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An algorithm based on positive 
and negative links for community 
detection in signed networks
Yansen Su1, Bangju Wang1, Fan Cheng1, Lei Zhang1, Xingyi Zhang1 & Linqiang Pan   2,3

Community detection problem in networks has received a great deal of attention during the past 
decade. Most of community detection algorithms took into account only positive links, but they 
are not suitable for signed networks. In our work, we propose an algorithm based on random walks 
for community detection in signed networks. Firstly, the local maximum degree node which has a 
larger degree compared with its neighbors is identified, and the initial communities are detected 
based on local maximum degree nodes. Then, we calculate a probability for the node to be attracted 
into a community by positive links based on random walks, as well as a probability for the node to 
be away from the community on the basis of negative links. If the former probability is larger than 
the latter, then it is added into a community; otherwise, the node could not be added into any 
current communities, and a new initial community may be identified. Finally, we use the community 
optimization method to merge similar communities. The proposed algorithm makes full use of both 
positive and negative links to enhance its performance. Experimental results on both synthetic and real-
world signed networks demonstrate the effectiveness of the proposed algorithm.

Many complex systems in the real world can be modeled as networks1. The networks that include only positive 
links are called unsigned networks, and the networks with both positive and negative links are called signed net-
works. Compared with unsigned networks, the links in a signed networks bring more information. Specifically, a 
positive link in a unsigned network just means a ‘relationship’, while a positive link in signed networks denotes a 
‘positive relationship’, and a negative one denotes a ‘negative relationship’. For example, in a signed social network, 
the relationships between parties may be political alliances and oppositions2. Ferligoj and Kramberger has estab-
lished the positive links and the negative links to represent the political arrangements with positive and negative 
ties, respectively2. Besides, there are positive relationships–friendship, trust and like, as well as negative relation-
ships–hostility, mistrust and dislike. In the field of biological science, a gene may be enhanced or repressed by 
another gene, and the enhanced or repressed relationships could be reflected by the positive or negative links3–6. 
A protein is likely to be expressed in a subtype of lung cancer, while it is unexpressed in another subtype of lung 
cancer. The relationships between proteins and the subtypes of lung cancer could also be reflected by positive 
and negative links7. Recently, Kunegis et al. showed that taking the positive and negative links into consideration 
could help to find more useful information compared with the only analysis of positive links8.

Community detection problem has attracted increasing attention since it was first proposed by Girvan and 
Newman9. Most of these community detection methods can only handle the networks without negative links, 
i.e. unsigned networks9–19. In an unsigned network, communities are defined as the groups of nodes in which 
links are dense, while between which are less dense. Unlike the definition above, the communities in signed 
networks are defined as the groups of nodes in which positive links are dense and between which negative links 
are also dense. That is, community detection methods in unsigned networks focus merely on link density but 
not the signs of links as their clustering attributes. However, the communities in signed networks depend on not 
only the density of links but also the signs of links. Thus, previous community detection algorithms in unsigned 
networks are not suitable for the community detection problem in signed networks. In view of the importance of 
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signed networks, community detection methods in signed networks need to be developed. The challenge of the 
community detection problem in signed networks is that the community structure is ambiguous since that there 
are some negative links within communities and some positive links between communities. In the face of the 
challenge, researchers have put forward lots of community structure detection algorithms to get the best partition 
of signed networks.

Several algorithms have been extended from the community detection algorithm in unsigned networks to 
solve community detection problem in signed networks20. Yang et al. first proposed the FEC algorithm to detect 
communities from signed networks based on random walk. Subsequently, several two-stage clustering algorithms 
have been proposed21–23. For instance, the community modularity values are respectively calculated by positive 
and negative links, and the communities are evaluated by the combination of these two community modularity 
values21. The GN-H algorithm is the combination of GN and hierarchical clustering algorithm to detect com-
munities in signed networks22. Specifically, it uses the GN algorithm to detect communities based on the posi-
tive links, and then combine the negative links to get the final hierarchical clustering results. However, in these 
two-stage clustering algorithms, the latter stage is always affected by the previous stage, which may limit the per-
formance of the algorithms. Liu et al. first proposed the community detection problem as a multiobject problem 
(MOP), but the proposed objective functions still need further optimization and improvement to enhance its 
performance24. Majority of previous researches mainly use positive links for community detection, and negative 
links are only used for adjustment. In fact, positive links attract a node to be in a community, while the node is 
rejected outside by negative links. Negative links have no less information than positive links. Thus, further study 
is needed to make full use of both positive and negative links for community detection in signed networks.

In our work, we propose a random walk-based algorithm named SRWA for community detection in signed 
networks based on positive and negative links. The overall framework of SRWA is to detect initial communities 
in a signed network, and then expand these initial communities by application of random walks. Firstly, a dense 
subgraph is detected based on the nodes, whose degree is larger than that of its neighbours. Then, the initial 
community is growing by adding the node which is more likely to be attracted into the community than to be 
rejected from the community step by step. Specifically, a node which is not in a current community has a pos-
itive probability to be in the community and a negative probability to be away from the initial community. The 
positive probability is compared with the negative one to judge whether the node should be added into the com-
munity. If a node could not be added into current communities, then a new initial community may be developed. 
Experimental results on both synthetic and real-world signed networks show the feasibility and effectiveness of 
the proposed algorithm.

Results
In this section, we present the comparative results of the proposed algorithm and the representative algorithms, 
i.e., FEC20, MEAs-SN24 and a method to optimize the modularity based on Tabu search which is implemented by 
Radatool (Tabu search for short)21, 25, on both real-world and synthetic signed networks.

Real-world and synthetic signed networks.  Real-world signed networks.  The first real social network 
is the U.S. supreme court justices network, which describes the voting behavior of nine justices in the supreme 
court of the United States during the period of 2006–200726. The positive line means that one justice supports the 
other one, and the negative line indicates the opposite meaning. Its community structure is shown in Fig. 1. We 
can see that the U.S. supreme court justices network is divided into two communities.

The Slovene parliamentary party network represents the relationships among ten parties of the Slovene parlia-
mentary in 19942. Positive links mean that the parliament activities of two parities are similar, while negative links 
mean that their activities are dissimilar. Figure 2 shows the topological structure of the Slovene parliamentary 
party network and its community structure.

The Gahuku-Gama subtribes network reflects the political alliances and oppositions among 16 Gahuku-Gama 
subtribes, which are distributed in a particular area and are involved in warfare with each other27. Positive and 
negative links represent the political arrangements with positive and negative ties, respectively. Its community 
structure can be seen in Fig. 3.

Figure 1.  The U.S. supreme court justices network.
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The Sampson monastery network represents the social relationships between 18 monks in the monastery of 
new England28. Sampson collected four kinds of social relationships among a group of monks, i.e., friendship, 
esteem, influence and sanction. Each type of relationship has both positive and negative aspects. Six variants 
of the Sampson monastery network can be obtained from UCINET IV datasets and each variant consists of 
18 nodes, however, the numbers of positive and negative links are different in these variants. The information 
about the six variants of the Sampson monastery network are described in Table 129. All these variants have three 
communities due to the fact that 18 monks were divided into three groups, i.e., Young Turks, Outcasts, and Loyal 
Opposition29.

The microarray expression data for the construction of a gene network used in the study originated from the 
Gene Expression Omnibus (GEO) with the accession number GSE23400 (http://www.ncbi.nlm.nih.gov/). There 
are 52 samples and each sample contains expression data of 54,675 probes, which are associated to genes accord-
ing to the information of GPL570 (a microarray chip). According to the number of genes that a probe detects, 
probes can be classified into three categories: probes detecting a single gene, probes detecting more than one 
gene, and probes detecting no genes. We performed the removal of probes which could not detect any genes in 
each sample, and calculated the expression value of each gene which could be detected by more than one probe. 
In addition, we calculated the Pearson correlation coefficients of two genes based on their expression data. If the 

Figure 2.  The Slovene parliamentary party network.

Figure 3.  The Gahuku-Gama subtribes network.

Name of signed 
networks (Np, Nn) Relationships

Attributes of 
relationship

Positive Negative

SAM-AFF4 (56, 47) friendship like dislike

SAM-AFF3 (57, 48) friendship like dislike

SAM-AFF2 (55, 49) friendship like dislike

SAM-EST (54, 58) esteem esteem disesteem

SAM-INFL (53, 50) influence positive negative

SAM-SANC (39, 41) sanction praise blame

Table 1.  Six variants of Sampson Monastery Network29. ‘(Np, Nn)’ denotes that the number of positive links in a 
network is Np, and that of negative links is Nn.

http://www.ncbi.nlm.nih.gov/
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Pearson correlation coefficient between gene1 and gene2 is larger than 0.8 or smaller than −0.8, then a positive 
link or a negative link is considered between gene1 and gene2. A positive link between gene1 and gene2 denotes 
that gene1 and gene2 are positively related, and a negative link means that they have a negative correlation. Then, 
a gene-gene interaction network (GIN, for short) is constructed, including 658 nodes and 3338 links, where 2774 
are positive links and 564 are negative links.

Synthetic signed networks.  In this work, we extended the Lancichinetti-Fortunato-Radicchi (LFR, for short) 
benchmark to signed networks30. A signed network generator is designed with an unsigned network generator 
and a program to control the type of links in an unsigned network31. The signed network generator is denoted as 
SRN(n, k, maxk, t1, t2, minc, maxc, on, om, μ, P−, P+). Here, N is the number of nodes in a network; k and maxk 
are the average and maximum degree of nodes; t1 and t2 are the exponents for the degree and community size 
distribution; mimc and maxc are the minimum and maximum community size; on and om are the number of 
overlapping nodes and the number of memberships of overlapping nodes. More importantly, μ is the fraction of 
links that each node shares with nodes in other communities, which controls the cohesiveness of the communities 
in the generated SRNs. The higher the value of μ is, the more ambiguous the community structure is. P− is the 
fraction of negative links within communities, while P+ is the fraction of positive links between communities. 
Ideally, negative links should be between communities and positive links should be within communities. Thus, 
P− and P+ are two parameters to adjust the noise level. When the value of μ is fixed, the larger the values of P− and 
P+ are, the more ambiguous the community structure is. That is, given a fixed μ, we can control the noise level by 
adjusting both P− and P+. In this experiment, we produce three groups of signed LFR benchmark networks. All 
groups share parameters maxk = 50, t1 = 2, t2 = 1, minc = 10 and maxc = 30. The values of other parameters show 
differences in different groups. One group contains 100 networks, which share the parameters N = 128, k = 16; 
μ increases from 0.1 to 0.5 in the step of 0.1; P+ increases from 0.0 to 0.8 in the step of 0.2; P− increases from 0.0 
to 0.6 in the step of 0.2. Each of the other two groups contains 12 networks. These two groups share parameter 
k = 10, μ ∈ {0.3, 0.5}, P+  ∈ {0.1, 0.3, 0.5}, and P− ∈ {0.1, 0.3}. The number of nodes is set to be 500 and 1000 in 
these two groups, respectively. The detailed information about each group is shown in Table 2.

Comparison with other algorithms.  We verify the performance of the proposed algorithm (SRWA) by 
comparing it with three representative algorithms (FEC, MEAs-SN, and Tabu search) on both real-world and 
synthetic signed networks.

Comparison on real-world signed networks.  As can be seen in Table 3, the proposed algorithm could generate the 
true partition results on the networks (e.g., the U.S. supreme court justices network, the Slovene parliamentary 
party network, the Gahuku-Gama subtribes network, and two variants (i.e., SAM-AFF4 and SAM-INFL) of the 
Sampson monastery networks). Besides, the obtained NMI and Qsigned values were almost larger than those of 
other algorithms.

We also examined the performance of the proposed algorithm on the gene-gene interaction network, the truth 
partition of which is unknown. Although the Qsigned value of the proposed SRWA (i.e., 0.2901) was smaller than 
that of Tabu search (i.e., 0.4577) on the gene-gene interaction network, the communities achieved by SRWA seem 

Group name N k μ P+ P−

Group 1 128 16 0.1–0.5 0.0–0.8 0.0–0.6

Group 2 500 10 0.3–0.5 0.1–0.5 0.1–0.3

Group 3 1000 10 0.3–0.5 0.1–0.5 0.1–0.3

Table 2.  Information of LFR benchmark signed networks. ‘N’ represents the number of nodes in a network; 
‘k’ denotes the average degree of nodes; μ is the fraction of links that each node shares with nodes in other 
communities; P− is the fraction of negative links within communities, while P+ is the fraction of positive links 
between communities.

Networks

NMI Qsigned

FEC MEAs-SN Tabu SRWA FEC MEAs-SN Tabu SRWA

SCJ 1 1 1 1 0.4050 0.4050 0.4050 0.4050

SPP 0.8572 0.8483 1 1 0.4086 0.4022 0.4547 0.4547

GGS 0.9143 0.9022 1 1 0.3870 0.3779 0.4310 0.4310

SAM-AFF4 0.7007 0.7492 1 1 0.3039 0.2261 0.3969 0.3969

SAM-INFL 0.5296 0.7448 1 1 0.1460 0.1839 0.3604 0.3604

GIN — — — — 0.2220 0.1827 0.4577 0.2901

Table 3.  The values of NMI and Qsigned on real-world networks. ‘SCJ’, ‘SPP’, and ‘GGS’ represent the U.S. supreme 
court justices network, the Slovene parliamentary party network, the Gahuku-Gama subtribes network, 
respectively. ‘SAM-AFF4’ and ‘SAM-INFL’ are two variants of the Sampson monastery network. ‘GIN’ denotes 
the gene-gene interaction network. ‘Tabu’ represents Tabu search. ‘–’ means a null value.
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to be more reasonable than those obtained by Tabu search and other compared algorithms. To be specific, on the 
gene-gene interaction network, SRWA detected 41 communities, among which 11 communities were confirmed 
to be related to certain biological processes by the database for annotation, visualization and integrated discov-
ery (DAVID for short, https://david.ncifcrf.gov/summary.jsp) (see Table 4). For example, a community detected 
by SRWA contains seven nodes, which represent the genes ANKH, RP4-758J24.5, MIR6741, DNAJC30, NEIL2, 
NSMAF and XRN2, respectively. Interestingly, above seven genes are all phosphoproteins, which are bound to 
phosphoric acid. In addition, the other ten communities detected by SRWA are corresponding to the following 
biological functions: membrane, alternative splicing, splice variant, protein binding, signal peptide, sequence var-
iant, splice variant and cytoplasm. Here, we refer to a community which is confirmed to be related to a biological 
process by DAVID as an effective community. The ratio of the effective communities to all communities detected 
by SRWA is 0.268. However, the ratios of the effective communities to all communities detected by the compared 
algorithms (FEC, MEAs-SN and Tabu search) are respectively 0.017, 0.004 and 0.022, which are smaller than that 
by SRWA. Therefore, the SRWA performed better than other compared algorithms on the gene-gene interaction 
network.

Comparison on synthetic signed networks.  All algorithms are tested on three groups of synthetic signed net-
works. A total of 30 independent runs are conducted for each algorithm and the average results are shown.
	(1)	 Comparison results on synthetic signed networks with 128 nodes

As can be seen from Fig. 4(a,b,e,f,i,j,m and n), when the parameter P− ≤ 0.2, the NMI obtained by the pro-
posed SRWA is larger than that obtained by MEAs-SN, but it is smaller than that obtained by FEC or Tabu search 
for few detection problems, which suggests that the performance of SRWA is not the best on all synthetic signed 
networks. However, in these situations, the NMI obtained by SRWA is larger than 0.90, meaning that SRWA 
could get nearly true partition results. For example, when μ = 0.1 and P− = 0, the NMI obtained by the proposed 
algorithm is always 1, as P+ increases from 0 to 0.8 (Fig. 4(a)). It suggests that in this situation SRWA could get 
the completely true partition results. In addition, the performance of SRWA is still better than that of FEC in term 
of stability. To be specific, for FEC, its performance decreases obviously with the increasing of μ, P+ and P−. For 
instance, when μ = 0.2 and P− = 0.2, the value of NMI largely decreases when P+ increases from 0 to 0.8. Similarly, 
when μ = 0.1 and P+ = 0.2, the increase of P− causes huge drops in the performance of FEC. If the values of P+ 
and P− are both fixed, the value of NMI decreases with the increase of the μ value. It means that FEC is very sensi-
tive to the parameters μ, P+ and P−. That is because there are some uncertain factors which lead to the instability 
of FEC, such as the random selection of the initial starting node. Although the increase of μ, P−, and P+ may also 
cause the decline of NMI by SRWA, there is a smaller decrease by SRWA than by FEC (Fig. 4).

When the parameter P− > 0.2, the NMI value of SRWA is larger than those of other algorithms Fig. 4(c,d,g and h).  
For the Tabu search, despite it achieves the largest NMI when P− ≤ 0.2, the increase of P− causes huge drops of 
NMI. For example, when μ = 0.1 and P− = 0.6, the performance of Tabu search in term of NMI is smaller than 0.3. 
However, in the situation, the value of NMI obtained by SRWA is larger than 0.75. Thus, SRWA performs better 
than Tabu search when P− > 0.2. It may due to the fact that Tabu search is based on the maximization of modu-
larity, which shows less effective when the community structure is unclear. That is to say SRWA shows its superior 
performance on signed networks with unclear community structures.
	(2)	 Comparison results on synthetic signed networks with 500 and 1000 nodes

We also test the performance of SRWA on the synthetic signed networks with 500 and 1000 nodes. According 
to Fig. 5(a and b), we can see that when P− = 0.1 the NMI obtained by SRWA is no less than 0.8, and in few situ-
ations it is smaller than that achieved by the Tabu search. It suggests that SRWA performs slightly less well than 
Tabu search for few detection problems, which is similar to the results on the synthetic networks with 128 nodes. 
In addition, on these two group of synthetic signed networks we find that SRWA may achieve larger NMI values 
than Tabu search when μ or P+ is larger, e.g., μ = 0.3 and P+ = 0.5 or μ = 0.5 and P+  ∈ {0.3,0.5} (Fig. 5(b)). That is 
to say, when P− = 0.1, as the increase of μ or P+, SRWA shows its superior to Tabu search in terms of NMI.

In addition, SRWA almost performs the best when the parameter P− = 0.3 (Fig. 5(c) and (d)). It is concluded 
that the performance of SRWA is superior to the comparative algorithm on the benchmark networks with 500 
and 1000 nodes.

Discussion
In this work, we have proposed a new algorithm, named SRWA, for detecting community structures in signed 
networks. The key component of SRWA is that a node which is not in any current communities may be added 
into a community on the basis of random walks, which makes full use of both positive and negative links between 

Algorithms FEC MEAs-SN Tabu SRWA

Na 227 416 217 41

Ne 4 2 6 11
Ne
Na

0.017 0.004 0.022 0.268

Table 4.  The effective communities on the gene-gene interaction networks. ‘Na’ represents the total number 
of detected communities. ‘Ne’ denotes the number of effective communities among all detected communities. 
‘Tabu’ represents Tabu search.

https://david.ncifcrf.gov/summary.jsp


www.nature.com/scientificreports/

6SCIEntIfIC REPOrTS | 7: 10874  | DOI:10.1038/s41598-017-11463-y

(a) =0.1,P
-
=0.0

0 0.20.40.60.8 P
+

0

0.5

1

N
M

I

(b) =0.1,P
-
=0.2

0 0.20.40.60.8 P
+

0

0.5

1

N
M

I

(c) =0.1,P
-
=0.4

0 0.20.40.60.8 P
+

0

0.5

1

N
M

I

(d) =0.1,P
-
=0.6

0 0.20.40.60.8 P
+

0

0.5

1

N
M

I

(e) =0.2,P
-
=0.0

0 0.20.40.60.8 P
+

0

0.5

1

N
M

I

(f) =0.2,P
-
=0.2

0 0.2 0.4 0.6 0.8 P
+

0
0.5

1

N
M

I

(g) =0.2,P
-
=0.4

0 0.20.40.60.8 P
+

0
0.5

1

N
M

I

(h) =0.2,P
-
=0.6

0 0.20.40.60.8 P
+

0

0.5

1

N
M

I

(i) =0.3,P
-
=0.0

0 0.20.40.60.8 P
+

0

0.5

1

N
M

I

(j) =0.3,P
-
=0.2

0 0.2 0.4 0.6 0.8 P
+

0

0.5

1
N

M
I

FEC MEAs-SN Tabu SRWA

(k) =0.3,P
-
=0.4

0 0.20.40.60.8 P
+

0
0.5

1

N
M

I

(l) =0.3,P
-
=0.6

0 0.20.40.60.8 P
+

0
0.5

1

N
M

I

(m) =0.4,P
-
=0.0

0 0.20.40.60.8 P
+

0

0.5

1

N
M

I

(n) =0.4,P
-
=0.2

0 0.2 0.4 0.6 0.8 P
+

0

0.5

1

N
M

I

(o) =0.4,P
-
=0.4

0 0.20.40.60.8 P
+

0

0.5

1

N
M

I

(p) =0.4,P
-
=0.6

0 0.20.40.60.8P+

0

0.5

1

N
M

I

(q) =0.5,P
-
=0.0

0 0.20.40.60.8 P
+

0

0.5

1

N
M

I

(r) =0.5,P
-
=0.2

0 0.20.40.60.8 P
+

0

0.5

1

N
M

I

(s) =0.5,P
-
=0.4

0 0.20.40.60.8
P

+0

0.5

1
N

M
I

(t) =0.5,P
-
=0.6

0 0.20.40.60.8P
+

0

0.5

1

N
M

I

Figure 4.  Comparison between SRWA and other algorithms on synthetic signed networks with 128 nodes.
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Figure 5.  Comparison between SRWA and other algorithms on synthetic signed networks with 500 and 1000 
nodes.
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the node and the members of a community. We have tested the performance of SRWA, and compared it with 
other representative algorithms (FEC, MEAs-SN and Tabu search) on both real-world and synthetic signed net-
works. The experimental results have demonstrated the feasibility and effectiveness of SRWA. The feature of the 
proposed algorithm could be summarized as follows. (1) SRWA has a good ability to detect communities on 
signed networks. Several other algorithms have good performances on small-scale networks with clear commu-
nity structures, however, their detection results are far from the expectation on large-scale networks with unclear 
community structure. The proposed SRWA shows its superiority over the competing approaches for detecting 
communities in signed networks with unclear community structures in terms of the quality of found commu-
nities. (2) SRWA is not sensitive to the initial nodes and it needs not any prior knowledge on the community 
structure.

In our future work, we will focus on how we can use the SRWA approach to further address problems in 
other related domains such as disease module mining. So far, the work about disease module mining considers a 
biological network as a large graph including only positive links. However, the relations among the entities of the 
biological network are complex, which could not be modeled only by positive links. From such a signed biological 
network, we may discover some previously unknown information. In addition, it is also interesting to investigate 
bio-inspired computing models for community detection in complex networks, such as probe machine32 and 
spiking neural P system33.

Methods
A signed network can be abstracted as a graph SN = (VG, EP, EN), where VSN = {v1, v2, …, vn} is the set of nodes in 
the network, EP is the set of positive links and EN is the set of negative links. The graph could be expressed as an 
adjacency matrix A, where the element a(i, j) represents the type of the link between the nodes vi and vj (i.e., < vi, 
vj >). Specifically, if the link between the nodes vi and vj is positive, then aij = 1; if the link between vi and vj is 
negative, then aij = −1; if there is no relationships, then aij = 0.

The community detection in signed networks is to detect the communities in which the links are positive and 
between which the links are negative. Let C = {C1, C2, …, Cm} be a set of communities in a signed network. The 
community detection problem in the signed network can be described as: aij = 1, (vi ∈ Ck)∧(vj ∈ Ck); aij = −1, (vi 
∈ Ck) ∧ (vj ∈ Cl) ∧ (l ≠ k).

The proposed algorithm aims to make full use of both positive and negative links to detect communities in 
a signed network. The overall framework of SRWA is presented in Table 5, which consists of three main steps: 
(1) the initial communities are detected; (2) the initial communities are expanded based on random walks; (3) a 
procedure for community optimization is performed. In what follows, we introduce the details of SWRA.

Detecting initial communities in signed networks.  The node with a large impact in a network always 
has a large number of neighbours. The importance of a node could be reflected by the node degree, which is the 
sum of the positive degree and the absolute value of the negative degree (Eq. 1).

deg v deg v deg v( ) ( ) ( ) , (1)P N= + | |

where deg(v) represents the node degree, and degP(v) and degN(v) are the positive degree and the negative degree 
of the node, respectively. Specifically, if the degree of a node is larger than those of its neighbours, then the node 
is more likely to be a center of a community than its neighbours. The local maximum degree node is defined as 
the node which has a larger degree compared with its neighbors13. The way to discover the local maximum degree 
nodes was referred to the previous work13. In this work, we identify the local maximum degree nodes from all 
nodes in a signed network based on node degrees.

Here, a initial community in a signed network is defined as a dense subgraph, which includes a local max-
imum degree node, as well as its close neighbors. Given a local maximum degree node (node1), we identify its 
neighbour node (node2) with the largest positive degree. The reason why the positive degree of node1 is used to 
identify node2 is that, as members of initial communities, node1 and node2 should be linked closely by positive 
links. node1 and node2 may have a common neighbour node (node3), which is also detected based on positive 
degrees. A initial community is comprised by the nodes node1, node2 and node3, together with the links among 
them.

Expanding communities.  Let Y = {Yk|k = 1, …, q} be the set of all communities, where q is the number of 
the communities, =Y V E E( , , )k k k

P
k
N  is the kth community, Vk is the set of nodes in the community, Ek

P and Ek
N  are 

respectively the set of positive and negative links in the community. Specifically, in the initial situation, Yk(k = 1, 
…, q) is an initial community.

Let the walker start from a node u, which is not belong to any current communities. Then, the node u could 
teleport to current communities with probabilities on the basis of the connections of nodes. The total probability 
theorem and conditioning probability model are used to calculate the positive probability of the node u tele-
porting to a community based on positive links (i.e., p+(u → Yk)(k = 1, …, q)), as well as the negative probability 
which represents the node is away from the community based on negative links (i.e., p−(u → Yk)(k = 1, …, q)). If 
the positive probability of the node u teleporting to a community is larger than the negative probability of u being 
away from the community, then u may be added into the community; otherwise, it is not in current communities, 
which implies that a new initial community should be formed.

There are q initial communities, so we perform q runs of random walks to calculate p+(u → Yk) and 
p−(u → Yk). At the kth run of random walks, it is supposed that u belongs to the kth community. The graph of the 
kth random walk process is
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= ′ ′ ′G V E E( , , ), (2)k k k
P

k
N

where V V u{ }k t
q

k1∪ ∪′ = = , ∪ ∪′ = | ∈ ≤ ≤=E E u v v V k q( ) {( , ) ,1 }k
P

t
q

k
P

i i k1 , ′ =E Ek
N

k
N .

First, we calculate the positive and negative probability of the walker teleporting from u to the node vi(i = 1, 
…, m) in the graph Gk. The way to calculate the positive and negative probability is the same except that they are 
based on different kinds of links.

Take the calculation of the positive probability of the walker teleporting from u to vi for example. From the 
time t to t + 1, the walker has a teleporting probability α to jump, and a probability 1 − α to stay. Usually, the 
teleporting probability α is 0.1534. When the walker jumps, it may jump to a node with a transition probability. 
Suppose that the transition probability from u to vi (i = 1, …, m) is the same, then the transition probability vector 
is = ⋅ ⋅ ⋅( )d , , ,

m m m

T1 1 1 , where m is the number of the nodes in the kth community, and d is a m × 1 vector. 
When the walker stays, it may reach a node based on the positive similarity between nodes. The way to calculate 
the positive similarity between nodes is based on the positive links. Here, we make use of the similarity definition 
that Jaccard provided in the literature to evaluate the positive similarity between the nodes vi ∈ V and vj ∈ V (1 ≤ i, 
j ≤ m) as follows35–37.

∩
∪

=
|Γ Γ |

|Γ | |Γ |
+

+ +

+ +Similar v v( , ) ,
(3)

i j
v v

v v

i j

i j

where Γ +
vi

 (Γ +
vj

) is the positive neighborhood of vi (vj), the member of which is connected with vi (vj) by a positive 
link, and |x| indicates the cardinality (i.e., number of elements) in the set x. Let vj = u in Eq. 3. Similar+(vi,u) rep-
resents the positive similarity between u and vi ∈ V (1 ≤ i ≤ m), and it is also denoted as Similar+(vi) for short.

Let the matrix M+ be the normalization of the positive similarity between nodes in the kth community. That is, 
M i j( , )

Similar v v

Similar v v

( , )

( , )
i j

vj i j
=+

∑

+

+
. Here, M+ could be considered as the transition matrix of a random walker. Suppose 

Input Signed network SN;

Output Community set Y.

Step 1

Calculate the node degree of each node in SN by Eq 1;

Find the node which has a larger degree compared with its neighbors, and put it in set H.

/* Each node in H is a local maximum degree node. */

Step 2

For each node vi in set H, discover initial communities Y vi;

Put the elements of Y vi in set Y.

/* Y is the set of initial communities. */

/* Y vi is the set of initial communities, in which each community contains vi. */

Step 3

Merge the initial communities which are identical in Y;

Return Y as the set of initial communities;

Put all nodes in initial communities in V;

Put the rest nodes which are not in initial communities in U.

/* V is the set of nodes which are in initial communities. */

/* U is the set of nodes which are not in any initial communities. */

Step 4

For each node ui in U and an initial community Yk in Y, calculate P+(ui → Yk) and P−(ui → Yk) by Algorithm 1.

/* Yk is the kth community in Y. */

/* P+(ui → Yk) means the positive probability of ui belonging to Yk. */

/* P−(ui → Yk) means the negative probability which represents ui is away from Yk. */

Step 5

Compare P+(ui → Yk) with P−(ui → Yk);

If P+(ui → Yk) > P−(ui → Yk), then put k in Temp − number.

/* Temp − number is used to storage the number of initial community which is likely to contain ui. */

Step 6

If |Temp − number| ≠ 0, then add ui to the community Ybest that results in the largest positive probability;

/* P+(ui → Ybest) = maximum{P+(ui → Yj)|j ∈ Temp-number } */

Delete ui form U.

Step 7

If |Temp − number| = 0, for ui, discover initial communities Yu;

If Yu − Y ≠ ∅, then Y = Y ∪ Yu;

Put all nodes included in Y in V;

Put the rest nodes which are not included in Y into U.

Step 8 Repeat step 4–7 until there is no node left in U.

Step 9
Merge the communities which are identical or similar in Y by Eq. 14;

Return Y as the set of communities.

Table 5.  The overall framework of SRWA.
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the positive probability of the walker teleporting from u to vi is +s i( )t  at the time t. Particularly, in the initial situa-
tion, the positive probability of the walker teleporting from u to vi is the normalization of the positive similarity 
between u and vi, i.e., s i( ) Similar v

Similar v0
( )

( )
i

vi i
=+

∑

+

+
. At the time t + 1, the positive probability +

+st 1 is calculated as 

follows.

α α= − ⋅ ⋅ + ⋅+
+ + +s M s d(1 ) ( ) , (4)t

T
t1

where (M+)T is the transpose of the normalization of the positive similarity matrix M+, and the ith entry +
+s i( )t 1  

captures the positive probability of the walker teleporting from u to vi at the time t + 1.
Iterate the Eq. 4 until s+ is convergent. Suppose when the iteration has been completed, the stable state is 

( , , )m1π π π= …+ + + , then π+ satisfies π+ = (1 − α) ⋅ (M+)T ⋅ π+ + α ⋅ d. In this situation, the ith entry of π+ denotes 
the conditional positive probability that the node u teleports to vi when u belongs to the kth community.

Similarly, we calculate the negative similarity based on negative links by Eq. 5.

∩
∪

=
|Γ Γ |

|Γ | |Γ |
−

− −

− −Similar v v( , ) ,
(5)

i j
v v

v v

i j

i j

where Γ−
vi

 (Γ−
vj

) is the negative neighborhood of vi (vj), the member of which is connected with vi (vj) by a negative 
link.

The negative similarities between nodes are normalized to get the transition matrix M−. Suppose st
− represents 

the conditional probability that u is away from vi when u belongs to the kth community at the time t. We also cal-
culate the initial negative probability vector s0

−, the ith entry of which is the normalization of the negative similar-
ity between vi and u, i.e., =−

∑

−

−s i( ) Similar v u
Similar v u0

( , )
( , )
i

vi i
. Then, +

−st 1 could be calculated by Eq. 6.

s M s d(1 ) ( ) (6)t
T

t1 α α= − ⋅ ⋅ + ⋅ .+
− − −

Iterate the Eq. 6. When the iteration has been completed, ( , , )m1π π π= …− − −  denotes the stable state, where π−
i  

represents the conditional negative probability that u is away from vi when u belongs to the kth community.
Next, the node u has an average conditional positive probability p+(u →  Yj|u ∈ Gk) to teleport to a community 

Yj when u is connected to the nodes in the kth community. Specifically, p+(u → Yj|u ∈ Gk) is the mean value of the 
conditional probabilities and represents u teleports to all nodes in Yj in the graph Gk (Eq. 7).

π→ | ∈ = | ∈+ +p u Y u G mean v V( ) { }, (7)j k i i j

where Vj is the node set of the community Yj.
Similarly, u also has an an average conditional negative probability p−(u → Yj|u ∈ Gk) to be away from Yj when 

u is connected to the nodes in the kth community (Eq. 8).

p u Y u G mean v V( ) { }, (8)j k i i jπ→ | ∈ = | ∈− −

The probability that u belongs to the kth community is based on the positive similarity between u and a node 
in the kth community, which is calculated as Eq. 9. We also calculate the probability that u does not belong to the 
kth community as Eq 10.

∈ = | ∀ ∈
′

.+ +p u G avg Similar u v v V( )) { ( , ) } (9)k i i k

∈ = | ∀ ∈
′

.− −p u G avg Similar u v v V( )) { ( , ) } (10)k i i k

Finally, the positive probability for the node u to teleport to or the negative probability for u to be away from a 
community Yj is calculated based on the theorem of total probability by Eqs 11 and 12.

∑→ = → | ∈ × ∈+

=

+ +p u Y p u Y u G p u G( ) [ ( ) ( )],
(11)j

k

q

j k k
1

p u Y p u Y u G p u G( ) [ ( ) ( )],
(12)j

k

q

j k k
1

∑→ = → | ∈ × ∈−

=

− −

where p+(u → Yj|u ∈ Gk) is the average conditional positive probability for u teleporting to the community Yj 
when u is connected to the nodes in the kth community, while p−(u → Yj|u ∈ Gk) is the average conditional nega-
tive probability for u being away from to Yj on the same condition.

The algorithm to calculate the positive and negative probability of a node belonging to each community is 
described in Table 6. If a node is more likely to be in a community than to be away from the community, then it 
will be added into the community. Otherwise, it could not be added into any current communities. In this situ-
ation, the node could be considered as a new important node, and a new initial community which includes the 
new important node as well as its close neighbours may be detected. If a new initial community has been detected, 
then the number of the current communities plus one, and the above procedures are repeated to add nodes into 
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communities; If a new initial community could not be found, u will be added to the most likely community by the 
tightness between u and a community Yj (j = 1, …, q) as Eq. 13.

=T u Y num
num

( , ) ,
(13)j

1

2

where num1 denotes the number of nodes which have positive connections with the node u in the community Yj, 
and num2 is the number of nodes in the community Yj. The node is added to the community which has the largest 
tightness with it.

Community optimization.  Two or more communities may have a large number of common nodes. That 
is, these communities may be identical or similar. In this case, the expanded communities should be merged into 
one community. If communities Ci and Cj satisfy the following formula, then they can be merged into a larger 
community C38.

∩
ξ

| |

| | | |
>

C C
min C C( , )

,
(14)

i j

i j

where ξ is a threshold. Let ξ = 0.5, meaning that most members of the small community are in the large commu-
nity, the two communities can be merged into one.

Time complexity.  The proposed algorithm takes a time complexity of O(dN) to find local maximum degree 
nodes in a network, where d is the average degree of nodes, and N is the number of nodes in the network. At 
the stage of detecting initial communities, the time used to detect initial communities based on local maximum 
degree nodes is O(d+ p), where p is the number of local maximum degree nodes, and d+ is the average positive 
degree of nodes. In initial situation, there are p initial communities at most. At the stage of expanding communi-
ties, it needs to calculate the probability that a node teleports to each node in communities based on an iterative 
formula. It takes a time complexity of O(logm) in each iteration as stated in ref. 39, where m is the number of 
nodes in the communities. The worst-case complexity for iteration is O(logN). A small number of nodes (i.e., h) 
which are not in any communities is either in a new community, or to be added to a community based on the 
tightness. It takes a time complexity of O(p + d) to judge whether a node is in a new community. If a node is in a 

Input
Node-set V; node u; community Yk.

/* The nodes in V are those within current communities. */

Output
P+(ui → Yk) means the positive probability of ui belonging to Yk;

P−(ui → Yk) means the negative probability which represents ui is away from Yk

Step 1
Construct the graph Gk by Eq. 2.

/* Gk represents the graph of the kth random walk process. */

Step 2

Calculate the positive similarity matrix Similar+ and the negative similarity matrix Similar− by Eqs 3 and 5;

Normalize both Similar+ and Similar− to obtain M+ and M−.

/* M+ and M− are respectively the transition matrix based on positive and negative links.*/

Step 3
Calculate.. and −s0 .

/*s0
+ and −s0  represent the normalization of the positive and negative similarity between vi ∈ V and u. */

Step 4 Calculate ( )d , , ,m m m

T1 1 1= ⋅ ⋅ ⋅ . Let α = 0.15.

/* d is the transition probability vector and α is the teleporting probability.*/

Step 5

Iterate the Eq. 4 until +st  is convergent, and let π+ to be the convergent st
+;

Iterate the Eq. 6 until st
− is convergent, and let π− to be the convergent st

−.

/* +s i( )t  means the positive probability of the walker teleporting from u to vi at the time t. */

/* −s i( )t  means the negative probability that u is away from vi at the time t. */

/* π+(i) denotes the positive probability of the walker teleporting from u to vi. */

/* π−(i) denotes the negative probability that u is away from vi. */

Step 6

Calculate p+(u → Yi|u ∈ Gk) by Eq. 7;

Calculate p−(u → Yi|u ∈ Gk) by Eq. 8.

/* p+(u → Yi|u ∈ Gk) and p−(u → Yi|u ∈ Gk) denote an average conditional positive and negative probability

that u teleports to a community Yj when u is connected to the nodes in the kth community. */

Step 7

Calculate p+(u ∈ Gk) by Eq. 9;

Calculate p−(u ∈ Gk) by Eq. 10.

/*p+(u ∈ Gk) means the positive probability that u is connected to the nodes in the kth community. */

/*p−(u ∈ Gk) means the negative probability that u is connected to the nodes in the kth community. */

Step 8 Calculate p+(u → Yi) = p+(u → Yi|u ∈ Gk) × p+(u ∈ Gk) and p−(u → Yi) = p−(u → Yi|u ∈ Gk) × p−(u ∈ Gk).

Table 6.  Algorithm 1.
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new community, then the number of initial communities plus one. In the worst case, there are p + h communities 
in the stage. Otherwise, it takes the time complexity of O((p + h)h) to calculate the tightness between a node and 
a community. The time complexity of the stage after p + h iterations is O((p + h) log N) + O((p + h)h). At the stage 
of community optimization, it takes a time complexity of O((p + h)2) to judge whether two communities should 
be merged. Therefore, the time complexity of the entire algorithm is O((d + p + h)N), since O(d+p) < O(dN), 
O(p log N) < O(pN), O(h log N) < O(hN) O((p + h)h) < O(pN) + O(hN) and O((p + h)2) < O((p + h)N).

Evaluation measures.  Normalized Mutual Information (NMI)14 and the extended modularity Q (Qsigned)21 
are widely used indexes for measuring the performance of community detection algorithms in signed networks. 
Both of them reflect the detection results from different points of view. Thus, both NMI and Qsigned are employed 
here as indexes to test the detection results.

=
− ∑ ∑


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where PR and PF respectively represent the community partition result obtained by an algorithm and the real 
community partition; N is the number of nodes; X is a 2 × 2 matrix, and Xij is the number of nodes from the real 
community i that also belong to the found community j; X.j = X1j + X2j; Xi. = Xi1 + Xi2. If the partitioning result PF 
is the same as PR, then NMI(PR, PF) = 1; if they are completely opposite, then NMI(PR, PF) = 0.
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where wij is the weight of adjacency matrix, + +w w( )i j  denotes the sum of all positive weights of node vi(vj), and 
− −w w( )i j  denotes the sum of all negative weights of node vi(vj). w+(w−) represents the total positive (negative) 

strength of the SN, and Ci (Cj) represents the community which node vi (vj) belongs to, and δ(Ci, Cj) is 1 if nodes 
vi and vj are in same community; otherwise δ(Ci, Cj) is 0.
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