pattern 
search, exploration, and recency on learning speed and mean response.” If k = 0, there is only one possible his-
tory (the null history), which precedes every trial, and therefore all expected utilities decay at rate 0 ≤ Aρ ≤ 1, in 
which case the MPL model is identical to the PVL model with learning decay Aρ.

Forgetting k combined with searching for complex patterns (large k) decreases performance. This is because 
the value −η ηE t E t( ) ( )1 0  only increases after history η, if 1 was the outcome. Whenever history η does not occur, 
on the other hand, −η ηE t E t( ) ( )1 0  decays at rate A, which decreases the probability of choosing the maximising 
option after history η. As k increases, longer histories are generated, which occur more rarely on average, provid-
ing many opportunities for −η ηE t E t( ) ( )1 0  to decrease and few for it to increase.

Table 1 demonstrates how an MPL agents learns a repeating pattern for two different parameter sets.

MPL parameter recovery. Since in this study we made conclusions about the participants’ strategies based on 
MPL model parameters, we first tested how much information about the parameters it was possible to extract 
from sequences of 300 predictions and outcomes generated by 10,000 simulated MPL agents. The agents had 
random parameters: k was drawn from a uniform distribution in the set {0, 1, 2, 3, 4, 5}, A and ρ were drawn from 
a uniform distribution in [0, 1], and θ was drawn from a uniform distribution in [0, 5]. For each agent, the result-
ing data were analyzed with a Bayesian model where the prior distributions of MPL parameters were the same 
distributions used to obtain them. Since the optimal way of updating a probability distribution with data is given 

MPL k = 1, A = 1, ρ = 1, θ → ∞ MPL k = 1, A = 0.9, ρ = 0.9, θ = 0.3

t

η = 0 η = 1

p1 x t

η = 0 η = 1

p1 xE0 E1 E0 E1 E0 E1 E0 E1

1 0 0 0 0 0.5 0 1 0 0 0 0 0.5 0

2 0 0 0 0 0.5 1 2 0 0 0 0 0.5 1

3 0 1 0 0 0.5 0 3 0 1 0 0 0.5 0

4 0 1 1 0 1 1 4 0 0.9 1 0 0.57 1

5 0 2 1 0 0 0 5 0 1.73 0.9 0 0.43 0

6 0 2 2 0 1 1 6 0 1.56 1.73 0 0.61 1

7 0 3 2 0 0 0 7 0 2.26 1.56 0 0.39 0

8 0 3 3 0 1 1 8 0 2.03 2.26 0 0.65 1

Table 1. MPL agents learn an alternating pattern. MPL agents learn a sequence of outcomes x generated by 
alternating deterministically between 0 and 1. The agent’s parameters are given in the first row. The p1 column 
gives the probability that the agent will respond 1 (it will respond 0 with probability 1 − p1). From trial t = 4 on, 
both agents have already learned the pattern. Henceforth, the agent with optimal parameters (left) always makes 
correct predictions, but the agent with suboptimal parameters (right) may not always do so.
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by Bayes’s theorem, this Bayesian model was optimal for this analysis–it would recover the parameters as well as 
possible. The model was coded in the Stan modelling language59,60 and fitted to the simulated data using the 
PyStan interface61 to obtain 4 chains of 3500 iterations (warmup: 1000) from the posterior distribution of model 
parameters. Convergence was indicated by ≤ .R̂ 1 1 for all parameters. We then calculated the Kullback–Leibler 
divergence between the prior and posterior distributions of MPL parameters, which measures how much infor-
mation about the parameters could be recovered from the data.

WSLS model. The PVL and MPL models can themselves generate “win-stay, lose-shift” behaviour. This strategy 
implies a tendency to choose the previous outcome, which is created by setting k = 0 (no pattern search) and Aρ 
= 0 (only the most recent outcome influences decisions), since with these parameter values, the expected utility 
of the previous outcome is always 1 and that of the other option is always 0. If θ → ∞ (no exploration), the agent 
will employ a “win-stay, lose-shift” strategy strictly; otherwise, it will employ it probabilistically.

Nevertheless, since several previous studies suggest that many participants use a “win-stay, lose-shift” strat-
egy9,39, we also compared the PVL and MPL models to a model directly inspired by this strategy, namely the 
learning “win-stay, lose-shift” (WSLS) model58. (We also tested the simplest WSLS model58, but it performed 
worse than the learning WSLS model and is not discussed further.)

In every trial t, the learning WSLS model assigns a probability pw(t) that the agent will stay (i.e., y(t − 1) = y(t)) 
after a win (i.e., y(t − 1) = x(t − 1)) and a probability pl(t) that the agent will shift (i.e., y(t − 1) ≠ y(t)) after a loss 
(i.e., y(t − 1) ≠ x(t − 1)). Thus, the probability p1(t) that the participant will chose 1 in trial t is given by

=
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The parameters of the model are the initial probability of staying after a win pw(1), the initial probability of 
shifting after a loss pl(1), and two learning rates θw and θl for learning pw(t) and pl(t) respectively. All parameters 
have values in the [0, 1] interval. Learning occurs in each trial according to the following equations:
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Bayesian hierarchical models. The results of the MPL parameter recovery analysis, discussed in the Results sec-
tion, show that it was not possible to recover precise information about a single simulated agent’s parameters from 
experimental data when the θ parameter had a small value, which seemed to be the case for the human partici-
pants. For this reason, the PVL, MPL, and WSLS models were fitted to each participant as part of larger Bayesian 
hierarchical (multilevel) models, which included the PVL, MPL, or WSLS distributions of each participant’s pre-
dictions as well as a population distribution of model parameters. This allowed us to use data from all participants 
to improve individual parameter estimates, to estimate the distribution of parameters across participants, and to 
make inferences about the behaviour of additional participants performing the probability learning task. Most of 
this study’s conclusions were based on such inferences. Moreover, a hierarchical model can have more parameters 
per participant and avoid overfitting, because the population distribution creates a dependence among parameter 
values for different participants so that they are not free to assume any value62. This was important for the pres-
ent study, since the MPL and WSLS models are more complex than the PVL model, having four parameters per 
participant instead of two.

For each participant i, the PVL model has two parameters (Ai, θi). The vectors (log it(Ai), log(θi)) were given a 
multivariate Student’s t distribution with mean μ, covariance matrix Σ, and four degrees of freedom (ν = 4). This 
transformation of the parameters A and θ was used because the original values are constrained to the interval 
[0,1] and the transformed ones are not, which the t distribution requires. The t distribution with four degrees of 
freedom was used instead of the normal distribution for robustness62.

Based on preliminary simulations, the model’s hyperparameters were given weakly informative (regularising) 
prior distributions. Each component of μ was given a normal prior distribution with mean 0 and variance 104, 
and Σ was decomposed into a diagonal matrix τ, whose diagonal components were given a half-normal prior 
distribution with mean 0 and variance 1, and a correlation matrix Ω, which was given an LKJ prior65 with shape 
ν = 159.

In short, the hierarchical PVL model fitted to the experimental data was:

θ∼ ∀y x A iPVL( , , ), (10)i i i i

θ μ τ τ∼ Σ = Ω ∀A t i(log it( ), log( )) ( , ), (11)i i 4
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μ ∼ (0, 10 ) (12)4

‑τ ∼ Half Normal(0, 1) (13)

Ω ∼ LKJ(1) (14)

For each participant i, the MPL model has four parameters (ki, Ai, ρi, θi). The vectors (log it(Ai), log it(ρi), 
log(θi)) were given a multivariate Student’s t distribution with mean μ, covariance matrix Σ, and four degrees of 
freedom (ν = 4). The parameter k was constrained to the range 0–5, which is consistent with current estimates 
of human working memory capacity19. An MPL agent with working memory k is not limited to learning pat-
terns of length k: it can also learn much longer patterns. An agent with k = 5, for instance, can learn the pattern 
001010001100 of length 12; see Section “Pattern learning by MPL agents” for a demonstration. The parameter k 
was given a categorical distribution with Pr(ki = k) = qk for 0 ≤ k ≤ 5. In practice, the MPL model was fitted at 
the individual level as a mixture, with k as the latent variable.

The model’s hyperparameters were given weakly informative prior distributions. Each component of μ was 
given a normal prior distribution with mean 0 and variance 104, and Σ was decomposed into a diagonal matrix 
τ, whose diagonal components were given a half-normal prior distribution with mean 0 and variance 1, and a 
correlation matrix Ω, which was given an LKJ prior with shape ν = 1. The hyperparameters qk for 0 ≤ k ≤ 5 were 
given a joint Dirichlet prior distribution with concentration parameter α = (0.001, 0.001, 0.001, 0.001, 0.001, 
0.001), implying that the prior probabilities that k = 0, 1, …, 5 were 1/6.

In this hierarchical model, parameters were estimated for each participant taking into account not only which 
values fitted that participant’s results best, but also which values were the most frequent in the population. If, for 
instance, ki = 5 fitted the ith participant’s results best, but all the other participants had k ≤ 3, the estimated value 
of ki might be adjusted to, say, ki = 3.

In summary, the hierarchical MPL model is:

ρ θ∼ ∀y x k A iMPL( , , , , ), (15)i i i i i i

∼ ∀k iCategorical(q), (16)i

ρ θ μ τ τ∼ Σ = Ω ∀A log t i(log it( ), log it( ), ( )) ( , ), (17)i i i 4

α∼q Dirichlet( ) (18)

μ ∼ N(0, 10 ) (19)4

τ ∼ ‑Half Normal(0, 1) (20)

Ω ∼ LKJ(1) (21)

The model is also shown in Fig. 2.
For each participant i, the WSLS model has four parameters θ θp p( (1), (1), , )w

i
l
i

w
i

l
i . Vectors of transformed 

parameters θ θp p(logit[ (1)], logit[ (1)], logit( ), logit( ))w
i

l
i

w
i

l
i  were given a multivariate Student’s t distribution with 

mean μ, covariance matrix Σ, and four degrees of freedom (ν = 4). The model’s hyperparameters were given 

Figure 2. Hierarchical MPL model parameters. For each participant i, four parameters are fitted to the data: (ki, 
Ai, ρi, θi). The population parameter q tracks the frequency of k values within the population, and the population 
parameters μ and Σ track the mean and covariance of (log it(A), log it(ρ), log(θ)) values within the population. 
The hierarchical PVL model differs from the MPL model by not having the k and ρ individual parameters and 
the q population parameter.
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weakly informative prior distributions. Each component of μ was given a normal prior distribution with mean 0 
and variance 25, and Σ was decomposed into a diagonal matrix τ, whose diagonal components were given a 
half-normal prior distribution with mean 0 and variance 1, and a correlation matrix Ω, which was given an LKJ 
prior with shape ν = 1.

In summary, the hierarchical WSLS model is:

θ θ∼ ∀y x p p iWSLS( , (1), (1), , ), (22)i i w
i

l
i

w
i

l
i

θ θ μ τ τ∼ Σ = Ω ∀p p t i(log it[ (1)], log it[ (1)], log it( ), log it( )) ( , ), (23)w
i

l
i

w
i

l
i

4

μ ∼ (0, 25) (24)

‑τ ∼ Half Normal(0, 1) (25)

Ω ∼ LKJ(1) (26)

Model fitting. Both models were coded in the Stan modelling language59,60 and fitted to the data using the 
PyStan interface61 to obtain samples from the posterior distribution of model parameters. Convergence was indi-
cated by ≤ .R̂ 1 1 for all parameters, and at least 10 independent samples per chain were obtained62. All simula-
tions were run at least twice to check for replicability.

Model comparison. The PVL model includes parameters for learning decay and exploration to explain the 
participants’ behaviour in the probability learning task. The MPL model additionally includes parameters for 
pattern search and recency. We determined if pattern search and recency were relevant additions that increased 
the MPL model’s predictive accuracy (its ability to predict future data accurately) by comparing the PVL and MPL 
models using cross-validation. Additionally, we compared the PVL and MPL models to the WSLS model by the 
same method. (Since the CAB-k model13 is not a statistical model, it cannot be compared to the other models 
using cross-validation and for this reason has not been included in our model comparison).

Statistical models that are fitted to data and summarised by a single point, their maximum likelihood esti-
mates, can be compared for predictive accuracy using the Akaike information criterion (AIC). In this study, 
however, the three models were fitted to the data using Bayesian computation and many points of their posterior 
distributions were obtained, which informed us not only of the best fitting parameters but also of the uncertainty 
in parameter estimation. It would thus be desirable to use all the available points in model comparison rather 
than a single one. Moreover, the AIC’s correction for the number of parameters tends to overestimate overfitting 
in hierarchical models62. Another popular criterion for model comparison is the Bayesian information criterion 
(BIC), but it has the different aim of estimating the data’s marginal probability density rather than the model’s 
predictive accuracy62.

We first tried to compare the models using WAIC (Watanabe-Akaike information criterion) and the 
PSIS-LOO approximation to leave-one-out cross-validation, which estimate predictive accuracy and use the 
entire posterior distribution66, but the loo R package with which we performed the comparison issued a diag-
nostic warning that the results were likely to have large errors. We then used twelve-fold cross-validation, which 
is a more computationally intensive, but often more reliable, method to estimate a model’s predictive accuracy66. 
Our sample of 84 participants was partitioned into twelve subsets of seven participants and each model was fitted 
to each subsample of 77 participants obtained by excluding one of the seven-participant subset from the overall 
sample. One chain of 2,000 samples (warmup 1,000) was obtained for each PVL model fit, one chain of 5,000 sam-
ples (warmup 2,500) was obtained for each WSLS model fit, and one chain of 20,000 samples (warmup 10,000) 
was obtained for each MPL model fit (as the MPL model converges much more slowly than the other models). 
The results of each fit were then used to predict the results from the excluded participants as follows.

For each participant, 1,000 samples were randomly selected from the model’s posterior distribution and for 
each sample a random parameter set φ (e.g., φ θ= A( , ) for the PVL model) was generated from the hyperparam-
eter distribution specified by the sample. The probability of the ith participant’s results |xPr(y )i i

was estimated as

∑ ∏
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where φ|p t x( , )j i
s  is the probability that the participant would choose option j in trial t, as predicted by the model 

with parameters φs. The model’s estimated out-of-sample predictive accuracy CV was given by

∑= − | .
=

y xCV 2 logPr( )
(28)i

N

i i
1

A lower CV indicates a higher predictive accuracy. This procedure was repeated twice to check for replicability.

Posterior predictive distributions. We also simulated the MPL model to check its ability to replicate rel-
evant aspects of the experimental data and predict the results of hypothetical experiments. To this end, two chains 
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of 70,000 samples (warmup 10,000) were obtained from the model’s posterior distribution, given the observed 
behavioural data. A sample was then repeatedly selected from the posterior distribution of the hyperparameters 
(the population parameters μ, Σ, and q), random ρ θk A( , , , ) vectors were generated from the distribution spec-
ified by the sample, and the MPL model was simulated to obtain replicated prediction sequences y using the 
generated parameters on either random outcome sequences x, = = .x tPr( ( ) 1) 0 7, or the same x sequences our 
participants were asked to predict. By generating many replicated data, we could estimate the posterior predictive 
distribution of relevant random variables62. For instance, would participants maximise if they stopped searching 
for patterns? To answer this question, we simulated the model with k = 0 and ρ θA( , , ) randomly drawn from the 
posterior distribution, and calculated the mean response. If the mean response was close to 1, the model predicted 
maximisation.

Data availability. All experimental data and computer code generated during and/or analysed during the 
current study are available at https://github.com/carolfs/mpl_m0exp.

Results
Behavioural results. For each trial t, we calculated the participants’ mean response, equal to the frequency 
of choice of the majority option. Results are shown in Fig. 3. Initially, the mean response was around 0.5, but 
it promptly increased, indicating that participants learned to choose the majority option more often than the 
minority option. The line y = 0.7 in Fig. 3 is the expected response for probability matching. In the last 100 trials 
of the task, the mean response curve is generally above probability matching: participants chose the majority 
outcome with an average frequency of 0.77 (SD = 0.10). The mean response in the last 100 trials was distributed 
among the 84 participants as shown in Fig. 4 (observed distribution).

The cross-correlation of all participants was calculated for the last 100 trials, because in this trial range their 
mean response was relatively constant, as evidenced by Fig. 3. The average cross-correlation was 0.30 (SD = 0.19), 
implying that, on average, 65% of the participants’ predictions were equal to the previous outcome and consistent 
with the “win-stay, lose-shift” strategy. This cross-correlation value, however, can also be produced by pattern 
search strategies, as shown in Section “MPL model check: cross-correlation” below.

The nonmonotonic recency effect analysis results are shown in Fig. 5. They suggest that the nonmonotonic 
recency pattern, a component of the wavy recency effect that can be generated by pattern search, is present in 
trials 1–100, but not in trials 201–300. In the former trials, the mean response increased for three trials after a 0, 

Figure 3. Mean response curve. Observed mean response curve of participants and predicted mean response 
curve, obtained by fitting the MPL model to the experimental data. The line y = 0.7 corresponds to the mean 
response of an agent that matches probabilities. (Participants: N = 84; MPL simulations: N = 106).

Figure 4. Predictive and observed mean response distributions in trials 200–300. (Participants: N = 84; MPL 
simulations: N = 105).

https://github.com/carolfs/mpl_m0exp
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decreased in the fourth trial, and increased again in subsequent trials. In the latter trials, after a 0 outcome, the 
mean response always increased. It stayed below the mean for the two subsequent trials after 0, indicating that 
participants predicted 0 at an above-average frequency in those two trials. From the third trial on, the mean 
response increased above the mean, indicating that participants predicted 0 at a below-average frequency. 
According to Plonsky et al.13, this result indicates that k = 3 in the first 100 trials, because the mean response curve 
is predicted to decrease in trial k + 1 after a 0 outcome. Indeed, a nonmonotonic recency pattern similar to the 
one observed in the first 100 trials can be obtained by simulating the MPL model with k = 3, A = 1, ρ = 1, and 
θ → ∞, which makes it equivalent to the CAB-k model with k = 313 (Fig. 6). Alternatively, the observed pattern 
can be explained by expectation matching: since the probability that x = 0 is 0.3, four trials after the last 0 outcome 
is when one would expect the next 0 outcome to occur if 0 outcomes occurred regularly every four trials, with 
14 = 0.25 probability. This would also explain why this pattern is only present in the first 100 outcomes: as 
responses are reinforced, participants make more habitual choices driven by reinforcement learning and fewer 
choices driven by cognitive biases such as expectation matching.

Pattern learning by MPL agents. In this study we analysed behavioural data with the MPL model, a rein-
forcement model that searches for patterns. In the task we employed, however, participants were asked to predict 
outcomes that did not follow a pattern. To demonstrate how the MPL model learns patterns, thus, we must simu-
late MPL agents performing a different task. In this section we show that the MPL model with appropriate param-
eters can learn any pattern generated by a Markov chain of any order ≥L 0. This includes all deterministic 
patterns, such as the repeating pattern 001010001100, of length 12, employed in a previous study with human 
participants9.

When the sequence to be predicted is generated by a fixed binary Markov chain of order L, the optimal strat-
egy is to always choose the most likely outcome after each history η of length L. If an MPL agent is created with 
parameters k ≥ L, A = 1 (no forgetting), ρ = 1 (no recency), and θ → ∞ (no exploration), it will eventually learn 
the optimal strategy by the following argument. In this scenario, each expected utility will simply be a count of 
how many times that option was observed after the respective history, and the most frequent option will be 
observed more often than the least frequent one in the long run, which will eventually make its expected utility 
the highest of the two. The option with the highest expected utility will then be chosen every time, because this 
agent does not explore. If k ≥ L, the highest possible values for A (A = 1) and θ (θ → ∞) maximise the agent’s 

Figure 5. Nonmonotonic recency effect results. Nonmonotonic recency effect analysis results in trials 1–100 
and 201–300 for observed data and predicted data, obtained by fitting the MPL model to the observed data. 
(Participants: N = 84; MPL simulations: N = 105. The mean number of observations per participant or simulated 
agent for points 1 to 5 was 16.3 and for point 6+ was 16.5. The error bars are the 95% HDI).

Figure 6. Nonmonotonic recency effect results for k = 3. Nonmonotonic recency effect analysis results in trials 
1–100 and 201–300 (left) and mean response curve (right) for MPL agents with parameters k = 3, A = 1, ρ = 1, 
and θ → ∞ (N = 105).
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expected accuracy. A high A value means that past observations are not forgotten, which is optimal, because the 
Markov transition matrix that generates the sequence of outcomes is fixed and past observations represent rele-
vant information. In this task, exploration, i.e. making random choices due to θ < ∞, does not uncover new 
information, because the agent always learns the outcomes of both options, regardless of what it actually chose. 
Thus, a high θ value is optimal, as it means that the “greedy” choice (of the option with the highest expected util-
ity) will always be made.

Table 1 demonstrates how two MPL agents learn a deterministic alternating pattern in an eight-trial task. First, 
note that an alternating sequence, 0101010101…, is formed by repeating the subsequence 01 of length 2, but can 
be generated by a Markov chain of order 1, where 0 transitions to 1 with 1 probability and 1 transitions to 0 with 
1 probability. The MPL agent therefore only needs k = 1 to learn it, and only needs to consider two histories of 
past outcomes: η = 0 and η = 1. Similarly, the repeating pattern 001010001100 of length 129 can be generated by 
a Markov chain of order 5, and an MPL agent only needs k = 5 to learn it. (These grammar rules generate the pat-
tern 001010001100: 00101 → 0, 01010 → 0, 10100 → 0, 01000 → 0, 10001 → 1, 00011 → 0, 001100 → 0, 01100 → 0, 
11000 → 0, 10000 → 1, 00001 → 0, 00010 → 1. They prove that the pattern can be generated by a Markov chain of 
order 5.)

The left half of Table 1 demonstrates how an agent with optimal parameters for this task (k = 1, A = 1, ρ = 1, 
θ → ∞) learns the pattern. Initially, in trial t = 1, the expected utilities of predicting 0 or 1 are 0 for both histories 
η = 0 and η = 1. Similarly, in trial t = 2, a history of length 1 has not yet been observed, and the agent just predicts 
0 or 1 with 0.5 probability (t = 2 = .p 0 51 ). The outcome in trial t = 1 is x = 0, the first element of the alternating 
pattern. In trial t = 2, the agent has observed the history η = 0, but it has not learned anything about it yet and 
thus predicts 0 or 1 with 0.5 probability. It then observes that the outcome alternates to x = 1 and updates the 
expected utility of making a prediction after 0: =η=E (3) 00

0  and =η=E (3) 11
0 . Thus, alternating to 1 after 0 

acquires a higher expected utility than repeating 0 after 0. Since A = 1 and ρ = 1, this knowledge will not decay, 
and since θ → ∞, the agent will always exploit and predict 1 after 0. It has thus already learned half of the pattern. 
In trial t = 3, the agent has observed history η = 1, but it has not learned anything about it yet and thus predicts 0 
or 1 with 0.5 probability. It then observes that the outcome is x = 0 and updates the expected utility of making a 
prediction after 1: =η=E (4) 10

1  and =η=E (4) 01
1 . Since A = 1 and ρ = 1, this knowledge will not decay, and since 

θ → ∞, the agent will always exploit and predict 0 after 1. It has thus learned the entire pattern, and from trial t 
= 4 on it will always predict the next outcome correctly. In this example, the η=E0

1 and η=E1
0 values count how 

many times the agent has observed 0 after 1 and 1 after 0 respectively.
The right half of Table 1 demonstrates how an agent with suboptimal parameters for this task (k = 1, A = 0.9, 

ρ = 0.9, θ = 0.3) also learns the pattern, but does not always make the correct prediction. Note that the η=E0
1 and 

η=E1
0 values decrease if the respective history has not been observed, as A = 0.9, and that even if the history is 

observed, the expected utility value increases by less than one, because ρ = .A 0 81. Despite the learning decay the 
agent experiences, though, by t = 4, it has also learned the alternating pattern. If θ → ∞, it would always exploit 
and make correct predictions, but since θ = 0.3, it will frequently, but not always, make the correct prediction, as 
shown by the p1 column.

Figure 7 shows the results of simulations wherein MPL agents with A = 1, ρ = 1, θ → ∞, and =k 0, 1, 2, 3 
attempt to learn patterns of increasing complexity in a 300 trial task. An alternating pattern (left graph of Fig. 6) 
cannot be learned by an agent with k = 0. Agents with ≥k 1 can learn the pattern, as demonstrated by their per-
fect accuracy in the last 100 trials of the task, even though learning this pattern only requires k = 1. In general, 
when <k L, the MPL model does not always learn the optimal strategy. The pattern 0011, of length 4, can be 
learned by agents with k ≥ 2 (middle graph of Fig. 7), and the pattern 110010, of length 6, by agents with k ≥ 3 
(right graph of Fig. 7). These results again demonstrate that an agent with working memory usage k may be able 
to learn patterns of length greater than k.

Figure 7. Accuracy of MPL agents in a pattern search task. Accuracy of MPL agents with varying working 
memory usage (k), A = 1, ρ = 1, and θ → ∞ in the last 100 of 300 trials for three different tasks, whose 
outcomes were generated by repeating the binary pattern strings 01, 0011, or 110010.
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MPL parameter recovery. For each of 10,000 sets of random MPL parameters, an MPL agent was simulated. The 
MPL agent performed the same task as our participants, and the results were analysed using a Bayesian model. 
Figure 8 shows the Kullback–Leibler divergence between the model’s prior and posterior distributions of model 
parameters. This measures how much information about the parameters could be recovered from each agent’s 
results. When the Kullback–Leibler divergence is zero, no information is gained by running the analysis. The 
Kullback–Leibler divergence is given as a function of the agent’s θ, the exploration parameter, because when 
θ = 0, choices are completely random and thus the data contain no information about A, ρ, and k. Moreover, if 
k = 0, it is not possible to recover information about the A and ρ parameters separately, only about their product; 
thus, if the agent had k = 0, the Kullback–Leibler divergence was calculated for Aρ.

In the section “Posterior distribution of MPL model parameters” below, it was found that our human partici-
pants had a median θ = 0.23 and about 50% of predicted θ values were in the [0.15, 0.37] interval. In this interval, 
the mean Kullback–Leibler divergences for A, ρ, and Aρ were 0.09, 0.03, and 0.08 respectively. For reference, the 
divergence between the uniform distribution and the beta distribution with α = 2, β = 2 is ≈ .0 125, greater than 
the observed values, and the latter distribution is very broad, with a 95% HDI of [0.094, 0.906]. Moreover, in this 
θ interval, the mean Kullback–Leibler divergence for k was 0.43, and for reference a single k can only be identified 
with 0.75 probability or greater if the divergence is at least 0.827, and it can only be identified with certainty if the 
divergence is 1.79. These results demonstrate that if θ is small, only very little can be learned from a single agent’s 
sequences about the A, ρ, and k parameters, and we would not be able to learn much from analysing each of our 
participants’ results in isolation. Hence, in this study, we applied a hierarchical model, which is fitted to the entire 
data set simultaneouly. The hierarchical model, in stark contrast with the individual model just discussed, allowed 
us to obtain much more precise results about the population distribution of MPL parameters (see section 
“Posterior distribution of MPL model parameters” below).

Model comparison. The PVL, MPL, and WSLS models were compared by cross-validation. The PVL model 
obtained a cross-validation score of 2.731 × 104, the MPL model obtained a cross-validation score of 2.656 × 104, 
and the WSLS obtained a cross-validation score of 2.980 × 104. The lower score for the MPL model suggests that 
the MPL model has a higher predictive accuracy than the PVL and WSLS models and thus that reinforcement 
learning and pattern search increased the MPL model’s ability to predict the participants’ behaviour. It also sup-
ports our use of the MPL model to predict the results of hypothetical experiments.

Posterior distribution of MPL model parameters. Figures 9 and 10 show the marginal posterior distri-
butions of the parameters k, A, B, and θ. The most frequent k values were 0, 1, and 2, whose posterior probabilities 
were 0.15 (95% HDI [0.06, 0.24]), 0.39 (95% HDI [0.25, 0.53]), and 0.45 (95% HDI [0.32, 0.59]) respectively. The 
posterior probability that k = 1 or k = 2 was 0.84 (95% HDI [0.75, 0.93]), the posterior probability that ≥k 1 (i.e., 
the participant searched for patterns) was 0.85 (95% HDI [0.76, 0.94]), and the posterior probability that ≥k 3 
was 0.01 (50% HDI [0.00, 0.00], 95% HDI [0.00, 0.06]). The posterior medians of A, ρ, and θ, given by the trans-
formed μ parameter, were 0.99 (95% HDI [0.98, 0.99]), 0.96 (95% HDI [0.95, 0.98]), and 0.23 (95% HDI [0.19, 
0.28]) respectively. The posterior distribution of the correlation matrix indicates that the correlation between A 

Figure 8. MPL parameter recovery from simulated data. The Kullback-Leibler divergence between the prior 
and posterior distributions is given for the parameters A, ρ, Aρ, k, and θ as a function of θ. The divergence was 
calculated separately for A and ρ if k > 0 and for the product Aρ if k = 0.
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and ρ is 0.14 (95% HDI [−0.34, 0.61]), the correlation between A and θ is −0.56 (95% HDI [−0.87, 0.20]), and the 
correlation between ρ and θ is −0.76 (95% HDI [−0.91, 0.57]).

Although the posterior medians of A and ρ were very close to 1, their upper limit, these values still imply sig-
nificant recency and forgetting, because the effect of A and ρ is exponential. A value of 0.95, for instance, implies 
that participants would forget nearly all (92%) of what they had learned before the last 50 trials, because 
. = .0 95 0 0850 . Even a value of 0.99 still implies an information loss of 40% within 50 trials.

MPL model check: mean response. Figure 3 displays the predicted mean response curve. The predicted 
mean response in the last 100 trials is 0.76 (95% HDI [0.54, 0.96]) for a new participant and 0.76 (95% HDI 
[0.74, 0.78]) for a new sample of 84 participants and the same x sequences our participants predicted. The latter 
prediction is consistent with the observed value: 11% of samples are predicted to have a mean response as high 
or higher than observed (0.77). The predicted standard deviation of the mean response in the last 100 trials for 
84 participants is 0.11 (95% HDI [0.09, 0.13]), and 96% of samples are predicted to have a standard deviation as 
high or higher than observed (0.10). The predicted and observed mean response distributions are shown in Fig. 4.

MPL model check: cross-correlation. As previously discussed, a “win-stay, lose-shift” behaviour can be 
generated by the MPL model with k = 0 and Aρ = 0. However, the posterior distribution of parameters we 
obtained suggests the opposite of “win-stay, lose-shift:” k is greater than 0 with 0.85 probability and the medians 
of A and ρ are close to 1. Even though the MPL model had a better cross-validation score than the WSLS model, 
since previous studies that suggest many participants use a “win-stay, lose-shift” strategy9,39, this raises the possi-
bility that our analysis is not consistent with the experimental data. To check for this possibility, we calculated the 
predicted cross-correlation c x y( , ) between y and x in the last 100 trials of the task.

The predicted cross-correlation for a new sample of 84 participants performing the task with the same x 
sequences was 0.28 (95% HDI [0.25, 0.32]), and 10% of participant samples are predicted to have an average 
cross-correlation as high or higher than observed (0.30). The observed cross-correlation is thus consistent with 
what MPL model predicts, suggesting that it does not reflect a “win-stay, lose-shift” strategy; rather, this result 
indicates that most participants adopted a pattern-search strategy, which also produced many responses that were 
incidentally equal to the previous outcome.

MPL model check: nonmonotonic recency effect. Figure 5 displays the predicted mean response as a 
function of trials since the most recent x = 0 outcome, generated by simulating MPL agents with parameters ran-
domly drawn from the posterior distribution, performing the probability learning task with the same x sequences 
as our participants. The predicted mean response trend, both for the first and the last 100 trials, is increasing 
rather than wavy. The model thus predicts the observed trend accurately in the last 100 trials, but not in the first 
100 trials. This is consistent with the explanation that the nonmonotonic pattern observed in the first 100 trials 
is due to expectation matching rather than pattern search. If expectation matching strongly influenced the par-
ticipants’ choices in the first trial range but not in the last one, the MPL model would only be able to predict the 
results accurately in the latter, since it does not implement expectation matching.

Predicted effect of outcome probabilities. Both the observed and predicted mean responses in the last 
100 trials, 0.77 and 0.76 respectively, approximately matched the majority outcome’s probability, 0.7. Would the 
MPL model also predict probability matching for a new sample of participants if the outcome probabilities were 
different? Fig. 11 shows the mean response curve for different values of the majority outcome’s probability p, as 
predicted by the MPL model with parameters fitted to our participants. The predicted mean response increased 

Figure 9. Marginal posterior distribution of k. It is given by the mean of the q parameter (see Fig. 2).
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with p. If p = 0.5, 0.6, …, 1.0, the predicted mean responses at t = 1000 were 0.50, 0.65, 0.76, 0.85, 0.90, and 0.96 
respectively. Thus, the MPL model with fitted parameters predict approximate probability matching.

Predicted effect of pattern search, exploration, and recency on learning speed and mean 
response. As demonstrated in Section “Pattern learning by MPL agents”, an MPL agent performs optimally 
in a task without patterns if k = 0 (no pattern search), A = 1 (no forgetting), ρ = 1 (no recency), and θ → ∞ (no 
exploration). Other parameter values, however, do not necessarily lead to a suboptimal performance. In particu-
lar, an agent that searches for patterns (k > 0) may also maximise. This is shown in the top left graph of Fig. 12. If 
A = 1, ρ = 1, and θ → ∞, the mean response eventually reaches 1 (maximisation) even if k > 0. In fact, as shown 
in the top right graph of Fig. 11, agents will learn to maximise even if θ = 0.3, which is approximately the median 
value estimated for our participants. If A < 1, however, agents that search for patterns never learn to maximise, as 
the bottom left graph of Fig. 12 demonstrates. And if ρ < 1, no agent learns to maximise, as the bottom right graph 
of Fig. 12 demonstrates. Thus, pattern search only decreases long-term performance compared to no pattern 
search when combined with forgetting. As k increases, however, pattern-searching agents take longer to maxim-
ise, especially if θ is low. The MPL model thus suggests that pattern search impairs performance by slowing down 
learning in the short term (top left graph of Fig. 12) and, when combined with forgetting, in the long term (bot-
tom left graph of Fig. 13). The former has already been proposed by Plonsky et al.13 using other models of pattern 
search.

The bottom row of Fig. 12 also demonstrates that the parameters A and ρ have distinct effects on performance 
if k > 0. If A < 1 (forgetting occurs, left graph), agents perform worse and worse as the complexity of pattern 
search increases, but if ρ < 1 (recency occurs, right graph), agents never perform optimally and their asymptotic 
performance does not depend on pattern search complexity.

How much did pattern search actually affect our participants’ performance, though? Figure 13 shows the 
predicted mean response curve for participants with k from 0 to 3, using the obtained posterior distribution of 
A, ρ, and θ. Participants with low k are expected to perform better than participants with high k, especially in the 
beginning, although, since ρ < 1, even participants with k = 0 (no pattern search) should not maximise. In the 
last 100 of 300 trials, a participant with k = 0, 1, 2, 3 is predicted to have a mean response of 0.82 (95% HDI [0.60, 
1.00]), 0.77 (95% HDI [0.56, 0.96]), 0.72 (95% HDI [0.52, 0.89]), and 0.67 (95% HDI [0.49, 0.82]) respectively. 
Note that the model predicts that mean response variability is high for each k and thus that k is a weak predictor 
of mean response.

The difference between the k = 0 and k = 2 mean response curves is largest (0.11 on average) in the 100-trial 
range that spans trials 18–117. To check if this difference in mean response could be detected in our experimental 
results, a linear regression was performed in the logit scale between the participants’ mean k estimates and their 

Figure 10. Marginal posterior distributions of A, B, and θ, given the observed data . The graphs were obtained 
by generating random ρ θA( , , ) vectors from the posterior distribution of model hyperparameters.

Figure 11. The predicted mean response increases with the probability of the majority option (p). Results were 
obtained by simulation using the posterior distribution of MPL model parameters. ( =N 106 by p value).
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Figure 12. Mean response curve of MPL model agents performing a probability learning task. Simulations of 
the MPL model indicate that pattern search (k > 0) does not necessarily decrease the asymptotic mean response 
in a 1000-trial probability learning task, but agents who search for patterns are slower to learn the majority 
option (top). Pattern search combined with forgetting (k > 0, A < 1), as well as recency (ρ < 1), decreases the 
asymptotic mean response (bottom). (N = 106 by parameter set).

Figure 13. Predicted mean response curve for k = 0, 1, 2, 3. Results were obtained by simulation using the 
posterior distribution of MPL model parameters. (N = 106 by k value).

Figure 14. Mean response of participants in trials 18–117 (left) and 201–300 (right) as a function of their mean 
k. (N = 84).
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observed mean responses in the trial ranges 18–117 and 201–300, using ordinary least squares. The results are 
shown in Fig. 14. In both trial ranges, the mean response decreased with the mean k, as indicated by the negative 
slopes, but in trials 201–300, as expected, this trend was smaller. Moreover, in both trial ranges the small R2 indi-
cates that the mean k is a weak predictor of mean response.

To predict the effect of pattern search (k > 0), exploration (θ < ∞), and recency (ρ < 1) on our participants’ 
performance, we simulated hypothetical experiments in which participants did not engage in one of those 
behaviours, using the MPL model with parameters fitted to our participants. We did not simulate an experiment 
in which participants did not forget what they had learned (A = 1) because we assume that forgetting was not 
affected by our participants’ beliefs and strategies. In the last 100 of 300 trials, the predicted mean response was 
0.82 for a “no pattern search” experiment, 0.89 for a “no recency” experiment, and 0.94 for a “no exploration” 
experiment (Fig. 15). Thus, “no exploration” has the largest impact on mean response, followed by “no recency,” 
and lastly by “no pattern search.”

Discussion
In this study, 84 young adults performed a probability learning task in which they were asked to repeatedly 
predict the next element of a binary sequence. The majority option had 0.7 probability of being rewarded, while 
the minority option had 0.3 probability of being rewarded. The optimal strategy— maximising— consisted of 
always choosing the majority option. Our participants chose that option in the last 100 of 300 trials with 0.77 fre-
quency. This is consistent with numerous previous findings, which show that human participants generally do not 
maximise; instead, they approximately match probabilities1–3. Previous research also suggests that participants 
search for patterns in the outcome sequence2,5–11. For this reason, we modelled our data with a reinforcement 
learning model that searches for patterns, the Markov pattern learning (MPL) model. In a model comparison 
using cross-validation, the MPL model had a higher predictive accuracy than the PVL and WSLS models, which 
do not search for patterns37,38. This is additional evidence that participants indeed search for patterns. The fitted 
MPL model could also predict accurately all the features of the behavioural results in the last 100 trials that we 
examined: the participants’ mean response and mean response standard deviation, the cross-correlation between 
the sequences of outcomes and predictions, and the mean response as a function of the number of trials since the 
last minority outcome (the “nonmonotonic recency effect” analysis).

As discussed in the Introduction, the model does not estimate, and thus cannot explicitly match, the outcome 
probabilities; nevertheless its average behaviour, after being fitted to the data, approximately matched them, even 
in simulations in which the outcome probabilities were different from 0.7/0.3. Similarly, our human participants 
may not have been trying to match probabilities, even though they did. This justifies switching our focus from 
why participants matched probabilities to why they simply failed to perform optimally.

Our analysis indicates that 85% (95% HDI [76, 94]) of participants searched for patterns and took into account 
one or two previous outcomes— k = 1 or k = 2 — to predict the next one. This finding challenges the common 
claim that many participants use the “win-stay, lose-shift” strategy9,39, since this strategy implies k = 0. In one 
study9, more than 30% of participants in one experiment and more than 50% of participants in another were 
classified as users of “win-stay, lose-shift.” Based on our analysis, we would claim instead that no more than 15% 
(95% HDI [6, 24]) of participants (those with k = 0) could have used “win-stay, lose-shift.” We checked this claim 
by calculating the observed and predicted cross-correlations between the sequences of outcomes and predictions, 
since “win-stay, lose-shift” creates a high cross-correlation. The observed cross-correlation, which indicated that 
about two thirds of predictions were consistent with “win-stay, lose-shift,” was also consistent with what the MPL 
model predicted, providing evidence that our analysis is accurate and that pattern search can also produce the 
observed cross-correlation. This conclusion was further supported by the MPL model having a higher predictive 
accuracy than the WSLS model in a model comparison using cross-validation.

Our results, which suggest that ≤k 2 for 99% of participants (95% HDI [94, 100]), also disagree with the 
results obtained by Plonsky et al.13, which suggest that participants performing a 100-trial reinforcement learning 
task employed much higher k values, such as k = 14. To check our results against those of Plonsky et al.13, we 

Figure 15. Mean response curve for a replication of this experiment (predicted) and for hypothetical 
experiments in which participants engaged in no pattern search, or no recency, or no exploration, or none of 
those behaviours (optimal). Results were obtained by simulation using the posterior distribution of MPL model 
parameters. (N = 106 by curve).
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adapted to our study design the nonmonotonic recency effect analysis proposed by them. Our data set exhibited 
a nonmonotonic recency effect in the first 100 trials of the task, but not in the last 100 trials, where the mean 
response always increased after a loss. Simulated data using the MPL model with fitted parameters displayed an 
increasing trend instead of a nonmonotonic recency effect in both the first and the last 100 trials. If the interpre-
tation of this pattern presented by Plonsky et al.13 is correct, i.e., it is caused by pattern search, then our data 
analysis indicates that k = 3 in the first 100 trials. Indeed, simulated MPL agents with k = 3 (equivalent to CAB-k 
agents with k = 3) did exhibit a nonmonotonic recency effect like the observed one. However, the same agents 
also maximised instead of matched probabilities. This is because while pattern search impairs performance, as 
demonstrated by Plonsky et al.13 and the present study, it is necessary to employ large k values such as k = 14 to 
impair performance to the level of probability matching. Thus, pattern search with k = 3 explains the nonmono-
tonic recency effect observed in the first 100 trials of the task, but it does not explain probability matching.

The same observations are, however, compatible with the alternative proposal that the wavy recency effect is 
caused by expectation matching. In this scenario, we would expect the lowest mean response to occur three to 
four trials after a loss, since the probability that x = 0 is 0.3. This was observed in the first 100 trials of the task, and 
explains why the MPL model with fitted parameters was not able to predict those results accurately— the model 
does not include expectation matching. As responses were reinforced along the task, participants would have 
learned to make more choices driven by reinforcement learning and fewer driven by expectation matching, which 
explains why the nonmonotonic recency effect was not found in the last 100 trials and why the MPL model with 
fitted parameters could predict those results accurately. We conclude that the nonmonotonic recency effect found 
in the first 100 trials does not contradict our analysis suggesting ≤k 2. This estimate is also consistent with the 
estimated capacity of working memory (about four elements), while large k values such as k = 14, required to 
explain probability matching, are not19.

Our MPL simulations agree with the basic premise in Plonsky et al.13 that the search for complex patterns, 
employing large k values, leads to a suboptimal performance because of the “curse of dimensionality”. Since, how-
ever, participants seem to have searched only for simple patterns, the suboptimal performance observed in the last 
100 trials could not have been caused by this effect. It might still have been caused, in principle, by the interaction 
between pattern with forgetting (Fig. 12). Because of forgetting, participants with k = 0, who do not search for pat-
terns, are predicted to achieve a mean response in the last 100 trials 10% higher than participants with k = 2, and 
6% above average. But this is only a small improvement. It indicates that even participants who did not search for 
patterns were on average still far from maximising. Indeed, in our experimental data, a lower mean k was associated 
with an only slightly higher mean response and mean k was a weak predictor of mean response. This suggests that 
pattern search is not the main behaviour that impairs performance, and that decreasing working memory usage for 
pattern search would not lead to maximising. Indeed, in a previous study, participants matched probabilities in a 
probability learning task whether or not their working memory was compromised in a dual-task condition63.

The main behaviours that decreased performance the most, according to our analysis, were exploration and 
recency. Exploration is adaptive in environments where agents can only learn an option’s utility by selecting it and 
observing the outcome. In our task, participants did not have to select an option to learn its utility; they could 
use fictive learning to do so. Nevertheless, our simulations suggest that participants did explore, and that if they 
had not explored, their mean response in the last 100 trials would increase by 19%. In comparison, if they had not 
searched for patterns, their mean response would increase by only 6%.

This conclusion does not necessarily contradict the pattern search hypothesis. Plonsky et al.13 and the current 
work define pattern search as the learning of relationships between an event and the events that preceded it. 
Exploration, on the other hand, is a tendency for choosing an option at random when both options have simi-
lar expected utilities. These definitions clearly distinguish pattern search from exploration in the present work. 
Nevertheless, when participants explore and choose an option that has not been previously reinforced, they may 
be trying to follow some pattern or rule they just thought up. According to our definitions, this behaviour is 
exploration, not pattern search, because it ignores learned relationships between events (and is thus rather ineffi-
cient at finding patterns), but it fits the more general view of pattern search put forward by Wolford et al.6. We do 
not know, however, the exact reasons behind exploratory choices. When participants select a random option, they 
may just be taking a guess rather than thinking about a pattern. In this work, we call “exploration” all behaviours 
not explained by pattern search, recency, and forgetting, and do not attempt to explain it further.

Apart from exploration, our analysis also revealed that recency, the behaviour of discounting early expe-
riences, also had a large impact on performance. It predicted that by eliminating recency participants would 
increase their mean response by 13%. Together, the predicted high impact of exploration and recency on mean 
response suggests that participants were unsure about how outcomes were generated and tried to learn more 
about them. Exploration points to this drive to learn more about the environment, and recency indicates that 
participants believed the environment was non-stationary, which may have resulted from their failing to find a 
consistent pattern.

Limitations of the Study. The main limitation of this study is that none of the investigated processes (pattern 
search, exploration, recency, and forgetting) was manipulated experimentally. All conclusions were drawn by fitting 
computational models to the data and running simulations based on the obtained results. We also did not attempt to 
investigate why participants explore, but simply modelled exploratory choices as happening “at random”.

Lastly, it is usually not possible to fit the MPL model to a single participant’s results and obtain precise esti-
mates of the model’s parameters. Our analysis shows that if the θ parameter has a low value and an individual fit 
is attempted, the resulting estimates for the parameters A, ρ, and k are vague. Because of this limitation, it is only 
possible to work with hierarchical models, which are able to analyse an entire sample of participants at once and 
obtain much more precise estimates of relevant quantities.



www.nature.com/scientificreports/

2 1ScIentIfIc REPORTS | 7: 15326  | DOI:10.1038/s41598-017-15587-z

Conclusion
Our work has thus made novel quantitative and conceptual contributions to the study of human decision making. 
It confirmed that in a probability learning task the vast majority of participants search for patterns in the outcome 
sequence, and made the novel estimation that participants believe that each outcome depends on one or two pre-
vious ones. But our analysis also indicated that pattern search was not the main cause of suboptimal behaviour: 
recency and especially exploration had a larger impact on performance. We conclude that suboptimal behaviour 
in a probability learning task is ultimately caused by participants being unsure of how outcomes are generated, 
possibly because they cannot find a strategy that results in perfect accuracy. This uncertainty drives them to 
search for patterns, assume that their environment is changing, and explore.
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