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Image-based closed-loop feedback 
for highly mono-dispersed 
microdroplet production
D. F. Crawford1, C. A. Smith2 & G. Whyte1

Micron-scale droplets isolated by an immiscible liquid can provide miniaturised reaction vessels which 
can be manipulated in microfluidic networks, and has seen a rapid growth in development. In many 
experiments, the precise volume of these microdroplets is a critical parameter which can be influenced 
by many external factors. In this work, we demonstrate the combination of imaging-based feedback 
and pressure driven pumping to accurately control the size of microdroplets produced in a microfluidic 
device. The use of fast-response, pressure-driving pumps allows the microfluidic flow to be quickly 
and accurately changed, while directly measuring the droplet size allows the user to define the more 
meaningful parameters of droplet size and generation frequency rather than flow rates or pressures. 
The feedback loop enables the drift correction of pressure based pumps, and leads to a large increase 
in the mono-dispersity of the droplets produced over long periods. We also show how this can be 
extended to control multiple liquid flows, allowing the frequency of droplet formation or the average 
concentration of living cells per droplet to be controlled and kept constant.

The miniaturisation of experimental techniques and the growth of lab-on-a-chip systems have stimulated interest 
in microfluidics where networks of micron scale channels move and manipulate liquids. However, in general, 
the high surface to volume ratio of such channels leads to strong interactions with the walls, which can result in 
unintended dispersion and mixing. By encapsulating the sample in a second immiscible phase microdroplets can 
be produced within microfluidic networks. The immiscible carrier phase isolates each discrete droplet from those 
around it and eliminates direct contact with the walls. This provides a powerful platform capable of producing 
discrete reaction vessels for a wide variety of applications, including chemical1, 2 and biochemical reactions3, 4, 
library generation5, 6 and screening, nanoparticle fabrication7, 8. Additionally, individual particles, cells or mole-
cules, can be encapsulated and isolated in microdroplets for studying them at the single level. This technique has 
been employed to capture single DNA molecules and perform polymerase chain reactions (PCR)9–11. Similarly 
single cell sequencing can be performed on individual cells held within microdroplets5.

The ability to successfully perform these experiments is dependent on the size and monodispersity of the 
microdroplets. This in turn depends on a wide variety of parameters, including flow rates, device geometry, vis-
cosities, interfacial tensions, and so reliably creating droplets of a known size is often a trial-and-error process. 
Accurate control of droplet volume is critical in many applications of microdroplets where the changes in the vol-
ume give rise to errors in the estimation of the concentration of a product, or where encapsulating single objects, 
e.g. single molecules12 or cells5, is important.

Microdroplet size control is generally grouped into two categories, active and passive. Active methods for 
microdroplet size control use external manipulations to alter the size and have included embedding pneumatic 
valves13, electric fields14, piezoelectric elements15 and optical heating16 to control microdroplet production, but 
these techniques require advanced device production or complex external equipment.

Passive microdroplet control on the other hand uses continuously flowing immiscible liquids which create 
microdroplets. By changing the liquid properties (e.g. viscosity or interfacial tension), channel geometry or more 
simply the flow rate, the resulting droplet size can be altered over a wide range. The two main configurations for 
microdroplet production are the T-junction17 and the flow-focussing junction18. Both syringe19 and pressure 
pumps20 can be used to control the input liquids. However, the response time of syringe pumps may be seconds or 
even in some cases minutes21 which limits the ability to quickly change the droplet size. Pressure-based pumping 

1Institute of Biochemistry, Biophysics and Bioengineering, Heriot-Watt University, Edinburgh, EH14 4AS, UK. 
2Sphere Fluidics Limited, The Jonas-Webb Building, Babraham Research Campus, Babraham, Cambridge, CB22 3AT, 
UK. Correspondence and requests for materials should be addressed to G.W. (email: g.whyte@hw.ac.uk)

Received: 13 June 2017

Accepted: 21 August 2017

Published: xx xx xxxx

OPEN

mailto:g.whyte@hw.ac.uk


www.nature.com/scientificreports/

2Scientific REPOrTS | 7: 10545  | DOI:10.1038/s41598-017-11254-5

can quickly alter the microdroplet generation sizes in a fraction of a second, however the pressure required at each 
inlet depends on backpressure, which in turn depends on the device design, the diameter and length of tubing 
and liquid properties, resulting in strong dependence on experimental conditions and possible drift throughout 
the experiment.

To counter these problems, a pressure-pump feedback system has been developed which uses images of the 
droplets being formed to feedback and control the droplet size. By using pressure-pumps, rapid changes can be 
actuated and by measuring the droplet size directly, any drift can be compensated, providing ultra-monodispersed 
microdroplets created in an intuitive and easy-to-use fashion. Previous feedback systems22 have used 
syringe-pumps resulting in a long response time (100’s of seconds) and high polydispersity23. By implementing 
two pressure pumps, changes in pressure, and therefore changes in flow rates, will have a faster response making 
a closed loop feedback system able to perform at higher throughputs.

The system was set up as shown in Fig. 1, where a PDMS microfluidic device with a flow-focusing junction 
was mounted on a microscope equipped with a high-speed camera synchronised to droplet formation using an 
infra-red laser and back-scatter detector. By synchronising the camera to the presence of droplets, droplet size 
measurements can be made simply by measuring the droplet in the middle of the camera image. The droplet vol-
ume is calculated from the length of the droplet and this information is used in the feedback loop to control the 
applied pressures on the aqueous and oil inlets.

Results and Discussion
As can be seen in Fig. 2, the use of a feedback loop allows the rapid and well defined change in the generated 
droplet volume by rapidly altering the applied pressure. Figure 1a shows an example where the target volume was 
changed between 450 pL and 550 pL. The software rapidly changes the applied pressure and droplets are formed 
with the new volume within 500 milliseconds. At these formation rates, this results in 16 droplets having a volume 
in between the two wanted values.

As with all feedback based systems, the control parameters of the feedback loop are critical to a fast response 
system. The parameters need to be chosen to provide the optimum conditions between a slow response and 
overshooting and oscillation; Fig. 1b shows the response to a change in the wanted volume from 450 to 550 pL for 
different values of Kp. As expected, low Kp values (0.001, 0.0025) result in a slow response to the desired change, 
while very high values (0.01, 0.02) result in oscillations around the target value. Changes in Kd and Ki had smaller 
effects on the response and for the rest of the work, the values were kept at Kp = 0.005, Kd = 0 and Ki = 0.

To investigate how this system can improve the monodispersity of microdroplet formation, the droplet volume 
was measured using four different pumping systems, a stepper motor driven syringe pump, a pulseless syringe 
pump, a constant pressure air over liquid pump, and the developed image-based feedback system. For each sys-
tem a minimum of 15,000 droplets were measured. Figure 3 shows that the distribution of microdroplet sizes 
created using the stepper motor driven syringe pump is relatively broad with periodic oscillations. This behav-
iour can be understood in terms of the discrete movements of the stepper motor which drives the syringe24, 25. 
Significantly narrower distributions can be achieved using pulseless syringe pumps which do not show the same 

Figure 1.  Schematic diagram showing the setup used for image-based feedback. Two immiscible phases 
(fluorous oil and water) are pumped into a microdevice featuring a flow-focussing section, by pressurised air 
controlled by bespoke feedback software. Image acquisition is synchronised to the presence of a droplet using 
the backscatter signal from a IR laser. The droplet length can be measured using simple image processing, the 
volume can be calculated and this information fed back to the control of the pump.
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oscillations, however when compared to pressure driven pumps which apply a constant pressure, the distribution 
is still very broad. Although the applied pressure remains constant through the experiment, the flow rates in the 
device may change due to channel fouling, leaking or the height of the liquid in the outlet changing, which can 
lead to long-term drift in the droplet volume (see Fig. 2a). This can be countered by using a flow meter placed in 
the fluid path, with a closed feedback loop, however the droplet size produced in using a constant flow rate system 
can also change due to temperature changes, fouling or surface wetting effects. Additionally, the flow meters are 

Figure 2.  (a) Response of the droplet formation to a change in wanted droplet volume. The volume of each 
droplet created (red dots) quickly follows the wanted droplet profile (black line) as the pressure at the aqueous 
inlet is changed (purple line). (b) Optimisation of the dominant feedback parameter Kp, for a step change in 
wanted droplet volume from 450 to 550 pL, showing the slow responses at low values and oscillation at large 
values.

Figure 3.  (a) Normalised droplet volumes over a 50 minute timescale created using constant flow rate, stepper 
motor driven syringe pumps (dark red), pulseless syringe pumps (light red), constant pressure pumps (dark 
green) and image-based feedback driving a pressure pump, producing droplets at 50 Hz (light green). The 
improvement in monodispersity of the pressure based systems and the drift cancelling effect of the feedback can 
be clearly seen. (b) Detailed view of the changes at short timescales, showing the oscillations due to the syringe 
pump and drift due to the constant pressure pump. c) Normalised histograms of the normalised droplet volume 
for each of the methods shown.
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often limited in the range of liquids which can be used, and can be easily blocked by objects in the liquid such as 
microparticles or cells, thus limiting their applicability.

Imaging the droplets provides a more accurate metric of the droplet size than the input flow rates, and by 
feeding back this information, it is possible to improve the long-term monodispersity of the droplet production, 
as shown by the distribution data shown in Table 1, without placing anything in the fluid path. The standard 
deviation in the volume of droplets created using image based feedback is significantly improved over the other 
methods tested and even when compared to using the pressure pumps the standard deviation reduces from 3.78% 
to only 0.32% for 300 pL droplets created over a 50 minute period. This value is close to the resolution limit of our 
system, which was measured to be the equivalent of 0.19%.

By measuring the standard deviation of the distribution of microdroplet sizes within a given time window, the 
timescales over which the system is changing can be investigated (Fig. 4). As expected, the syringe pumps show a 
larger distribution even at short timescales, while the two pressure pump systems have very similar responses over 
short timescales, but due to compensating the inherent drifting of the flow rates, the feedback results show con-
sistent monodispersity across the range of times measured. To test the capabilities at higher droplet production 
rates, the oil pressure was increased in a series of steps and the feedback algorithm modified the aqueous pressure 
to maintain the wanted droplet volume of 300 pL. Figure 5 shows that at low pressures the algorithm can maintain 
the wanted droplet volume at high production rates. Due to the time taken to transfer the images, process them 
and save the data, the processing loop is limited to ~250 Hz, thus the size of every droplet cannot be measured at 
droplet formation rates above this. However, an assumption that the imaging captures a representative sample of 
droplets can be made. Fast camera imaging of droplet formation at high flow rates confirms the assumption that 
the variation of droplet volumes within 0.1 s is smaller than the variation seen at the second timescale. At very 
high pressures (>100 mbar per channel), the linear droplet speed through the channel induces motion blur of 
the image, resulting in higher uncertainty in the droplet volume. Shorter exposure times (the camera used in this 
study was limited to 40 µs) or stroboscopic illumination would reduce this effect.

The use of line cameras to image the droplet would simplify the processing and increase the possible frame 
rate, allowing faster responses and quality assurance by measuring the size of every droplet, even at high for-
mation rates. The relatively simple processing required to implement this system could also be performed by a 
microprocessor and integrated directly with the pressure pump to provide a straightforward system for generat-
ing droplets of a given size. Using the faster frame rate, droplet formation remained stable for frequencies up to 
1KHz.

The system is not limited to a single feedback pressure, to demonstrate this, a secondary feedback loop was 
added to alter the oil pressure in order to control the frequency of droplet generation. Such a system gives the 
user control of both the volume and frequency of droplet production. The droplet frequency was measured from 

Coefficient 
of Variation

Fraction of droplets within 
percentage of mean volume

5% 1% 0.50%

Stepper motor syringe 10.98% 41% 9% 4%

Pulseless syringe 5.42% 97% 30% 17%

Pressure 3.78% 82% 13% 6%

Feedback 0.32% 100% 99.70% 88%

Frequency feedback 0.40% 100% 98.60% 80%

Table 1.  measurements of the distributions in droplet volume measured over a 45 minute period showing the 
improvement in monodispersity when using acive feedback to control droplet production.

Figure 4.  Changes in the distribution of droplet sizes taken for different time windows for the syringe pumps 
(red and pink), constant pressure pumps (dark green) and image-based feedback controlling pressure pumps 
(light green). At short timescales the two pressure based systems perform identically, however over long time 
periods, the drift of the constant pressure system becomes apparent while the image-based feedback remains 
constant.
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the back-scatter signal which was monitored by a microprocessor which triggered a counter on each droplet 
passing. The frequency can be calculated by counting the number of triggered voltages per second. The software 
then controllably alters pressures accordingly until the required droplet frequency is obtained. By tuning the 
feedback parameters, it is possible to prioritise the different measurements. To maintain the high monodispersity, 
it is important that the feedback loop of the volume acts faster than the frequency, allowing the volume to stay 
constant even while changing the oil pressure. The optimum Kp value for the frequency was found to be 0.0025, 
smaller than the Kp for the volume, resulting in the time taken for the frequency to stabilise after a change to be 
about 30 seconds, as shown in Fig. 6. The uncertainty in the volume remains at about 0.4% and so is unaffected by 
the fluctuations of the pressure pumps caused by the frequency feedback loop.

To further demonstrate the potential for image-based closed loop feedback, the feedback loop was modified 
to control two aqueous inlets in order to stabilise the concentration of cells encapsulated into microdroplets. The 
device consisted of two flow focus junctions, one to dilute the cell sample with additional buffer, and the other 
to produce microdroplets as described above (Fig. 7a). When cells are placed into a vial or syringe at the inlet 
of a microfluidic device, they will sediment due to the difference in density between the surrounding medium 
and the cells. This results in a changing cell concentration being introduced into the device. The nature of this 
change depends on the experimental setup, but is generally a decrease in concentration when using syringes and 
an increase when using vials. This effect can be reduced by density matching the surrounding media with supple-
ments such as Percoll4 and OptiPrep26, 27, however the inhomogeneous density of a cell sample and small errors 
in preparations means there will always be a drift in cell concentration (Fig. 7b). Image-based feedback can be 
used to compensate for any drift by dynamically altering the dilution on-chip. To do this, the oil pressure was kept 

Figure 5.  Droplet feedback maintaining droplet volume (red dots) at high droplet formation rates. The oil 
pressure was increased stepwise and the feedback system was allowed to optimise the aqueous pressure (purple 
line) to form 300 pL droplets. At higher pressures, the increase in the error in the droplet volume is in part due 
to motion blue from the fast moving droplets. Insets: images of the droplets at low flow rates (left) and high flow 
rates (right) showing the increased motion blur. Scale bars are 50 µm.

Figure 6.  Response of the frequency (blue) and droplet volume (green) due to the frequency feedback system 
which controls both the aqueous and oil pressures to allow feedback control of both volume and frequency. The 
required frequency was increased in increments of 10 Hz from 100 Hz to 150 Hz and then back down to 100 Hz 
with only slight effects on the resulting droplet volume.
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constant while the feedback loop used the droplet volume to determine the total pressure for both aqueous inlets, 
and the cell concentration was used to determine the ratio of the two aqueous inlet pressures. By controlling 
both these parameters, the drift in droplet volume as well as cell concentration can be compensated for as shown 
in Fig. 7c and d. Although the droplet volume drifts over time (~6% per hour), this cannot fully account for the 
change in cell concentration (~40% per hour) and so two feedback conditions are required to maintain monodis-
persed volumes and cell concentrations.

Experimental
Microdevice Fabrication.  PDMS devices were fabricated using SU-8 photolithography techniques as 
described elsewhere28. Briefly, SU-8 masters with 50 µm height are produced by spin coating Si wafers with SU-8 
2025 (MicroChem Inc) and exposed to UV light to initiate crosslinking. Remaining SU-8 is removed using devel-
oper solvent (MicroChem Inc). Liquid PDMS (Sylgard 184) mixed in a 10: 1 elastomer: curing agent is poured 
onto the master. The PDMS is baked in a 60 °C oven for 3 hrs before being cut out and access holes punched using 
a biopsy puncher. The device and corresponding glass slide, to be used for the base of the channel, are treated 
with an air plasma (Diener) and brought into contact to seal. The surface of the device is treated with PicoGlide 
(Sphere Fluidics) by flushing the solution into the channels and then clearing with compressed air, to render the 
surfaces hydrophobic.

Microscope setup.  The droplet formation is observed using a camera (ProSilica GE680, AVT for Figs 2–6 
or 340 M, Thorlabs for Fig. 7) mounted on an inverted microscope (AE31, Motic) and imaged using either a 
10× objective (Figs 2–6) or a 4× objective (Fig. 7). In order to synchronise the camera to droplet formation, an 
850 nm diode laser is coupled into the illumination path above the condenser lens. The coupling is achieved using 
a dichroic short pass filter “hot mirror” (M254H45, Thorlabs) which allows the visible microscope illumination 
to pass into the condenser as normal, while reflecting the infra-red light of the laser which is directed perpendic-
ularly to the illumination axis. The filter is mounted on a kinematic stage (B4C, Thorlabs) to allow the position 
of the laser spot to be moved within the field of view. The laser was aligned to the middle of the field of view with 
a spot size in the focal plane of ~30 microns. The backscattered light collected by the condenser lens is reflected 
from the dichroic filter and directed towards a photodiode (DET36A, Thorlabs) using a 50:50 non-polarising 
beam splitter. The signal from the photodiode is fed into an analogue input of an Arduino microprocessor 
(Geniuno, Arduino) which in turn generates a trigger pulse signal for the camera when it detects a change in the 
backscattered light due to the presence of a droplet. The trigger signal is also fed into the counter input of a DAQ 
card (USB-6221, National Instruments) to track the droplet frequency.

Droplet Volume Estimation.  The length of the droplet, parallel to the channel, across its centre is measured 
using a line intensity profile. The NI-IMAQ peak detection tool is implemented to locate the edges of each droplet 
allowing length, L to be calculated. This length is used to estimate the droplet volume, Vmeasured, using the follow 
approximation29:
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Where H is the channel height and W is the channel width. For cases where the measured droplet length is 
smaller than either channel dimension, the volume was calculated as a sphere of radius L/2.

Feedback system.  The droplet volume measured, as described above, is averaged over the last 50 droplets to 
give Vmeasured and compared to the wanted value, Vwanted. The error, σ = −V VV measured wanted, is used to mod-
ulate the pressure pumps.

Droplet volume measurements are integrated over a timescale of 0.1 s to reduce the effects of outliers. The 
change in pressure, Δ, is governed by the feedback equation30:

∫σ σ σ∆ = + +K K dt K d
dtp

V
V i

V
V d

V
V

Where Kp
V , Ki

V  and Kd
V are the proportional, integral and derivative constants respectively, which describe the 

behaviour of the feedback. The value of, Kp
V , reacts proportionally to any change in the error reducing the rise 

time of any steady state errors. Ki
V reacts to and reduces long term, steady state errors, while Kd

V  is based on the 
rate of change of the error and reduces overshoots in the response of the feedback31.

In this work Kp
V  was found to be the dominant term and optimised as described in the main text. Therefore an 

error, σ, would result in a pressure change of Kp
V

Vσ∆ =  and so P Pn n1 = + ∆+  where Pn is the initial pressure 
provided by the pressure pump and +Pn 1 is the new updated pressure. The response rate from the OB1 is 9 ms with 
a settling time of 40 ms. This allows the pressure change to be carried out in 0.05 s.

The cell concentration feedback loop used two parameters, Pn
T, representing the total aqueous pressure, and 

nα , the ratio of the cells to buffer pressure, where n is the iteration number. Cell concentrations, Concmeasured were 
determined in real-time from image analysis of camera image by background subtraction, thresholding and 
binary particle analysis using Vision Development Module (National Instruments). The feedback loop calculated 
the new errors and new values as:
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Figure 7.  Extension of the feedback system to stabilise average cell encapsulation concentrations in 
microdroplets. (a) Micrograph of the cell encapsulation device, consisting of an aqueous inlet for cell 
suspension samples which is diluted and flow focused by a dilution buffer, followed by flow focussing with an 
immiscible oil to form microdroplets. (b) Graph showing the variation in droplet volume (red) and average 
red blood cell count per droplet (yellow) when using syringe pumps. Cells placed in a syringe without density 
matching quickly settle and the concentration of cells encapsulated quickly falls (yellow curve). By density 
matching the sample to the cells, there is a slow drift in encapsulation concentration. (c) Graph showing the 
change in volume (green) and cell count per droplet (yellow) for pressure based pumps without feedback 
(time < 0) and with feedback (time > 0). Drift in the cell count is also present when using pressure pumps, 
as can be seen before feedback is turned on at time = 0, however this can be compensated for by feedback to 
alter the dilution factor. (d) Extracted rate of change of the cell count per droplet when using pressure pumps 
with and without feedback for density matched and non density matched red blood cells. The plots show the 
mean gradient of linear fits to the cell count per droplet over a thirty minute period, error bars are the standard 
deviation (N = 3). Scale bar is 300 µm.
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where ,V Cσ σ  are the errors in the volume and concentration, K K,p
V

p
C are the proportional feedback constants 

for the volume and concentration respectively and P P,cells buffer  are the pressures applied to the cells inlet and 
buffer inlet respectively.

Experimental Procedure
Water-in oil droplet generation.  Solutions of fluorous oil (2% PicoSurf, Sphere Fluidics in Novec 7500) 
and deionised water are delivered to the devices using silicon tubing with an OD (1 mm) and connected to either 
syringes with 22 gauge needles, or pressurised reservoirs (Elveflow). The needles are connected to a 1 mL syringe 
mounted on the corresponding stepper-based syringe pump (KD Scientific) or a pulseless syringe pump (Cetoni 
neMESYS), while the reservoirs are attached to a pressure pump (OB1 Elveflow). The outlet of the device is con-
nected by tubing to a vial (2 mL Eppendorf) for collection. The laser is aligned to the middle of the channel several 
hundred microns from the flow-focussing junction and the camera’s region of interest is adjusted to the same 
position, to ensure only fully formed droplets are imaged. The threshold for triggering the camera is adjusted to 
ensure a single trigger pulse is sent for each droplet. Initial flow rates or pressures are chosen based on previous 
experience and allowed to equilibrate before starting the measurements. Images are acquired using the Vision 
Acquisition Software module of LabView (National Instruments) and processed in real time using the Vision 
Development Module of LabView. Control of the OB1 pressure pumps was achieved using the drivers supplied by 
the manufacturer which allowed direct control of the wanted pressure within LabView.

Cell encapsulation.  Red blood cell samples were prepared by dilution 10 µL of whole blood obtained by 
finger prick from healthy volunteers in accordance with Heriot-Watt University ethical guidelines with informed 
consent, into 1 mL of buffer solution consisting of either 28% OptiPrep solution in PBS (“Density Matched” 
buffer) or 10% OptiPrep in PBS (“Non Density Matched” buffer). The 28% OptiPrep solution was produced to 
have a density of 1.09 g/mL to match that of RBCs, 1.09–1.10 g/mL32. Samples were then loaded into either a 
syringe or vial and the procedure followed as described above.

Conclusions
By using an imaging system to directly measure the microdroplet volume and using this to feedback control over 
the input pumps, it is possible to improve the monodispersity in volume of the microdroplets formed over long 
periods. The combination of closed-loop feedback and fast-response, pulseless pressure-driven pumping allows 
highly mono-dispersed microdroplet samples to be created without prior knowledge of the fluidic properties 
of the liquids or system. Over a short timescale (seconds) the standard deviation of the pressure pump system 
both with and without feedback is similar, showing that the monodispersity of the droplets does not suffer in 
these small time periods. Over long periods the feedback system corrects any drift that may occur and the pres-
sure pump system produces droplets with average volumes less noisy than that of syringe pump based systems. 
Additional feedback parameters can be added to further extend the control over droplet generation as shown by 
controlling the frequency of microdroplet generation or the concentration of living cells encapsulated, to provide 
an easy to use and intuitive microdroplet generation system.

Data Availability Statement.  The datasets generated during the current study and the software developed 
are available from the corresponding author on reasonable request.
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