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Adenosine A2A receptor mediates 
hypnotic effects of ethanol in mice
Teng Fang1, Hui Dong1, Xin-Hong Xu1, Xiang-Shan Yuan1, Ze-Ka Chen1, Jiang-Fan Chen2, 
 Wei-Min Qu1 & Zhi-Li Huang1

Ethanol has extensive effects on sleep and daytime alertness, causing premature disability and 
death. Adenosine, as a potent sleep-promoting substance, is involved in many cellular and behavioral 
responses to ethanol. However, the mechanisms of hypnotic effects of ethanol remain unclear. In 
this study, we investigated the role of adenosine in ethanol-induced sleep using C57BL/6Slac mice, 
adenosine A2A receptor (A2AR) knockout mice, and their wild-type littermates. The results showed 
that intraperitoneal injection of ethanol (3.0 g/kg) at 21:00 decreased the latency to non-rapid eye 
movement (NREM) sleep and increased the duration of NREM sleep for 5 h. Ethanol dose-dependently 
increased NREM sleep, which was consistent with decreases in wakefulness in C57BL/6Slac mice 
compared with their own control. Caffeine (5, 10, or 15 mg/kg), a nonspecific adenosine receptor 
antagonist, dose-dependently and at high doses completely blocked ethanol-induced NREM sleep 
when administered 30 min prior to (but not after) ethanol injection. Moreover, ethanol-induced NREM 
sleep was completely abolished in A2AR knockout mice compared with wild-type mice. These findings 
strongly indicate that A2AR is a key receptor for the hypnotic effects of ethanol, and pretreatment of 
caffeine might be a strategy to counter the hypnotic effects of ethanol.

Ethanol is one of the most highly abused psychoactive compounds worldwide1,2. It produces a variety of acute and 
chronic effects3, which have a significant socio-economic impact on the individuals, their families, and society. 
Ethanol can cause premature disability and death, accounting for an estimated 6–9% of all deaths4,5. Extensive 
clinical studies have documented that acute ethanol has a profound impact on sleep4,6, and acute discontinuation 
of alcohol in alcoholics results in severe disturbance of sleep architecture6–8. In addition, these sleep impairments 
are so severe that they are primary predictors of relapse in recovering alcoholics9,10. Thus, it is of paramount 
importance to identify the mechanism underlying the effects of ethanol on sleep-wake regulation. However, the 
central mechanisms involved in sleep-wake regulation by ethanol remain elusive.

Adenosine, a potent sleep-promoting substance11, is a key mediator of many behavioral and neuronal 
responses to ethanol12–15. Dysregulation of adenosine signaling has been implicated in ethanol-use disorders14–18. 
Ethanol is known to increase adenosine release19,20 and decrease adenosine uptake by inhibiting the type 1 equil-
ibrative nucleoside transporter, which result in increased extracellular adenosine21–23. Accumulated extracellu-
lar adenosine induces sleep by activating adenosine A1 receptor (A1R) and A2A receptor (A2AR) in the central 
nervous system24,25. Among adenosine receptors responsible for sleep induction, the role of A2AR is predom-
inant in sleep regulation. Administration of the selective A2AR agonist CGS21680 to the subarachnoid space 
adjacent to the basal forebrain and lateral preoptic area reliably induces a dramatic increase in non-rapid eye 
movement (non-REM, NREM) sleep, whereas infusion of A1R agonists produces weak and variable effects26–29. 
Furthermore, homeostasis of sleep-wake regulation is unaltered in animals lacking A1R30. However, the role of 
A2AR in ethanol-induced hypnotic effects is still in debate.

Caffeine, another widely used psychoactive compound31, binds A1R and A2AR with similar affinity as a recep-
tor antagonist. The antagonistic role of caffeine in the ethanol-induced hypnotic effects is controversial. Some 
studies have suggested that caffeine offsets ethanol-induced changes in information processing, memory, and 
psychomotor performance32–35. However, other studies have been unable to confirm these results36,37. Therefore, 
it is unclear whether caffeine can block ethanol-induced hypnotic effects.
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In the present study, we characterized sleep-wake profiles of C57BL/6Slac mice after an intraperitoneal (i.p.) 
injection of ethanol and found that ethanol increased NREM sleep in a dose-dependent manner. Furthermore, we 
demonstrated an antagonistic role of caffeine in hypnotic effects of ethanol. Pretreatment but not post-treatment 
of caffeine abolished the hypnotic effects of ethanol. Because caffeine reduces sleep by blocking A2AR38,39, we 
assessed possible involvement of A2AR in the hypnotic effects of ethanol using A2AR knockout (KO) and wild-type 
(WT) mice. After ethanol administration, A2AR WT mice showed an increase in duration of NREM sleep, but 
A2AR KO mice showed no change in time spent in NREM sleep. These findings indicate that A2AR plays an impor-
tant role in the hypnotic effects of ethanol. Understanding the molecular mechanism underlying the hypnotic 
effects of ethanol may provide new therapeutic approaches for treating alcoholism and blocking acute behavioral 
impairment due to ethanol.

Results
Ethanol increased NREM sleep and decreased wakefulness in C57BL/6Slac mice.  To investigate 
the hypnotic effects of ethanol, electroencephalograms (EEG) and electromyograms (EMG) were recorded for 2 
consecutive days in C57BL/6Slac mice. On day 1, the mice were treated with vehicle i.p. at 21:00 in the early phase 
of the dark (active) period, and the recordings made on that day served as the own control. The animals were then 
treated with vehicle or ethanol (2.1, 2.5, 3.0, 3.6 g/kg, i.p.) 24 h later. Because mice spend most of their time sleep-
ing during the light period, it is more difficult to evaluate effects of a drug on duration of sleep in the light period 
than in the dark period. Therefore, the experiments were performed during the dark period when animals spend 
most of their time in wakefulness. Typical examples of polygraphic recordings and corresponding hypnograms 
from one mouse given vehicle or 3.0 g/kg ethanol are shown in Fig. 1A. The mouse treated with ethanol spent 
more time in NREM sleep compared with their own control.

Time course changes revealed that ethanol at 3.0 g/kg significantly increased NREM sleep (F1,198 = 21.3, 
P < 0.05) and decreased wakefulness (F1,198 = 18.0, P < 0.05) in C57BL/6Slac mice compared with their own con-
trol (Fig. 1B). Ethanol at 3.0 g/kg increased NREM sleep for 5 h following ethanol administration, which was 
consistent with a reduction in wakefulness during the same period. The effects began within the first hour after 
ethanol injection and last for 5h. There was no further disruption of sleep architecture during the subsequent 
period. No time course changes on REM sleep were observed.

Total time spent in NREM sleep, REM sleep, and wakefulness were measured for 5 h after ethanol injec-
tion, because 3 g/kg ethanol increased NREM sleep for 5 h. Ethanol dose-dependently increased NREM sleep 
(F4,47 = 17.9, P < 0.01) and reduced wakefulness (F4,47 = 15.6, P < 0.01) (Fig. 1C). Ethanol at 2.5, 3.0, and 3.6 g/
kg increased the total duration of NREM sleep by 1.5-, 1.8-, and 1.6-fold (P < 0.01), respectively, which was con-
sistent with a reduction in wakefulness by 23%, 33%, and 24% (P < 0.01), respectively, compared with their own 
control in each group. However, ethanol at 2.1 g/kg did not affect the cumulative amount of NREM sleep when 
measured for 5 h after injection. In contrast, ethanol at 3.6 g/kg reduced REM sleep by 67% when measured for 5 
h after ethanol injection (Fig. 1C). However, the other doses of ethanol did not affect the duration of REM sleep. 
These results clearly indicate that ethanol increases NREM sleep in a dose-dependent manner and reduces REM 
sleep at a high dose of 3.6 g/kg.

Ethanol shortened sleep latency and altered sleep architecture in C57BL/6Slac mice.  To assess 
initiation of the sleep state after injection, we measured the latencies to NREM and REM sleep, which were 
defined as the time from vehicle or ethanol injection to the first appearance of a NREM or REM sleep episode 
that lasted for at least 20 s40. As shown in Fig. 2A (upper panel), injection of ethanol remarkably shortened NREM 
sleep latency. The latencies to NREM sleep in mice treated with ethanol (2.1, 2.5, 3.0, and 3.6 g/kg) were 11.6, 12.3, 
10.6, and 14.2 min, respectively, which were markedly shorter than the latency of 29.4 min after vehicle injection 
(P < 0.05). The short NREM sleep latency following ethanol injection clearly indicates that ethanol accelerates 
initiation of NREM sleep. In addition, REM sleep latency was dose-dependently prolonged by ethanol (Fig. 2A, 
lower panel). The latencies to REM sleep in mice treated with ethanol (2.1, 2.5, 3.0, and 3.6 g/kg) were 122.4, 
155.8, 197.2, and 221.4 min, respectively, which were longer than the latency of 55 min after vehicle injection 
(Fig. 2A, lower panel). Prolonged REM sleep latency in ethanol-injected mice clearly indicates that ethanol inhib-
its initiation of REM sleep.

To better understand the changes in sleep architecture caused by 3 g/kg ethanol, we determined the episode 
number and mean duration of NREM sleep, REM sleep, and wakefulness, as well as stage transitions between the 
3 vigilance stages. Ethanol at 3.0 g/kg increased the number of bouts of NREM sleep with durations of 230–950 
s (Fig. 2B). There was no difference in the number of episodes of wakefulness, NREM sleep, and REM sleep 
(Fig. 2C). In addition, the mean duration of NREM sleep increased by 53% (Fig. 2D, P < 0.01), with a concomitant 
50% decrease in wakefulness (Fig. 2D, P < 0.05). The mean transition numbers showed no change during the 5 h 
immediately following administration of ethanol (Fig. 2E). These results suggest that ethanol increases bouts of 
longer NREM sleep and mean duration of NREM sleep, which extend the overall duration of NREM sleep.

Pretreatment with caffeine offset ethanol-induced hypnotic effects.  It is well known that caffeine 
induces wakefulness by blocking A2AR39. To determine whether caffeine reduces hypnotic effects of ethanol, caf-
feine (5, 10, or 15 mg/kg, i.p.) was administered to C57BL/6Slac mice 30 min prior to ethanol injection. As shown 
in Fig. 3A, pretreatment with caffeine at a dose of 10 mg/kg completely abolished the hypnotic effects induced by 
ethanol 3 g/kg when compared with their own control (F1,198 = 2.3, P = 0.15).

Total time spent in NREM sleep, REM sleep, and wakefulness was calculated for 5 h after administration 
of caffeine and ethanol. Ethanol with vehicle pretreatment increased the duration of NREM sleep by 1.5-fold, 
which was consistent with a 25% decrease in wakefulness (Fig. 3B, P < 0.01). Caffeine alone increased the dura-
tion of wakefulness by 1.2-fold, which was consistent with a 32% decrease in NREM sleep (Fig. 3B, P < 0.05). 
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Pretreatment with caffeine at 10 mg/kg or 15 mg/kg 30 min before ethanol did not increase the cumulative 
amount of NREM sleep when measured for 5 h after injection, compared with their own control. When caffeine 
was pretreated at 5 mg/kg, ethanol still increased the total duration of NREM sleep (Fig. 3B, P < 0.05). These find-
ings indicate that pretreatment with caffeine dose-dependently reduces hypnotic effects of ethanol.

Figure 1.  Sleep-wake profiles produced by administration of ethanol in C57BL/6Slac mice. (A) Typical 
examples of polygraphic recordings and corresponding hypnograms illustrating changes of sleep over 7 h 
(20:00–03:00) following vehicle (upper panel) or ethanol (lower panel) administration. (B) Changes in NREM 
sleep, REM sleep, and wakefulness in mice treated with 3.0 g/kg ethanol. (C) Dose-response effects on total time 
spent in NREM sleep, REM sleep, and wakefulness for 5 h after administration of vehicle and ethanol. Values 
are mean ± SEM (n = 9–10). (B) *P < 0.05 or **P < 0.01 indicates significant differences compared with their 
own control as assessed by two-way ANOVA followed by Fisher’s least-significant difference (PLSD) test. (C) 
**P < 0.01 indicates significant differences compared with the control as assessed by non-paired, two-tailed 
Student’s t test. The letters “a, b, c, d” indicate different subsets among doses of ethanol as assessed by one-way 
ANOVA followed by Duncan’s multiple range test.
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The latencies to NREM and REM sleep were also determined. As shown in Fig. 4A (upper panel), injection 
of caffeine with vehicle prolonged the latency to NREM sleep and injection of ethanol with vehicle pretreatment 
remarkably shortened NREM sleep latency. The latency to NREM sleep in mice treated with vehicle and ethanol 
was 12.5 min, which was markedly shorter than the latency of 24.8 min in vehicle control (P < 0.05). However, 
there were no significant differences in NREM latency in response to vehicle administration with vehicle pretreat-
ment versus ethanol administration with caffeine pretreatment at 5, 10, and 15 mg/kg. Pretreatment with caffeine 
at 15 mg/kg 30 min before injection of ethanol abolished the decrease in NREM sleep latency induced by ethanol 
with vehicle pretreatment (Fig. 4A, upper panel). These results indicate that caffeine pretreatment counteracts 
initiation of NREM sleep induced by ethanol.

Following pretreatment with vehicle or caffeine (5, 10, and 15 mg/kg), the latencies to REM sleep in mice 
treated with ethanol were 233.1, 204.7, 225.8, and 259.7 min, respectively, which were longer than the latency of 
60.1 min after vehicle administration with vehicle pretreatment. And caffeine 10 mg/kg with vehicle also pro-
longed the latency to REM sleep compared with vehicle control (Fig. 4A, lower panel). These results clearly indi-
cate that caffeine pretreatment does not alter the increase in REM sleep latency induced by ethanol.

Analysis of sleep architecture showed that pretreatment with 10 mg/kg caffeine 30 min before administra-
tion of 3.0 g/kg ethanol decreased the number of bouts of NREM sleep with durations of 60–110 s (P < 0.05) 
and increased the number of bouts of NREM sleep with durations of 480–950 s (Fig. 4B, P < 0.01). The number 
of episodes of NREM sleep was reduced by 20% (Fig. 4C, P = 0.054), and the mean duration of NREM sleep 
increased by 55% (Fig. 4D, P < 0.01). These factors resulted in no difference in the total amount of NREM sleep. 
Furthermore, there were no differences in the mean duration of REM sleep and wakefulness (Fig. 4D). In con-
trast, ethanol with caffeine pretreatment reduced the episode number of wakefulness (Fig. 4C, P < 0.05), and 
the episode number of REM sleep did not change (Fig. 4C). The stage transition numbers showed no significant 
change following administration of ethanol with caffeine pretreatment (Fig. 4E).These results show that pre-
treatment with 10 mg/kg caffeine completely abolishes the hypnotic effects caused by 3.0 g/kg ethanol. However, 
caffeine does not completely block ethanol-induced impairment of sleep architecture.

Ethanol still increased NREM sleep and decreased wakefulness with post-treatment of caf-
feine.  To determine whether post-treatment with caffeine alters the hypnotic effects of ethanol, we admin-
istered ethanol (3.0 g/kg) at 20:30, followed by caffeine (10 mg/kg) administration at 21:00 into C57BL/6Slac 
mice. Ethanol with post-treatment of caffeine still increased NREM sleep (F1,158 = 12.6, P < 0.05) and decreased 
wakefulness (F1,158 = 10.5, P < 0.05) compared with their own control (Fig. 5A). Ethanol at 3.0 g/kg increased 
NREM sleep at 20:30–21:00 before administration of caffeine (P < 0.01, Fig. 5A). With post-treatment of caffeine 
at 10 mg/kg, ethanol at 3.0 g/kg still significantly increased NREM sleep by 2.0- and 2.1-fold (P < 0.05) during 

Figure 2.  Changes in sleep latency and architecture produced by administration of ethanol. Effect of ethanol 
on NREM and REM sleep latency (A). Numbers of NREM sleep bouts (B), total episode numbers (C), mean 
durations (D), and stage transitions (E) during the first 5 h after administration 3.0 g/kg ethanol. Values 
are mean ± SEM (n = 10). (A) *P < 0.05 or **P < 0.01 indicates significant differences assessed by one-
way ANOVA followed by Fisher’s PLSD test. (B–E) *P < 0.05 or **P < 0.01 indicates significant differences 
performed using non-paired, two-tailed Student’s t test.
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the fourth and sixth hours after injection, respectively, compared with control, with decreases in wakefulness 
by 30% and 47% (P < 0.05), respectively (Fig. 5A). There was no further disruption of sleep architecture during 
the subsequent period. In addition, we calculated the total time spent in NREM sleep, REM sleep, and wake-
fulness for the 6-h period following administration. Vehicle with post-treatment of caffeine decreased the total 
amount of NREM sleep by 37%, with a 20% increase in wakefulness (Fig. 5B). However, ethanol with or without 
post-treatment of caffeine increased the total amount of NREM sleep by 1.5-fold and 1.3-fold, with a 17% and 
14% decrease in wakefulness, respectively (Fig. 5B). There were no statistical differences between the two groups. 
These results indicate that post-treatment of caffeine can not offset ethanol-induced hypnotic effects.

Deletion of A2AR abolished the hypnotic effects of ethanol.  To clarify the importance of A2AR in the 
hypnotic effects of ethanol, we used A2AR KO mice and their WT littermates. Ethanol given to A2AR WT mice 
at 3 g/kg significantly increased NREM sleep for 5 h (F1,106 = 30.7, P < 0.01) compared with their own control 
(Fig. 6A), which was consistent with a reduction in wakefulness (F1,106 = 30, P < 0.01). However, A2AR KO mice 
given 3 g/kg ethanol did not exhibit any significant change in duration of NREM sleep compared with their own 
control (Fig. 6B). In A2AR WT mice, for the first 5 h after the ethanol injection, the total duration of NREM sleep 
increased by 1.7-fold, which was consistent with a 30% decrease in wakefulness, compared with their own con-
trol. However, there were no differences in the duration of NREM sleep and wakefulness in the A2AR KO mice 
(Fig. 6C). Compared with the A2AR KO mice, ethanol increased NREM sleep by 1.3-fold and decreased wake-
fulness by 21% in A2AR WT mice (Fig. 6C). These results clearly indicate that A2AR is a key receptor involved in 
ethanol-induced hypnotic effects.

Ethanol altered the power spectra of NREM sleep in mice.  The delta activity (0.5–4 Hz) during 
NREM sleep is a reliable indicator of sleep need41,42. We evaluated the EEG power spectra and compared the 
power densities of vehicle and treatment in mice during NREM sleep in each experiments. The power of each 

Figure 3.  Sleep-wake profiles produced by ethanol administration with caffeine pretreatment in C57BL/6Slac 
mice. (A) Changes in NREM sleep, REM sleep, and wakefulness in mice treated with 10 mg/kg caffeine and 
3.0 g/kg ethanol. (B) Dose-response effect on total time spent in NREM sleep, REM sleep, and wakefulness for 
5 h after administration of vehicle and drugs. Values represent mean ± SEM (n = 10). (A) Comparisons of time 
course changes in the hourly amounts of each stages assessed by two-way ANOVA followed by Fisher’s PLSD 
test. (B) *P < 0.05 or **P < 0.01 indicates significant differences compared with their own control as assessed 
by two-tailed unpaired Student’s t test. The letters “a, b, c, d” indicate different subsets among doses of ethanol as 
assessed by one-way ANOVA followed by Duncan’s multiple range test.
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0.5 Hz bin was first averaged across the sleep stages individually and then normalized by calculating the relative 
duration of each bin from the total power (0–24.5 Hz) for each individual animal. As shown in Fig. 7A, compared 
with their own control, ethanol (3.0 g/kg) elevated delta power density in the frequency ranges of 0.5–2, 2.5–3 and 
3.5–4 Hz during NREM sleep. With caffeine pretreatment, ethanol (3.0 g/kg) still elevated delta power density in 
the frequency ranges of 0.5–2 Hz during NREM sleep (Fig. 7B). And ethanol elevated delta power density in A2AR 
WT and A2AR KO mice during NREM sleep (Fig. 7C, D). These results indicated that ethanol increased delta 
power density, which could not completely offset by caffeine or genetic knockout of A2AR.

Discussion
Ethanol consumption is an integral part of daily life in many societies, as it can produce positive mood states and 
has stress-relieving effects43. Furthermore, ethanol is one of the most commonly used “over the counter” sleep 
aids, although consuming large amounts of alcohol clearly has the potential for enormous detrimental impacts, 
including sleep disruption. However, the molecular mechanisms that underlie the hypnotic effects of ethanol 
remain poorly identified. In the present study, we found that ethanol dose-dependently increased NREM sleep by 
increasing the mean duration of NREM sleep and shortening the latency to NREM sleep, which is consistent with 
other studies4,6,44. In addition, ethanol dose-dependently prolonged the latency to REM sleep and decreased the 
amount of REM sleep. Taken together, these results indicate that ethanol affects sleep-wake behaviors by altering 
sleep architecture.

Acute intoxicating effects of ethanol may be related to GABA facilitation and glutamate inhibition, which are 
also critically involved in sleep-wake regulation6. However, the pharmacological effects of ethanol involve mul-
tiple mechanisms, so other targets may be relevant to the effects of ethanol. In the present study, 3.0 g/kg ethanol 
significantly increased NREM sleep for 5 h in WT mice. However, these hypnotic effects were completely abol-
ished in adenosine A2AR KO mice, indicating that adenosine A2AR is essential for the hypnotic effects of ethanol.

In the central nervous system, adenosine is an important endogenous purine neuromodulator that mod-
ulates many important cellular processes in neurons. Adenosine is proposed to act as a homeostatic regulator 
of sleep in which levels in the brain rise during waking and decline during NREM sleep24. Extracellular levels 
of adenosine depend on rates of formation, degradation, and diffusion between intracellular and extracellular 
spaces45. It has been reported that ethanol inhibits the type 1 equilibrative nucleoside transporter, which reduces 
adenosine reuptake and thereby increases extracellular adenosine22, and adenosine synthesis is increased during 
ethanol metabolism46. Furthermore, ethanol may act directly in the brain to increase extracellular adenosine20. 
Ethanol-increased extracellular levels of adenosine may contribute to its hypnotic effects. We found that caffeine, 
an adenosine receptor antagonist, can abolish the hypnotic effects of ethanol. Taken together, these results suggest 
that adenosine is a key mediator in the hypnotic effects of ethanol.

Figure 4.  Changes in sleep latency and architecture produced by administration of ethanol with pre-treatment 
of caffeine. Effect of ethanol on NREM and REM sleep latency (A). Numbers of NREM sleep bouts (B), total 
episode numbers (C), mean durations (D), and stage transitions (E) during the first 5 h after administration of 
10 mg/kg caffeine and 3.0 g/kg ethanol. Values are mean ± SEM (n = 10). (A)*P < 0.05 or **P < 0.01 indicates 
significant differences assessed by one-way ANOVA followed by Fisher’s PLSD test. (B–E) *P < 0.05 or 
**P < 0.01 indicates significant differences performed using two-tailed unpaired Student’s t test.
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The delta activity (0.5–4 Hz) during NREM sleep is a reliable indicator of sleep depth. Compared with their 
own control, ethanol increased the delta power in the mice, which means the NREM sleep induced by ethanol was 
not physiological sleep. Pharmacological antagonism or genetic deletion of A2AR did not reverse the increased 
delta power density induced by ethanol. It has been reported that GABA facilitation and glutamate inhibition 
induced by ethanol are critically involved in sleep-wake regulation6. However, the mechanism of delta power 
change induced by ethanol remains to be elucidated.

There are 4 adenosine receptor subtypes, all of which are G protein-coupled receptors. A1R and A3R are pri-
marily coupled to the Gi family of G proteins, whereas A2AR and A2BR are mostly coupled to the Gs type of G pro-
teins47. A2BR is expressed widely but generally at very low levels, whereas A3R is expressed at intermediate levels in 
the hippocampus and cerebellum48. Little is known about the functional significance of A2BR and A3R in sleep24. 
Accumulated evidence has indicated that A2AR rather than A1R plays a key role in the effects of adenosine on 
sleep24–27. Several studies suggest that A2AR stimulation may be involved in the reinforcing effects of ethanol49,50. 
Caffeine is a non-specific adenosine A1R and A2AR antagonist. We found that pretreatment with 10 mg/kg caffeine 
completely blocked the hypnotic effects of ethanol, which was consistent with results observed in A2AR KO mice. 
These data further indicate that A2AR plays an important role in the hypnotic effects of ethanol.

A2ARs are abundantly expressed in the striatum51. In our previous study, global genetic knockout of A2AR, 
but not A1R, abolished arousal effect of caffeine39, and local deletion of A2AR in ventral striatum blocked 
caffeine-induced wakefulness38, indicating ventral striatum A2AR mediate caffeine-induced wakefulness. 
Optogenetic or chemogentic activation of A2AR expressing medium spiny neurons in the ventral striatum 
robustly induced NREM sleep52. Alcohol induces adenosine release and decreases adenosine uptake, resulting in 
an increase extracellular level of adenosine. Taken together, we thought that caffeine can block alcohol-induced 
adenosine combining with striatum A2A receptors.

Figure 5.  Sleep-wake profiles produced by administration of ethanol with post-treatment of caffeine in 
C57BL/6Slac mice. (A) Changes in NREM sleep, REM sleep, and wakefulness in mice treated with 3.0 g/kg 
ethanol and 10 mg/kg caffeine. (B) Total time spent in NREM sleep, REM sleep, and wakefulness for 6 h after 
administration of vehicle and drugs. Values are mean ± SEM (n = 4–8). *P < 0.05 or **P < 0.01 indicates 
significant differences compared with their own control as assessed by two-way ANOVA followed by Fisher’s 
PLSD test (A), or by two-tailed unpaired Student’s t test with their own control and one-way ANOVA among 
groups (B).
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Adenosine, as a non-classical neurotransmitter, mediates several other behavioral effects of ethanol includ-
ing ataxia16. Ataxia appeared to be mediated by an abnormal balance between excitatory and inhibitory neu-
rotransmitters induced by ethanol in the brain. Adenosine has been shown to modulate both GABAergic and 
glutamatergic transmission, and therefore adenosine maybe involved in the disruption of excitatory-inhibitory 
balance induced by ethanol. Pharmacological studies have shown that adenosine mediates ethanol-induced ataxia 
primarily through A1R in the whole brain53–55, striatum56, cerebellum57, and motor cortex58. But A2AR located 
mainly in the striatum maybe also involved in mediating ethanol-induced ataxia with A2AR agonist and antago-
nist altering the ethanol-induced motor incoordination53. However, the role of adenosine receptors in ataxia and 
other ethanol-induced molecular and behavioral effects need more research.

There is a popular belief that coffee can offset the debilitating effects of alcoholic intoxication59,60. However, 
several other studies could not demonstrate that the antagonistic effects of caffeine reduced performance deficits 
induced by ethanol59,61. In our experiment, pretreatment with caffeine at 10 mg/kg 30 min before injection of 
ethanol offset the hypnotic effects of ethanol. However, the antagonistic effects of caffeine were reduced when 
injected 30 min after administration of ethanol. With post-treatment of caffeine at 10 mg/kg, ethanol at 3.0 g/kg 
still increased NREM sleep for 2 h after administration, which was consistent with a reduction in wakefulness 
for 2 h. The different antagonistic effects following pretreatment or post-treatment with caffeine may result from 
alterations in sleep propensity. When caffeine was administered post-treatment, ethanol induced high sleep pro-
pensity in the mice. During the first 2 h, the high concentration of caffeine could offset the hypnotic effects of eth-
anol. However, as caffeine was metabolized, the antagonistic effects were reduced, which resulted in a resurgence 
of ethanol-induced hypnotic effects. In contrast, pretreatment with caffeine induced hyperarousal before ethanol 
injection. During low sleep propensity, the impact of caffeine metabolism may be weakened, so caffeine might 
completely offset the hypnotic effects of ethanol. These results indicate that the antagonistic effects of caffeine 
depend on whether caffeine is administered before or after ethanol intake.

The antagonistic effects of caffeine observed in this study are consistent with previous human experimental 
studies showing that caffeinated drinks reduce subjective feelings of ethanol intoxication, which is known as the 
“masking effect”36,62. Consumption of ethanol mixed with drinks may lead to subjective drunkenness induced by 
hypnotic effects, which can be delayed by caffeine during the early period. This results in an increase in ethanol 

Figure 6.  Sleep-wake profiles produced by administration of ethanol in A2AR WT and A2AR KO mice. (A,B) 
Changes in NREM sleep, REM sleep, and wakefulness in A2AR WT (A) and KO (B) mice treated with 3.0 g/
kg ethanol. (C) Effect of ethanol on total time spent in NREM sleep, REM sleep, and wakefulness for 5 h after 
administration of vehicle and ethanol in A2AR WT and KO mice. Values are mean ± SEM (n = 8–9). (A,B) 
*P < 0.05 or **P < 0.01 indicates significant differences compared with their own control as assessed by two-
way ANOVA followed by Fisher’s PLSD test. (C) **P < 0.01 indicates significant differences compared with 
their own control as assessed by two-tailed unpaired Student’s t test. P < 0.01 indicates significant differences 
between A2AR WT and KO mice performed using two-tailed unpaired Student’s t test.
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consumption. Therefore, the intoxicating effects of ethanol mixed with caffeinated drinks are expected to be more 
severe, with a 3-fold greater risk of being legally intoxicated, in an accident, and injured during the subsequent 
period34,62. In this study, pretreatment with caffeine could reduce the hypnotic effects of ethanol, which suggests 
that combining ethanol and caffeinated drinks may be harmful. This is in agreement with an announcement by 
the U.S. Food and Drug Administration stating that caffeine is an unsafe food additive when combined with 
alcohol. Thus, the present results indicate that ingestion of caffeine-containing drinks with ethanol consumption 
is a high-risk behavior. Furthermore, A2AR is the most important target of caffeine63. A2AR gene KO reduced 
hypnotic effects of ethanol, which indicates that A2AR plays an important role in the mechanisms underlying the 
“masking effect”.

Our results indicate that ethanol dose-dependently promotes NREM sleep in mice, and A2AR mediates hyp-
notic effects of ethanol.

Methods
Animals.  Male SPF inbred C57BL/6Slac mice (weighing 20–26 g, 11–13 weeks old) were obtained from 
Shanghai Laboratory Animal Center (SLAC), Chinese Academy of Sciences (Shanghai, China). C57BL/6Slac 
mouse is a substrain of C57BL/6J, which is got from the Jackson laboratory and inbred in SLAC laboratory. A2AR 
KO and WT littermates of the inbred C57BL/6 strain were generated from heterozygotes (provided by Boston 
University School of Medicine, Boston, MA). The animals were housed individually at a constant temperature 
(22 ± 0.5°C), with a relative humidity of 60 ± 2%, on an automatically controlled 12 h light/dark cycle (lights on 
at 07:00, illumination intensity ≈100 lux)64, and with free access to food and water. All efforts were made to min-
imize animal suffering and use only the number of animals required for production of reliable scientific data. All 
experiments were carried out in accordance with the National Institutes of Health Guide for the Care and Use of 
Laboratory Animals and approved by the Fudan University Committee on Animal Care and Use.

Polygraphic recording and vigilance state analysis.  Under pentobarbital anesthesia (50 mg/kg, i.p.), 
mice were chronically implanted with EEG and EMG electrodes for polysomnographic recordings as described 
previously65–68. One implant, which served as EEG electrodes, consisted of 2 stainless steel screws (1 mm diame-
ter) inserted through the skull into the cortex (anteroposterior, +1.0 mm and left-right, −1.5 mm from bregma 
or lambda) according to the atlas of Franklin and Paxinos69. The other implant, which served as EMG electrodes, 

Figure 7.  Characteristics of EEG power density of NREM sleep after administration of vehicle or treatment. 
(A) EEG power density curves during NREM sleep after administration of vehicle or ethanol in C57BL/6Slac 
mice. (B) EEG power density curves during NREM sleep after administration of vehicle or caffeine and ethanol 
in C57BL/6Slac mice. (C,D) EEG power density curves during NREM sleep after administration of vehicle or 
ethanol in A2AR WT (C) and A2AR KO (D) mice. Horizontal bars indicate location of a statistically significant 
difference. Values are mean ± SEM (n = 8–10). *P < 0.05 indicates significant differences compared with their 
own control as assessed by two-tailed unpaired Student’s t test.
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consisted of 2 insulated stainless steel, Teflon-coated wires bilaterally placed into both trapezius muscles. All elec-
trodes were attached to a microconnector and fixed to the skull with dental cement.

After EEG/EMG implantation, mice were housed individually in transparent barrels for 7 d to eliminate the 
pain and stress from surgery. Then, mice were connected to cables and given 4 d to adapt in an insulated sound-
proof recording chamber before EEG/EMG recording. The animals then entered the pharmacological phase of 
the study. Sleep-wakefulness states were monitored for a period of 48 h, which comprised baseline and experi-
mental days. Cortical EEG and EMG signals were amplified, filtered (EEG, 0.5–30 Hz; EMG, 20–200 Hz), digi-
tized at a sampling rate of 128 Hz, and recorded using SLEEPSIGN (Kissei Comtec, Nagano, Japan) as described 
previously39,70. When completed, polygraphic recordings were automatically scored off-line in 10 s epochs as 
wakefulness, REM sleep, and NREM sleep by SLEEPSIGN according to standard criteria39,71. As a final step, 
defined sleep-wake stages were examined visually and corrected if necessary.

Pharmacological treatments.  Ethanol (20% v/v, Sigma-Aldrich, Saint Louis, MO) was administered i.p. 
at 21:00 on the day of the experiment at doses of 2.1, 2.5, 3.0, or 3.6 g/kg. For baseline data, mice were injected 
i.p. with vehicle. To test the receptor mechanism, mice were pretreated with caffeine (Alfa Aesar, Ward Hill, MA)  
i.p. at 5, 10 or 15 mg/kg before ethanol injection. In a separate group, mice were post-treated with 10 mg/kg caffeine 
30 min after ethanol administration. The drugs were freshly prepared prior to use, and injection volume (10 mL/kg)  
was kept constant.

Statistical analysis.  Comparisons of time course changes in the hourly amounts of each stages in 
C57BL/6Slac mice treated with ethanol or vehicle, and the hourly amounts of each stages in C57BL/6Slac mice 
treated with combination of caffeine and ethanol or vehicle, and the hourly amounts of each stages in A2AR 
WT/KO mice treated with ethanol or vehicle were assessed using two-way ANOVA followed by Fisher’s 
least-significant difference (PLSD) test. Histograms of the amounts of sleep and wakefulness were assessed by 
one-way ANOVA followed by Duncan’s multiple range test. Significance of NREM and REM latency was assessed 
by one-way ANOVA followed by PLSD test. Comparisons of sleep amounts, as well as number of sleep/wake 
events, duration and transition of sleep/wake events between vehicle and treatment were performed using a 
non-paired, two-tailed Student’s t test. The EEG power spectra were compared using two-way ANOVA followed 
by PLSD.
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