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Gravitational Field effects on the 
Decoherence Process and the 
Quantum Speed Limit
Sh. Dehdashti1,2, Z. Avazzadeh   3, Z. Xu1, J. Q. Shen4, B. Mirza5 & H. Wang1

In this paper we use spinor transformations under local Lorentz transformations to investigate 
the curvature effect on the quantum-to-classical transition, described in terms of the decoherence 
process and of the quantum speed limit. We find that gravitational fields (introduced adopting the 
Schwarzschild and anti-de Sitter geometries) affect both the decoherence process and the quantum 
speed limit of a quantum particle with spin-1/2. In addition, as a tangible example, we study the effect 
of the Earth’s gravitational field, characterized by the Rindler space-time, on the same particle. We find 
that the effect of the Earth’s gravitational field on the decoherence process and quantum speed limit is 
very small, except when the mean speed of the quantum particle is comparable to the speed of light.

Quantum mechanics imposes a limitation on the evolution of quantum systems. This limitation has two roots: 
one is a dynamical process, and the other environmental. The former is related to the fact that the time required 
for a given pure state to become orthogonal to itself under unitary dynamics is imposed as a boundary on the 
speed of evolution; such a boundary is intimately related to the concept of quantum speed limit (QSL), τmin

1. 
Indeed, earlier studies have indicated that whenever the dynamics of the quantum system under study is governed 
by a Hermitian Hamiltonian, H, then the QSL τmin has a lower boundary proportional to the inverse of the vari-
ance in the energy, Δ = 〈 〉 − 〈 〉H H H2 2 , i.e., τmin ≥ πħ/2ΔH1. The second reason for the existence of a QSL is 
related to the fact that quantum systems are ultimately coupled to their environment2–4. Therefore, applying QSL 
first requires a quantification of the effects associated with the environment. For this reason, an analogous bound-
ary has been investigated in many open quantum systems2–18. Such a boundary on the evolution of an open sys-
tem would help to address the robustness of the quantum systems that are applied, for example, against 
decoherence in simulators and in quantum computers19. Currently, the applications of these limits cover remark-
ably different scenarios, including quantum communication, identification of precision bounds in quantum 
metrology, formulation of computational limits of physical systems, and development of quantum optimal con-
trol algorithms20–24.

On the other hand, the quantum-to-classical transition has been one of the most important subjects in the 
foundation of physics, mathematical physics and philosophy of physics, and it will have an important role in 
technological applications25. The origin of the quantum-to-classical transition is formulated via an environmental 
effect, the so-called decoherence phenomenon. The effect of environment in the decoherence phenomenon has 
been modeled by three scenarios. In the first scenario, as a result of the environmental interaction with a quantum 
system, the environment gets entangled with the quantum system itself; therefore, the interaction of the environ-
ment with the quantum system leads to the decoherence process25–29, one example of environmental effect is the 
gravitational effect; for details see refs30–36. In the second scenario, the decoherence phenomenon is the result of 
fluctuations of the environment37,38. In the third scenario, the gravitational fields, described in general relativity 
by the space-time curvature, are at the origin of the decoherence process39–43. The latter scenario has been con-
sidered to be potentially relevant on two levels: on one side, it is an effect of the environment; on the other, it is 
one of the results obtained by changing the dynamical process of the quantum system in a curved environment. 
Consequently, studying the effect of gravitational fields on quantum systems is a fundamental problem.
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In this paper we use spinor transformations under local Lorentz transformations to study the effects of the 
gravitational fields and the mean velocity of quantum particles on the quantum-to-classical transition, i.e., the 
decoherence process, and we investigate the role of different space-time backgrounds in this phenomenon. 
Indeed, we consider a superposition of up- and down-spin system and study the dynamical process of the sys-
tem, while it moves into the curved space-time background. We show that the gravitational field, intended as the 
space-time background, causes an extra effect on the quantum dynamics of the system, namely on the quantum 
speed limit (QSL), which is a result of both the dynamical process and the environment. It is worth mentioning 
that the QSL, as a quantum phenomenon, is imposed to the system dynamics by the dynamical process and 
therefore it is different from the gravitational time dilation mentioned in ref.30. In addition, in order to examine 
the effect of the Earth’s gravitational field, we consider the weak gravitational field as the background space-time 
of the spin system. We study the dynamical process of a spin system in a Rindler space-time, which describes a 
uniformly accelerating particle framework. According to the equivalence principle of the general relativity of 
Einstein, which expresses gravitational fields are equal with accelerating frame of reference, we will study the 
impacts of gravitational fields on the decoherence process as well as quantum speed limit (QSL). We find that 
effects of the weak gravitational field, such as Earth’s gravity, is too difficult to detect, except when the mean veloc-
ity of the quantum system is comparable with the speed of the light.

Results
Wigner Rotation for circular geodesic motion in Schwarzschild-AdS geometry.  We consider the 
Schwarzschild-AdS metric and we study the dynamical process of a spin system with an initial state as a super-
position of the up and down spins. The calculations indicate that the corresponding reduced density matrix of 
the final states in the local inertial frame for a circulate motion with r = const. in an equatorial plane is given by
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. Notice that 〈cos Θ τ〉 = 0 causes the pure density matrix to be reduced to a mixed 
density matrix, i.e. it causes a quantum-to-classical transition.

The fidelity  , defined by  ρ ρ= Tr[ ]i f , where ρk, k = i, f are respectively the initial and final density matrices, 
is a convenient measure to know to what extent the evolution in time of the superposition state preserves coher-
ence; according to definition, the fidelity   can be expressed as τ= + 〈 Θ 〉(1 cos )/2 , in which we will consider 
a Gaussian distribution for the average. Moreover, note that the off-diagonal elements of the density matrix is a 
function the fidelity, and we can consider the linear fidelity as a measure of the decoherence factor, i.e., 

= | − |r t t( ) 2 ( ) 1 . Figure 1 shows the fidelity   (which, as is mentioned, can be considered as a measure of the 
decoherence factor) of an up- and down-spins superposition while it moves in a curved space-time. Plots (a) and 
(b) show the effects of the Schwarzschild background and of the mean velocity of the particle on the fidelity. These 
plots indicate that the fidelity has a behavior somewhat similar to that of a damped harmonic oscillator. Increasing 
the mean velocity of the particle causes the decoherence factor, i.e., 〈cos (Θτ)〉, to approach rapidly zero. Figure 2a 
shows the fidelity as a function of the mean velocity. This figure confirms that increasing the mean velocity of the 
particle causes the fidelity to approach 1/2 in no time, when the mean velocity approaches the speed of light c; 
despite the fact that when the mean velocity of the particle almost touches the speed of light, we find fluctuation 
in its fidelity. Also, a comparison between plots 1-(a) and 1-(b) indicates that increasing rs, i.e. increasing the 
gravitational effect, causes the death and rebirth of the coherence of superposition as well as the damping behav-
iors of the fidelity in any specific time interval to be more pronounced. In brief, increasing the gravitational 
strength as well as the mean velocity of the quantum particle cause the decoherence factor, 〈cosΘτ〉 to rapidly 
approach zero. In addition, plots 1-(c) and 1-(d) show the fidelity of the particle as it moves in the AdS back-
ground with different parameters. Also in these cases, increasing the mean velocity of the particle or increasing l 

Figure 1.  The fidelity   of the up and down superposition of a spin system as a function of time t, for different 
values of particle velocity, v = 0.1c (green dot-dashed line), v = 0.5c (red dashed line) and v = 0.9c (blue line). 
Plot (a) is set in the Schwarzschild background with rs = 1 and r = 10.1. Plot (b) shows the same as (a), for rs = 10 
and r = 10.1. Plots (c and d) show the fidelity for AdS background with l = 1 and r = 1, and with l = 10 and r = 10 
respectively; the color coding is the same as in plots (a and b). In the all Schwarzschild and AdS background 
plots, we choose c = 1 and m = 1.
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cause the damping behavior and the rapid rise of the classical states to appear. Figure 2b indicates the impacts of 
variation of the mean velocity of the particle in the AdS-background. This figure also verifies the previous result, 
namely, increasing of the mean velocity of the particle causes the fidelity approaches 1/2; in the other word, the 
decoherence factor approaches zero in this situation and the role of geometry decreases, as a result of this fact, in 
both geometries, increasing mean velocity causes the decoherence factor to approach zero.

In addition, we study the QSL4, by using the fidelity. Indeed, by reparameterizing the fidelity,  η= cos , and 
considering |1 − cosη| ≤ 4η2/π24, the QSL τη is given by:
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which is a function of the mean velocity of the quantum particle as well as of the properties of the geometrical 
background.

In Fig. 3, the variation of the QSL as function of the mean velocity v/c for a spin system in different gravita-
tional field backgrounds are plotted. These plots indicate that increasing the mean velocity of the particle causes 
τη to decrease, which means that the speed of the dynamical process of the quantum system increases, in both 
cases, i.e., the Schwarzchild and AdS space-time. Moreover, in plots (a), one can see that the QSL τη increases by 
decreasing the gravitational field effect; in other words, the speed of the dynamical process of a quantum system 
is increased by the increasing the impacts of the background geometry and gravitational field. In the plot (b) 
variation of the QSL as a function of v/c in the AdS geometry is plotted. This plot illustrates that when the mean 
velocity of the quantum particle is comparable with the speed of light, the effects of geometry disappears, despite 
of the fact that when the mean velocity is not comparable with the speed of light, v c, geometry is able to play 
role for control of QSL.

Wigner Rotation for straight motion in Rindler space-time.  In the previous sections we mathemati-
cally studied the effect of the gravitational field on the decoherence factor and on the QSL. In order to estimate the 
effect of the gravitational field in real life, we will consider the weak gravitational effect of the Earth, as a tangible 
example, by studying the Rindler space-time. We consider a quantum particle in motion along the x-axis, while 
the gravitational field is assumed to be along z-axis.

By considering the initial state as a superposition of the up and down spins, one respectively obtains the fidel-
ity   and the QSL τη:
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Figure 2.  Plot (a) indicates the dependence of the fidelity   of the up and down spin superposition on the 
particle speed v/c, for t = const., i.e., t = 5 (dashed blue curve) and t = 10 (red curve), in the Schwarzschild space-
time background with rs = 10 and r = 10.1. Plot (b) shows the fidelity as a function of v/c for the same system, 
with the same parameters in the Ads background.



www.nature.com/scientificreports/

4SCIEnTIfIC ReportS | 7: 15046  | DOI:10.1038/s41598-017-15114-0

in which ζ ζ ζΘ = − +
+ +( )sinh cosh 1 tanhR

p
p m c1

2
g
c

gz

c2

1

0
0

, where g denotes the Earth’s acceleration and 

ζ = 


+ 


− ( )tanh 1
c

gz
c

dx
dt

1 1
2

. The effect of the Earth’s gravitational field on the fidelity for a spin system is shown in 
Fig. 4. For short times, the geometry almost does not affect the fidelity and the decoherence factor, except when 
the mean velocity of the particle is comparable with the speed of light. However, at large interval of time, the death 
and rebirth of superposition of the up and down spins are clearly evident. Figure 5 shows the variation of the QSL 
as functions of the mean velocity and acceleration of the particle in plots (a) and (b), respectively. Plot (a) in this 
figure indicates that the QSL is decreased by increasing the mean velocity of the particle, which means the speed 
of dynamical process of the system is increased. Also, by considering the relation (4), the QSL is proportional to 
the acceleration, τ ∝ζ

c
g
, which means increasing the particle’s acceleration causes the QSL to decrease; in other 

words, the speed of dynamical process to increase, as the plot (b) points the fact out.

Discussion
We studied the quantum decoherence process and the QSL by using spinors transformations under local Lorentz 
transformations. We found that for a quantum particle both the decoherence process and the QSL are gener-
ally affected by gravitational fields, as well as by the mean velocity of the quantum particle. We illustrated this 
fact by considering both properties of quantum system, i.e., quantum decoherence process and QSL, for the 
Schwarzschild and the AdS geometries. Moreover, we showed that in the Earth’s gravitational field modeled by the 
Rindler space-time the effect of the gravitational field is too weak, except when the mean velocity of the quantum 
particle is comparable with the speed of light. Moreover, we indicated that the evolution speed of the dynamical 
process is proportional to the acceleration of the quantum particle; therefore, the QSL is a quantum property that 
can be detected by local observers, at least when the mean velocity of the particle is comparable with the speed of 
light, in the convenient frameworks.

Although the present work focuses on study the gravitational effect on the quantum dynamics of a massive 
particle, it can also be extended to massless particles, such as photons. Since, compared with electrons, photon 
are less influenced by environmental noise, the effect of gravitationally-induced decoherence would be relatively 

Figure 3.  Variation of the QSL τζ as a function of v/c, for different values of the radius r, r = 10 (red line), and 
r = 1.1 (blue dashed line) with rs = 1 for the Schwarzchild space-time in plot (a); in plot (b) the variation of the 
QSL τη as a function of v/c, for different values of the radius l, l = 10 (blue dashed line), and l = 1 (red line), with 
r = 1, in both cases.

Figure 4.  The fidelity as a function of t, for different values of velocity of an electron in the Rindler space-time 
background with g = 9.81(m/s2).
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easily detected for photons. Recently, by setting-up a coupled Stokes channel and an anti-Stokes one, twin pho-
tons, correlated with each other has been theoretically studied and experimentally verified44. This research indi-
cates the correlation and squeezing between Stokes and anti-Stokes signals can be also switched by the relative 
nonlinear phase shift, which can play simulation role of curvature effects in this case. On the other aspect, one 
can study impacts of weak gravitational fields on the coupled equations of the creation and annihilation operators 
that give photon numbers of the Stokes and anti-Stokes field at the output site of the medium; indeed, this set-up 
could be considered as an experimental set-up for studying of influences of gravity on the decoherence process 
and QSL, if it is put into the suitable accelerator framework44.

Methods
Given that the curved space-time background definition of a particle state is not unique45, we choose a local ref-
erence frame for observers so that the space-time is locally identical to the Minkowsky space-time. In this case, 
the states of the particle are locally well defined and the spinors transform under local Lorentz transforma-
tions39,40. Therefore, when a particle moves from a point xμ to a new point in the new local inertial frame 
x ′μ = xμ + uμ(x)dτ, the infinitesimal Wigner rotation is given by39–41,43, δ τ= + ϑW d ,a

b b
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When the particle moves along a path xμ(x), from xi
μ = xμ(τi) to xf

μ = xμ(τf), its wave function is given by 
|ψf〉 = U(Λ(x))|ψi〉, where the Lorentz transformation unitary operator U(Λ(x)) has a corresponding spin-1/2 
irreducible representation Λ′D W x p( ( ( ), ))mm

1/2 46.

Wigner Rotation for circular geodesic motion in Schwarzschild-AdS geometry.  We consider the 
Schwarzschild-AdS metric:

ds c B r dt B r dr r d d( ) ( ) ( sin ), (8)2 2 2 1 2 2 2 2 2θ θ φ= − + + +−
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2  is the Schwarzschild radius. The tetrad fields are 

given by

Figure 5.  Variations of the QSL as a function of v/c, for the Rindler space-time with g = 9.81(m/s2) in plot (a); 
Variations of the QSL as a function of a/g, for the Rindler space-time in plot (b).



www.nature.com/scientificreports/

6SCIEnTIfIC ReportS | 7: 15046  | DOI:10.1038/s41598-017-15114-0

e
c B r

e B r e
r

e
r

1
( )

, ( ) , 1 , 1
sin (9)

t r
0 1 2 3 θ

= = = = .θ φ

We investigate the circular motion with r = const in the equatorial plane (θ = π/2), for which the tangent vector 
associated with this motion is
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. By substituting the tetrad fields defined in equation (9) into the definition of the accel-
eration, we find the only non-zero component of the acceleration, a1:
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The unitary operator U(Λa
b(x)) corresponding to the local Lorentz transformation Λa

b(x) transforms the momen-
tum eigenstate |pa, m〉 into U(Λa

b(x))|pa, m〉, i.e., U(Λa
b(x))|pa, m〉 = ∑m′Dm′m(W(Λ(x), p)|Λpa, m′〉, in which 

W(Λ(x), p) is the Wigner rotation and Dm'm(W(Λ(x), p) is its unitary representation. Finally, by using 
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We obtain the Wigner equation, namely, W(Λ(x), p) = exp[−iσ2Θτ], where σ2 is the component of the angular 
momentum operator along the x(2)-axis of the local frame. Hence, the matrix D1/2 can be represented as
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Considering the initial state as a superposition of the up and down spins,
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the corresponding final state in the local inertial frame is given by
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The reduced density matrix of the final states is given by (1), where 〈 〉 is the average of the wave function with 
respect to the distribution function. Notice that 〈cos Θτ〉 = 0 causes the pure density matrix (1) to be reduced to 
a mixed density matrix, i.e. it causes a quantum-to-classical transition.
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Effect of Geometry on Fidelity.  The fidelity   is defined by ρ ρ= Tr[ ]i f , where ρk, k = i, f, are respectively 
the initial and final density matrices. The fidelity is a convenient measure to know to what extent the evolution in 
time of the superposition state preserves coherence; in other words, the fidelity criterion is a measure of the deco-
herence factor. By using relation (1), the fidelity   can be expressed as

 τ= + Θ .
1
2

1
2

cos (20)

QSL.  To study the QSL, we consider the time derivative of the geometric Bures angle,  ρ ρ τ( (0), ( ))s s
ψ ρ τ ψ= 〈 | | 〉arccos( (0) ( ) (0) )s , between the initial and final states of the quantum system4. The latter saturates the 
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Effect of Geometry on QSL in a Schwarzschild-AdS geometry.  Now, By using the relation (1), we 
can obtain ρ τ τ|| || = 〈Θ Θ 〉 + 〈Θ Θ 〉


t( ) cos sinop

2 2 . According to the following relation


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and using the Cauchy-Schwarz inequality, we can obtain:

Λ = |〈Θ 〉| ≥ Λ2 , (24)op
2

hence, by reparameterizing the fidelity, η= cos , and considering |1 − cos η| ≤ 4η2/π2, the QSL τη is given by the 
relation (2)4.

Wigner Rotation for straight motion in Rindler space-time.  In order to estimate the effect of the 
gravitational field in the level of Earth’s gravitational fields, we study the Rindler space-time:

ds c gz
c

dt dx dy dz1
(25)

2 2
2

2
2 2 2 2= −



 +



 + + + .

In this case, the tetrads are given by = +−
−( )e c 1t gz

c0
1 1

2 , =e 1,x
1 , =e 1y

2  and =e 1z
3 . The tangent vectors asso-

ciated with this motion are given by ζ= +( )u x( ) cosh / 1t gz
c 2  and ux(x) = c sinhζ. Hence, the only non-zero 

component of the four-acceleration is given by ζ=
+

a coshg3
1

2
gz

c2

, while the only non-zero components of the 

tensor (7) are

χ χ ζ= = −
+1

cosh ,
(26)

g
c

gz
c

3
0

0
3

2

and consequently, the non-zero components of the tensor (6) are given by

ζ ζ ζ ζΛ =
+

Λ = −
+

.
1

sinh cosh ,
1

sinh cosh
(27)

g
c

gz
c

g
c

gz
c

3
0 2

3
1 2

2 2

Finally, the Wigner equation is obtained W(Λ(x), p) = exp[−iσ2ΘRτ], in which σ2 is the component of the angular 
momentum operator along the x2-axis of the local frame. Therefore, we can write the matrix representation of 
D1/2 as

τ τ

τ τ
Λ =







Θ Θ

−
Θ Θ







D W x p( ( ( )), )
cos

2
sin

2

sin
2

cos
2

,

(28)

R R

R R

1/2

in which
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ζ ζ ζΘ = −
+






+
+





.

p
p m c1

sinh cosh 1 tanh
(29)

R

g
c

gz
c

2
1

0
02

Finally, by considering the initial state as a superposition of the up and down spins, i.e., relation (17), we obtain 
the final state in the local inertial frame:

∫ψ
τ τ τ τ

| 〉 =
| | +

|Λ 〉 ⊗









Θ
−

Θ 

|+〉 +





Θ
+

Θ 

|−〉






.d p m c

m c

f

p

p p( )
2

cos
2

sin
2

cos
2

sin
2 (30)

f R R R R3 0
2

0
2 2

Following the same steps outlined in the previous sections, one obtains the fidelity   and the QSL τη in case of the 
Rindler space-time as relations (3) and (4).
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